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Topological physics and in particular its connection with artificial gauge fields is a forefront topic 

in different physical systems, ranging from cold atoms to photonics and more recently 

semiconductor dressed exciton-photon states, called polaritons. Engineering the energy 

dispersion of polaritons in microcavities through nanofabrication or exploiting the intrinsic 

material and cavity anisotropies has demonstrated many intriguing effects related to topology 

and emergent gauge fields such as the anomalous quantum Gall and Rashba effects. Here, we 

show that we can obtain different Berry curvature distributions of polariton bands in a strongly 

coupled organic-inorganic 2D perovskite single crystal microcavity. The spatial anisotropy of the 

perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton’s diabolical 

points in the dispersion. The application of an external magnetic field breaks time reversal 

symmetry thanks to the exciton Zeeman splitting, which lifts the diabolical points degeneracy. As 

a result, the bands show non-zero integral Berry curvatures which we directly measure by state 

tomography. Crucially, we show that in addition to measure the different Berry curvatures of the 

multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-

called band geometry, within each band by tuning external parameters, such as temperature, 

magnetic field and sample thickness. 
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The generation of artificial gauge fields (AGF) is a central topic in modern physics and has been 

recently investigated in a great variety of physical platforms [1], such as ultra-cold atomic gases 

[2, 3, 4], photonic crystals [5, 6, 7], graphene and graphene like materials [8, 9], mechanical 

systems [10] and exciton-polaritons [11, 12, 13]. One of the main concepts behind the theory of 

AGF in photonic systems lies in the topological and geometrical properties of bands associated 

to the buildup of a non-zero Berry curvature. The Berry curvature is an AGH [<berry1984>] which 

behaves as a pseudomagnetic field in the reciprocal space, and it is determined by the wave 

function change along particle energy dispersion.  

The Berry curvature, whose integral is a topological invariant called the Chern number, plays a 

key role in topological physics. To achieve a non-zero integral value of the Berry curvature for a 

band in a photonic system, both the optical spin-orbit coupling and the breakdown of the time-

reversal symmetry (TRS) are necessary [14]. Indeed, the combination of such geometrically non-

trivial bands and a band gap then allows the opening of a topological gap [15, 16].  

Recently, the frontiers of this field have been extended to the exciton-polariton systems resulting 

from the strong coupling of excitons and photons. The importance of the exciton-polaritons [16] 

lies in the possibility to have a high degree of freedom in the engineering of the particles’s 

Hamiltonian when combining the physical phenomena associated to the exciton component, as 

the exciton Zeeman effect, with those due to the photon energy dispersion in optical confined 

systems, in particular, photonic spin-orbit coupling [17]. Several strategies to realize topological 

systems with polaritons have been suggested [18, 19, 20], by using artificial lattices with honeycomb 

geometries that have been shown to support Dirac cone dispersions [21, 22],   as well as edge modes 

[23].Recently, artificial lattices have been realized both in organic [24] and perovskite materials 

[25], paving the way for the realization and control of quantum states stable at room 

temperature (RT), thanks to the intrinsic robustness of the exciton in these materials.  

In this context, polariton systems based on 2D hybrid organic-inorganic perovskites [26, 27, 28, 

29, 30] represent a unique platform for topological studies, thanks to the possibility to easily tune 

the optoelectronic properties of the polariton device [31], without the need of complex fabrication 

techniques.  

In this work, we study the topological properties of an exciton-polariton planar resonator made 
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of 2D perovskites. The bare photonic modes demonstrate linear birefringence, and, in some 

cases, emergent optical activity [32, 33]. In particular, we demonstrate that a non-zero integral 

value of the Berry curvature (𝐵𝐵𝑧𝑧) is obtained in presence of an external magnetic field, necessary to 

break the TRS, making use of the exciton Zeeman splitting. Furthermore, we perform direct 

measurements of the Berry curvature distribution, the so-called band geometry, at different 

temperatures from cryogenic up to room temperature. We demonstrate that the band geometry 

can be controlled through the exciton/photon fractions of the polariton mode, the intensity of an 

external magnetic field (via Zeeman splitting) and temperature.  

