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- Synthesis of a focused chemical library (12 members)
- Cytotoxicities studies against a panel of 7 cancer cell lines
- Involvment in PUMA-BCL-xL interaction by BRET

- Rational through molecular
modelling studies

Highlights: in this paper, we report:

- Design and synthesis of a library of piperidine-triazole hybrids with new aryl-isoxazole side 
chains,

- Study of their cytotoxicity against seven representative cancer cell lines,

- BRET studies on the best molecule, to demonstrate its implication in PUMA-BCL-xL interaction,

- A rationale to these results through extensive molecular modelling calculations.

Keywords: 

- Cancer

- Protein-protein interactions

- PUMA (p53 upregulated modulator of apoptosis)

- Bcl-xL (B-cell lymphoma-extra large)

- BRET (Bioluminescence Resonance Energy Transfer)

- Molecular modelling

Abstract 

A small library of new piperidine-triazole hybrids with 3-aryl isoxazole side chains has been designed 

and synthesized. Their cytotoxicity against a panel of seven cancer cell lines has been established. For 

the most promising compound, an IC50 value of 3.8 M on PUMA/Bcl-xL interaction in live cancer cells 

was established through BRET analysis. A rationale was proposed for these results through complete 

molecular modelling studies.
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The world is regularly faced to new diseases, such as the recent SARS-CoV-2 pandemy. However, at 

the same time, other diseases continue to develop and cancer in particular remains a leading cause of 

death worldwide, accounting for nearly 10 million deaths in 2020.1 One of the hallmarks of cancer is 

the evasion of apoptosis,2 therefore the discovery of molecules able to counteract this effect is a very 

active area of research.3 Apoptosis is ruled by numerous protein interactions mostly involving 

members of the BCL-2 family. Of these, the interaction which engage PUMA and BCL-xL has recently 

been described to be critical in some cancers, wherein BCL-xL is frequently overexpressed and promote 

resistance to conventional chemotherapy.4 Thus, the tight sequestration of PUMA by BCL-xL favors the 

resistance of cancer cells to many apoptotic triggers.5 The molecular interface of this interaction is 

defined by the BH3 (BCL2-Homology-Domain-3) binding groove, a shallow groove at the surface of BCL-

xL, and the BH3 domain of PUMA, a consensus domain shared by BCL2 family members. This domain 

fits the binding groove with more affinity than other BH3 domains defined within pro-apototic proteins, 

thereby driving the strong resilience of this interaction.5 Inhibitory compounds targeting specifically 

the binding groove of BCL-xL have been designed, but until recently, the binding of PUMA to BCL-xL 

was unaffected by these molecules. In our recent publication however, we reported the first molecule 

X that was able to perturb BCL-xL/PUMA interaction. It seems to proceed originally, through an 

increase of PUMA intrinsic instability, and we have proposed a new mechanism for this action based 

on extensive molecular docking and molecular dynamic studies.6

The proposed binding mode for this triazole-hybrid type molecule7, X shown in Figure 1, suggests that 

the inhibitor could be further improved by extending beyond its current site. Actually, the location of 

the benzylic position suggests the possibility of reaching PUMA’s crevice. Toward this goal, we have 

designed a novel generation of inhibitors. This new chemotype Y (Fig. 1C) bears two modifications of 

the molecule X: (i) the incorporation of bulky heteroaromatic groups (phenyl-isoxazoles) in order to fill 

partially the large PUMA cavity with a balanced hydrophobicity, since the pocket is solvent exposed, 

(ii) replacement of the methylene linker between the triazole and the phenyl group in X by a more 

flexible ethylene to facilitate a correct orientation of the phenyl-isoxazoles units in Y.
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Fig. 1A: Binding mode of the first generation compound X in BCL-xL, as suggested by previous molecular 

simulations.6 Several important residues are labelled, and PUMA binding crevice is illustrated as white 

dotted line. Fig. 1B NMR-based structure of BCL-xL/PUMA complex, in the same orientation B 

(PDB:2M04).8 PUMA is shown as a yellow a-helix. Fig. 1C Proposed transition from the first generation 

compound X to the second series Y.

