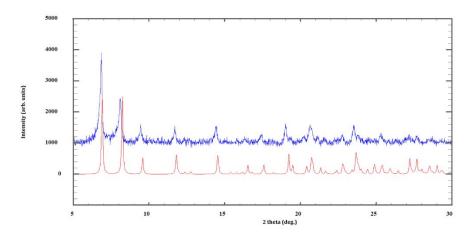
SUPPORTING INFORMATION


Hexa-nuclear molecular precursors as tools to design luminescent coordination polymers with lanthanides segregation.

Haiyun Yao^{a,b}, Guillaume Calvez^{a,*}, Carole Daiguebonne^{a,*}, Yan Suffren^a, Kevin Bernot^a and Olivier Guillou^a

^a Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de rennes",F-35708 Rennes, France.

^b Present address: School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang
277160, China.

* To whom correspondence should be addressed.

Figure S1. Experimental X-ray powder pattern of $[Dy_2(2-bb)_6]_{\infty}$ (top) and simulated X-ray powder diagram of $[Dy_2(2-bb)_6]_{\infty}$ from the crystal structure (bottom).

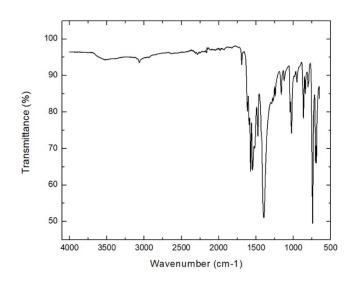


Figure S2. IR spectrum of $[Dy_2(2-bb)_6]_{\infty}$.

Table S1. Shape calculations of the coordination polyhedrons of $[Tb(4-fb)]_{\infty}$, $[Tb(4-cb)]_{\infty}$, $[Sm(4-bb)]_{\infty}$, $[Y(3-fb)]_{\infty}$ and $[Tb(3-cb)]_{\infty}$.														
[ML ₈]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8	
Dy1	28.648	22.165	11.445	10.690	4.964	3.577	9.284	22.608	3.938	3.720	2.958	11.415	21.447	
$OP-8 \equiv D8h$ -Octagon; $HPY-8 \equiv C7v$ -Heptagonal pyramid; $HBPY-8 \equiv D6h$ -Hexagonal bipyramid; $CU-8 \equiv Oh$ -Cube; $SAPR-8 \equiv 4d$ -Square antiprism; $TDD-8 \equiv D2d$ -Triangular dodecahedron; $JGBF-8 \equiv D2d$ -Johnson gyrobifastigium J26; $JETBPY-8 \equiv D3h$ -Johnson elongated triangular bipyramid J14; $JBTPR-8 \equiv C2v$ -Biaugmented trigonal prism; $JSD-8 \equiv D2d$ -Snub diphenoid J84; $TT-8 \equiv Td$ -Triakis tetrahedron; $ETBPY-8 \equiv D3h$ -Elongated trigonal bipyramid.														
[ML ₇]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7							
Dy2	29.905	23.824	1.119	7.501	5.933	3.806	22.701							
	HP-7 = D7h-Heptagon; HPY-7 = C6v-Hexagonal pyramid; PBPY-7 = D5h-Pentagonal bipyramid ; COC-7 = C3v-Capped octahedron; CTPR-7 = C2v-Capped trigonal prism; JPBPY-7 = D5h-Johnson pentagonal bipyramid J13; JETPY-7 = C3v-Johnson elongated triangular pyramid J7													

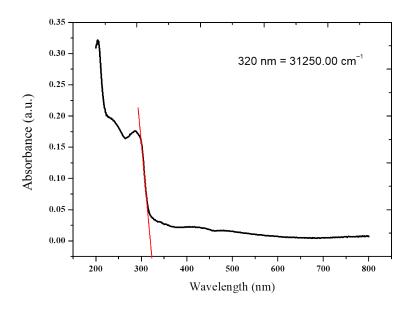


Figure S3. Room temperature solid-state absorption spectrum of $[Y_2(2-bb)_6]_{\infty}$.

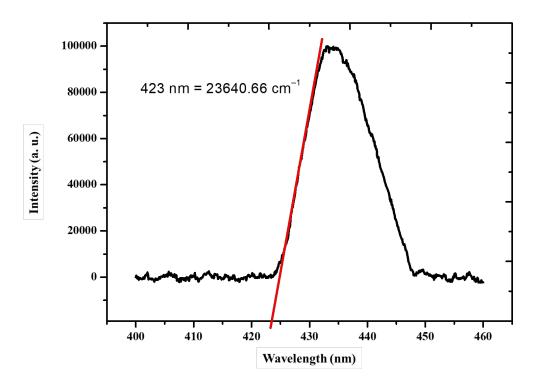
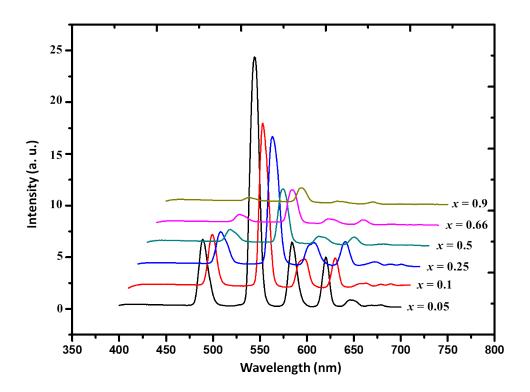
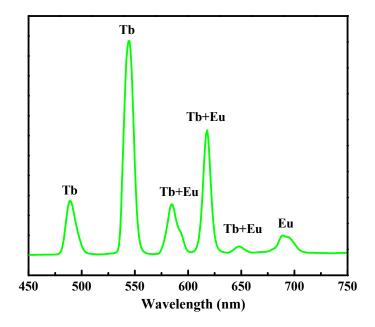




Figure S4. Solid-state emission spectrum of $[Y_2(2-bb)_6]_{\infty}$ recorded at 77 K ($\lambda_{exc} = 300$ nm).

Figure S5. Room temperature solid-state emission spectra of $[Y_{2x}Tb_{2-2x}(2-bb)_6]_{\infty}$ with $0.05 \le x \le 0.9$ ($\lambda_{exc} = 300$ nm).

Figure S6. Room temperature solid-state emission spectrum of $\{[Y_2(2-bb)_6]_{0.8}[Tb_2(2-bb)_6]_{0.1}[Eu_2(2-bb)_6]_{0.1}\}_{\infty}$ ($\lambda_{exc} = 300$ nm).