Our findings pave the way for the formation of topological states and manipulation of their 

topological properties in perovskite-based polariton systems, capable of working at room 

temperature. 
 

I. RESULTS AND DISCUSSION 
 

The 4-fluorophenethylammonium lead iodide (F – (C6H5(CH2)2NH3)2PbI4) perovskite crystals 

(PEAI-F) were synthesized by anti-solvent vapor assisted crystallization method [34, 31] on the top of 

a Distributed Bragg Reflector (DBR). Single-crystal X-ray diffraction measurements highlight the in-

plane distortion of the inorganic layers with octahedra tilting (Fig. S1, S2 and Table S1-S3 of the 

Supporting Information (SI)), which could favor the optical birefringence of the material.  After 

mechanical exfoliation performed in order to obtain crystals with thickness between 3 µm and 10 

µm, the planar cavities are closed with a silver top mirror (Fig. 1A). 

The samples inserted in a cryostat equipped for high magnetic field measurements are non-

resonantly excited. Polarization-resolved photoluminescence (PL) is measured at different 

magnetic field between 0 T and 9 T and at different temperature, from 4 K up to room 

temperature. Fig. 1B, C shows a typical energy dispersion versus the in-plane momentum, 

obtained from the photoluminescence spectra as (𝐼𝐼𝐻𝐻 − 𝐼𝐼𝑉𝑉)/(𝐼𝐼𝐻𝐻 + 𝐼𝐼𝑉𝑉) along  opposite k directions 

at 0 T and 4 K, where IH and IV are the PL intensities of the horizontal and vertical polarizations, 

respectively. A manifold of modes, which come in pairs due to a linear polarization splitting, 

results from the free spectral range of the microcavity, filled with a 7 µm thick perovskite layer 

(Fig. 1B, C). Neglecting polarization splitting, the energy of the bare photon modes of the Fabry-

Perot resonator at k=0 is given by 𝐸𝐸𝑛𝑛 ≈ 𝑗𝑗 ℏ𝜋𝜋𝜋𝜋
𝐿𝐿𝑛𝑛𝑟𝑟

 where j is the mode number, L  the effective cavity 
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thickness, rn  the effective refractive index of the cavity. Here 𝑗𝑗~ 50  and the flattening of the 

mode dispersion that we observe while approaching the exciton resonance,  at 2.364 eV (Fig. 

S3B), is due to the strong coupling between the bare exciton of the PEAI-F crystal and the cavity 

modes, and not to the weak increase of the photon mode effective mass which is proportional 

to j and which is less than 5% on the displayed energy scale. Therefore, the differences in the 

polariton effective mass between different modes are caused by the increase of the exciton 

fraction. The energy dispersion of a given exciton-polariton mode, labelled by j as photonic 

modes, can be approximately found by diagonalizing a two by two Hamiltonian, describing two 

coupled linear oscillators (Section V of the SI). The photon fraction 𝑝𝑝𝑗𝑗 decreases while 

approaching the exciton energy. In the same way, the polariton’s effective mass is ~𝑚𝑚𝑗𝑗
𝑝𝑝/𝑝𝑝𝑗𝑗  

where 𝑚𝑚𝑗𝑗
𝑝𝑝 is the bare photon mass of the mode 𝑗𝑗. We now concentrate on a given polarization 

doublet.  