The purpose of this paper is first to report the synthesis of a focused library (with 12 members) of such 

type-Y molecules. Next, these compounds will be evaluated on cytotoxic studies, using a 

representative panel of seven cancer cell lines. Finally, for the best compound, the precise involvement 

of BCL-xL/PUMA interaction will be checked by BRET and molecular modelling experiments. 
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The synthesis (Scheme 1) starts from propargylic alcohol 1, easily available from p-bromo 

benzaldehyde.9 Then, «click reaction»10 with the, known,11 piperidinoazide 2 gave in good yield the 

triazole 3. After propargylation of the alcohol, followed by the deprotection of the N-Boc group, the 

intermediate aminopiperidine 4 was obtained. After reaction with p-nitrobenzyl bromide, the key 

intermediate 5 was obtained in 4 steps and 17% overall yield from 1. A final classical 1,3 dipolar 

cycloaddition of alkyne 5 with the nitrile-oxides obtained from chloroximes 7,10d gave the target 

molecules 6a-6l in moderate to good yields (Table 1). All these molecules have spectral and analytical 

data in agreement with their structures (see experimental section and supplementary information).
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Scheme 1. Synthesis of compounds 6a-6l. Reagents and conditions: (i) 2, CuSO4
.5H2O, sodium ascorbate, t-BuOH: H2O, rt, 16h

(68%); (ii) Propargyl bromide,NaOH:DCM,TBAI, rt 18h; (iii) TFA, DCM, rt, 18h; (iv) 4-nitrobenzyl bromide, Et3N, DCM, 40 °C, 16h
(40.4%); (v) 7, Et3N, THF, reflux (24-65%).
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Table-1 Synthesis of the target molecules 6a-6l.

Entry Compound R % Yield

1 6a H 65

2 6b 4-Br 63

3 6c 4-F 57

4 6d 4-OMe 51

5 6e 4-CN 25

6 6f 3-Br 55

7 6g 3-F 52

8 6h 3-OMe 24

9 6i 3-CN 30

10 6j 2-Br 62

11 6k 2-F 32

12 6l 2-OMe 26

We performed a cytotoxicity screening of the twelve molecules 6a-6l, investigating seven 

representative cancer cell lines. The compounds effect on cell viability was evaluated on hepatocellular 

carcinoma Huh-7, colorectal adenocarcinoma CaCo2, colorectal carcinoma HCT-116, breast carcinoma 

MDA-MB 231, breast carcinoma MCF7, prostate carcinoma PC3 and lung carcinoid NCI-H727). Human 

skin fibroblasts (Fibro) were used as reference for non-tumor cells with Roscovitine and Doxorubicin 

as positive controls. After 48 h treatment with the new molecules, cells were fixed and the nuclei were 

stained with Hoechst 33342, and counted using HCS technology (Table 2). 

The determination of IC50 indicated: 

- significant cytotoxicities on three cell lines: 

o HuH7 for all molecules except 6j,

o CaCO2 for all compounds except 6l,

o MCF7 for all derivatives except 6a.

- mixed activities on two cell lines MDA-MB468 and PC3,
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- a selective cytotoxicity on two cell lines: in the case of MDA-MB-231 and HCT 116, only 6g  and 

6k exhibit potent cytotoxicities.

Alltogether, these results indicate that two most potent derivatives are 6g and 6k. However, the first 

exhibited cytotoxicity for both normal and cancerous cells while the second 6k exhibited cytotoxicity 

only for cancer cell lines and not for fibroplasts. Therefore, this last derivative was identified as the 

most promising molecule and has been considered for further studies.