The different energy-momentum dispersion of the two modes in a given pair relates to the TE 

and TM (Transverse Electric, Transverse Magnetic) polarization anisotropy, resulting in an energy 

splitting of the polariton modes in the order of few meV, which increases at higher wavevector 

k. Such momentum dependent splitting is due both to the intrinsic asymmetry of the cavity and 

to the difference between the in- and out-of-plane refractive indexes of the perovskite [35]. In the 

absence of any other refractive index asymmetry, the splitting should be zero at zero momentum 

{kx, ky} = {0, 0} µm−1. .In the PEAI-F-based sample, the presence of the fluorine at the termination 

of the interlayer in between the perovskite wells introduces an in-plane optical anisotropy, 

leading to an additional energy splitting (X-Y splitting) between linearly polarized modes at the 

{kx, ky} = {0, 0} µm−1 point, shifting the degeneracy points (Hamilton’s diabolical points) towards 

higher wavevectors (Fig. 1B) in one in-plane k direction (ky), while no crossing points are visible 

in the orthogonal direction (kx) (Fig. 1C). The birefringence splitting for the lowest observed 

energy polariton mode is ~ 2 meV, which is about two orders of magnitude higher than the 

typical energy splitting observed in inorganic GaAs based microcavities (15 − 30 µeV) [14, 36]. 

This value decreases when the photon fraction decreases (Fig. S4C) due to the flattening of the 

dispersions at the exciton resonance. Another pure optical contribution is an emergent optical 

activity (OA), similar to that reported in refs. [32] and [33], which arises when modes of different 

parities couple and anti-cross, giving rise to circularly-polarized contributions even in the 
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absence of an applied magnetic field. Contrary to the Zeeman splitting, the OA contribution 

depends on the sample thickness, i.e. it increases when increasing the thickness of the material. 

An effective two-band Hamiltonian describing a pair of polariton bands and accounting for the 

TE-TM, birefringence, Zeeman splitting and OA [32, 33] reads: 

 

𝐻𝐻𝐾𝐾 = �𝐸𝐸0 + ħ2 𝑘𝑘2

2 𝑚𝑚
� 𝐼𝐼 + �

∆𝑧𝑧 + 𝜁𝜁𝐤𝐤𝐮𝐮𝜁𝜁 𝛼𝛼𝑒𝑒𝑖𝑖𝜑𝜑𝛼𝛼 − 𝛽𝛽 𝑘𝑘2 𝑒𝑒−2𝑖𝑖𝜑𝜑𝑘𝑘   
𝛼𝛼𝑒𝑒−𝑖𝑖𝜑𝜑𝛼𝛼 − 𝛽𝛽 𝑘𝑘2 𝑒𝑒+2𝑖𝑖𝜑𝜑𝑘𝑘 −∆𝑧𝑧 − 𝜁𝜁𝐤𝐤𝐮𝐮𝜁𝜁

�     (1) 

 

where I is the identity matrix, 𝐸𝐸0 the energy of the considered polariton mode at k=0,  m the 

polariton mass, k = |k| = �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 is the in-plane wavevector module and 𝜑𝜑𝑘𝑘 its polar angle, ∆𝑧𝑧 

is the polariton Zeeman splitting, α, β and ζ are the strengths of the X-Y, TE-TM splitting and OA, 

respectively. 𝜑𝜑𝛼𝛼 describes the orientation of the linearly polarized eigenmodes at k=0 (linear 

birefringence). 𝐮𝐮𝜁𝜁  is a unitary vector related to the orientation of the OA. For 𝜑𝜑𝛼𝛼= 0 and 𝐮𝐮𝜁𝜁  

oriented along x, the system’s eigenvalues are obtained by diagonalizing the Hamiltonian in (1): 

𝐸𝐸± = 𝐸𝐸0 + ħ2 𝑘𝑘2

2 𝑚𝑚
 ±  �𝛽𝛽2 𝑘𝑘4  −  𝛽𝛽 𝛼𝛼 𝑘𝑘2 cos(2 𝜑𝜑𝑘𝑘) +  𝛼𝛼

2

4
+ (Δ𝑧𝑧 + 𝜁𝜁𝑘𝑘 cos𝜑𝜑𝑘𝑘)2    (2) 