Table 2. Cytotoxic studies (IC50 determination) of the molecules 6.[a]

HuH7

Ic50 µM

CaCo-2

Ic50 µM

MDA-MB-231

Ic50 µM

MDA-MB-468

Ic50 µM

HCT116

Ic50 µM

PC3

Ic50 µM

MCF7

Ic50 µM

Fibro

Ic50 µM

DMSO >25 >25 >25 >25 >25 >25 >25 0.07

Roscovitine 9 14 17 18 9 11 9 15

Doxorubicine 0.02 0.05 0.04 0.06 0.08 0.08 0.10 0.02

6a 7 7 >25 3 >25 >25 >25 >25

6b 2 3 >25 5 >25 >25 4 >25

6c 2 3 >25 4 >25 >25 7 >25

6d 2 3 >25 9 >25 2 4 >25

6e 5 2 >25 5 >25 3 3 >25

6f 3 5 >25 >25 >25 >25 6 >25

6g 3 5 5 3 6 9 8 10

6h 5 5 >25 >25 >25 >25 7 >25

6i 3 3 >25 >25 >25 >25 2 >25

6j >25 3 >25 >25 >25 >25 6 >25

6k 2 4 4 4 9 6 8 >25

6l 5 >25 >25 >25 >25 >25 3 >25

[a] IC50 determination of molecules 6 effects on seven representative tumor cell lines and normal Human fibroblast. IC50 (μM) were calculated from 

dose-response curves after 48 h exposure (mean of triplicates).
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To confirm that the mechanism of action of our novel derivative was still that of the parent molecule, 

i.e. perturbation of BCL-xL / PUMA interaction, we performed BRET experiments with the most active 

compound 6k.

Dose responses experiments were performed on MCF7 cell line using A1331852 (Abbvie), a well-

known specific antagonist of BCL-xL, as positive control. Due to its poor cytotoxic activity on MCF7 

cells, 6a was used as negative control. Cells were treated overnight with 20 µM of each molecule before 

being analyzed for their energy transfer ability. Results indicate that 6k has a reproducible effect on 

the interaction and diminishes the BRET ratio between PUMA and BCL-xL by almost 10% (Fig. 2a). A 

dose response curve for 6k was then established which evaluated the IC50 of the molecule at 3.8 µM, 

close to the IC50 found for its cytotoxic effects (Fig. 2b). This value is also very similar to the value 

obtained for the reference molecule X (3M). 

a)                                                                                       b) 

Figure 2 a): BRET studies on molecules 6a and 6k: BRET based dose response curve of compound 6k 

on PUMA/Bcl-xL interaction in live cancer cells. A1331852 was used as a reference antagonist for Bcl-

xL.
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Molecular docking of the novel molecules showed that they retain the parent molecule binding mode. 

Key interactions persist, such as a salt bridge between the piperidine and E96, π-stacking with Y195 

and W137 (Fig. 3). As expected, the additional phenyl isoxazole engages into the PUMA’s crevice where 

it forms additional contacts. The isoxazole is sandwiched between sidechain of L99 and backbone of 

D133. The phenyl is packed with backbone of R132 and L130. Interestingly, its 2-fluoro substituent 

forms a halogen bond with D133, in agreement with the general higher cytotoxicity of 6k as compared 

with the non-halogenated analogue 6a. Further, molecular dynamic experiment have been performed 

and they confirmed the relevance of the selected pose (Sup Information; Fig. 1).

Fig. 3: Proposed binding mode of the new molecule 6k. Important residues are labelled, and PUMA 
binding crevice is illustrated as white dotted line. 

In summary, based on our recent discovery of the first small organic molecule X able to perturb PUMA 

from BCL-xL, we have designed and synthesized a dozen of new piperidine-triazole hybrids with 3-aryl 

isoxazole side chains. Cytotoxicity studies identified one of them 6k as the most attractive derivative 

with a high activity against a representative panel of seven cancer cell lines. Further, studies by BRET 

confirmed that this molecule was also active in displacing PUMA from BCL-xL. Extensive molecular 

modelling studies indicated that the new side chain with the aryl isoxazole moiety should partly fill the 

BCL-xL groove where PUMA is binding. Thus, corresponding data allowed us to propose a rationale for 



10

the activity of this new molecule and confirm the potentialities of this family of compounds towards 

perturbation of the strong PUMA-BCL-xL interaction.
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