The dashed blue and red lines in Figs. 1B, C represent the energy eigenvalues of the system for a 

pair of orthogonally polarized polariton modes using formula (2). The OA contribution is negligible 

in the fitting of the energy dispersion because the resulting energy splitting (∼ 0.1 meV) is small 

compared to the full width at half maximum of the modes (∼ 1.5 meV). By comparing the 

dispersion spectra along the two directions, it can also be observed the presence at 

ky = ± 3.7 µm−1 of two Hamilton’s diabolical points [35] (Fig. 1B). For these states, degenerate in 

energy, the TE-TM energy splitting exactly compensates the X-Y splitting. 
It is now possible to lift the dispersion degeneracy at the two diabolical points, by applying 

an external magnetic field (B), perpendicular to the planar microcavity by using a peculiar 

property of polaritons, their excitonic component, through the Zeeman effect (Figs. 2A, B). This 

effect breaks the time-reversal symmetry and the polariton modes acquire a circular 

polarization component. By applying 9 T, the spectrum opens up at the two crossing points of 

the polariton dispersions, generating an anti-crossing gap (Figs. 2C, D). Here, we can extract the 

Zeeman strength for each couple of orthogonal modes from the photoluminescence profile of 
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the unpolarized energy dispersion spectra (Fig. 2B). We found that the Zeeman splitting 

increases at higher energies due to the higher exciton fraction of the polaritonic modes (Fig. 

S4B), in contrast to the TE-TM and X-Y splitting, which instead decrease moving towards the 

exciton energy (Fig. S4C). 

In order to verify if these nontrivial dispersions are consistent with the conical diffraction 

theory [37], we have measured the polarization resolved photoluminescence spectra of the 

modes along all the six polarization axes of the Poincaré sphere, corresponding to the 

horizontal-vertical (H−V), diagonal-antidiagonal (D−A), and circular right-left (R−L) polarization. 

In particular, at the energy E = 2.313 eV, for which the two modes cross each other at the diabolical 

points, we observe that the linear polarization direction precesses when moving along the two 

crossing rings (dashed lines in Figs. S5 A,B), in agreement with the conical diffraction theory. At 

the diabolical points, the polarization value is the linear superposition of the polarizations of 

the crossing modes. Along the kx direction, diametrically opposed points possess orthogonal 

polarization for each ring and the polarization map is centrosymmetric with respect to the origin 

of the momentum plane {kx, ky} = {0, 0} µm−1.  

The full knowledge of the mode polarization is a fundamental parameter since it defines the 

particle pseudospin (Stokes vector) This can be thought as a two-degree of freedom phase associated 

to the particles, or in other terms as a vector charge [35] property and it makes possible to 

extract the quantum geometric tensor (QGT) [38] (Section VI of SI). Such tensor contains the 

information on how the orientation of the pseudospin changes when moving along the 

momentum plane. The orientation of the Stokes vector S(k), which represents the polarization 

state as a point on the Poincaré sphere allows to reconstruct the components of the QGT and in 

particular the Berry curvature (Section VI SI) [14]. 

Note that using the effective Hamiltonian (1), QGT components can be computed analytically 

[38], in particular, the Berry curvature reads:  

𝐵𝐵𝑧𝑧 = ±
𝛽𝛽�𝛼𝛼𝜁𝜁 cos𝜑𝜑𝛼𝛼𝐤𝐤𝐮𝐮𝜋𝜋−𝜁𝜁−𝛼𝛼𝜁𝜁 sin𝜑𝜑𝛼𝛼𝐤𝐤𝐮𝐮𝜋𝜋

2−𝜁𝜁
+𝛽𝛽𝑘𝑘2�2Δ𝑧𝑧+𝜁𝜁𝐤𝐤𝐮𝐮𝜁𝜁��

��𝛽𝛽�𝑘𝑘𝑥𝑥2−𝑘𝑘𝑦𝑦2�+𝛼𝛼 cos𝜑𝜑𝛼𝛼�
2+�2𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦+𝛼𝛼 sin𝜑𝜑𝛼𝛼�

2+(Δ+ζ𝐤𝐤𝐮𝐮)2�
3/2                      (3) 

Here, u are unitary vectors in the corresponding directions (e.g. 𝐮𝐮𝜋𝜋
2−𝜁𝜁

 is perpendicular to 𝐮𝐮𝜁𝜁). 

This formula shows that the variation of the parameters α, β, 𝜁𝜁, and Δz, given by the different 

exciton/photon fraction at each mode, allows a remarkable change of the Berry curvature 
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distribution in reciprocal space, that is, of the so-called band geometry, as we demonstrate 

experimentally below. 

Fig. 3A-D shows the experimental Berry curvature distribution related to the lower energy 

band of the two LPBs for the modes j, j+1, j+2 split by the magnetic field (the dispersion is 

shown in Fig. S6A of the SI). The Berry curvature is evaluated for each state of the 2D 

dispersion. Fig. 3A,B shows the Berry curvature distribution for the mode j at 0 T and 9 T, 

respectively. The Berry curvature is peaked around the two anti-crossing points, forming two 

broadened Berry monopoles. At B=0 T this distribution is affected by the OA; in this case, 

instead of being zero, the circular polarization degree and Berry curvature at the two 

anticrossing points are of opposite sign. The integrated Berry curvature over the whole band 

(Chern number) is still zero, as it was the case in [32, 33]. At B=9 T (Fig. 3B), TRS is broken by 

the exciton Zeeman splitting, which is here much larger than the OA (𝜁𝜁 = 0.01 𝑚𝑚𝑒𝑒𝑚𝑚 · µ𝑚𝑚). The 

two anticrossing points of each split band have now the same sign of the circular polarization. 

The bands are therefore characterized by a non-zero Chern number. The exciton-photon 

fraction varies across different LPB pairs (values for each band doublet are reported in Table 

S4) and this results in different parameters which enter in the effective Hamiltonian. This 

completely modifies the shape of the Berry curvature distribution, as shown in the Fig. 3C-D.  

The Berry curvature evolves towards a ring-like shape at higher excitonic fractions in good 

agreement with the simulated Berry curvatures (Fig. 3E-H), considering the experimental values 

of α, β, Δz, 𝜁𝜁 and 𝜑𝜑𝛼𝛼, extracted for each polariton mode. The evolution of the Berry curvature 

can therefore be understood taking into account that at higher energies the exciton fraction of 

the polariton modes increases, resulting in a more pronounced Zeeman splitting [38] and in a 

decrease of the TE-TM and X-Y splitting, due to the dispersion flattening at the exciton 

transition. It is the opposite trend of the contributions to the effective magnetic field with 

respect to the photon-exciton fraction of the polariton modes, which makes ultimately possible 

to observe Berry curvatures with different shapes inside the same device. Interestingly, the 

orientation of the linear birefringence (polarization of mode at k=0, for zero applied field) 

clearly depends on the exciton-photon fraction, with 𝜑𝜑𝛼𝛼~ 0 for j and j+1 and 𝜑𝜑𝛼𝛼~30° for j+2. 

This is visible in Fig. 3D,H, where the Berry curvature maxima are not along the 𝑘𝑘𝑥𝑥 = 0 axis. 

Small discrepancies between experimental and simulated Berry curvatures can be attributed to 
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dissipative effects and inhomogeneity of the sample neglected in the theoretical model. 

In this sample, the contribution of the OA to the Berry curvature map is crucial at 0 T, but it 

becomes only a small correction at 9 T. However, we observed that the OA magnitude changes 

from one crystal to another, proportional to the crystal thickness (Section VII of SI). It decreases 

in thinner samples because of a larger mode splitting, while the OA is prominent in thicker 

crystals, strongly affecting the Berry curvature even at 9 T (Fig. S7). 

 So far, we have shown how to control the parameters of the effective Hamiltonian and 

qualitatively modify the Berry curvature distribution by passing from one branch to another. In 

the next part, we demonstrate a fine control of the Berry curvature distributions and values in 

a given band by continuous tuning of either the magnetic field intensity, or the temperature. 

In order to observe the evolution of the Berry curvature with respect to the applied 

magnetic field, we use in the following samples with thinner crystals (≅ 2 µm), which results in 

a negligibly small OA (Fig. S8). Fig. 4A shows the trend of the maximum of the Berry curvature 

𝐵𝐵0 (with the integral curvature normalized to 1) as function of the magnetic fields for 2 

different polariton bands: B0 decreases for each band by increasing the magnetic field. This 

parameter is fully relevant for band characterization and determines the maximal value of the 

anomalous Hall deviation which can be observed for a given band: ∆𝑋𝑋𝐴𝐴𝐻𝐻𝐴𝐴~�𝐵𝐵0. The 

experimental data (black and red points) are fitted with the eq. (S3) (black and red lines), 

considering 0.372 and 0.229 as photonic fractions for band 2 and band 1, respectively. 

Fig. 4B shows the maximum of the Berry curvature of a polariton band versus temperature 

sample. When the temperature increases from 4 K to 100 K, the exciton resonance moves 

towards higher energy (Extended data Fig. 1A-C) resulting in a blue shift of the polariton 

modes. This leads to the continuous increase of the photonic fractions for each mode and a 

corresponding perturbation of the Berry curvature distribution (Extended data Fig. 1D-F), 

characterized by another quantitative parameter, the asymmetry ratio (Extended data Fig. 1G). 

For the band 1, reported in Extended data Fig. 1A-C,  𝐵𝐵0 increases while increasing the photonic 

fraction from 0.344 at 4 K to 0.366 at 100 K.   

To summarize, in Fig. 4C we show all maximum values of Berry curvature, which we have 

been able to measure in our samples. The points in blue correspond to the cases shown for 

different bands (Fig. 3 and S8), the points in red correspond to data changing the photonic 
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fraction on the same microcavity sample (Fig. 4). They are much closer to each other and 

demonstrate the possibility to finely tune the value of the Berry curvature while a coarse tuning 

is obtained by changing polariton bands.  

Finally, we have also extracted the Berry curvature at room temperature for a ≅ 3 𝜇𝜇𝑚𝑚-thick 

crystal, despite the broadening of the polariton modes at higher temperatures (Extended data 

Fig. 1A). The Berry curvature at 9 T for the mode at 2280 meV is reported in Section X of the SI 

clearly showing two localized maxima in the reciprocal space. 

 
II. CONCLUSIONS 

 

Our results demonstrate that the perovskite based polariton system gives a unique 

opportunity to engineer the shape and value of the Berry curvature, by actively tuning different 

parameters, such as the crystal thickness, the applied magnetic field, and the temperature.  

We have demonstrated the topological features of a 2D perovskite-based polariton system, 

from cryogenic to room temperature and for different band geometries. By combining the 

material’s optical birefringence and emergent optical activity with the Zeeman effect, we have 

shown that perovskite-based polariton systems give a unique opportunity to engineer the 

shape of the Berry curvature distribution and its maximal values by actively tuning different 

parameters. Varying the temperature and the intensity of the external magnetic field, we 

actively influence the distribution of the Berry curvature, having easy access to various 

theoretically predicted shapes. Such kind of structures can be used for multiplexing the future 

optical valleytronic devices, such as transistors based on the anomalous Hall effect, operating 

at different wavelengths at the same time and at different temperatures. 
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Figures: 
 

Figure 1: A) Schematic representation of a sample. Perovskite crystals are embedded in a planar 
microcavity made by a bottom DBR with seven TiO2/SiO2 pairs and a top 80 nm thick silver mirror. B, C) 
Degree of linear polarization (H/V) of the photoluminescence signal of the lower polariton branches 
resolved in the energy vs ky (B) and kx (C) in-plane momentum space. The perovskite thickness of this 
sample is 7 µm. The dashed lines are the fitting of the system eigenstates derived from eq. 2 with zero 
magnetic field (∆𝑧𝑧=0) with the following parameters: E0 = 2.308 eV, m = 4.4 · 10−4 me, β = 3.3 · 10−5 eV µm2 
and α = 1.1 meV. 
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Figure 2: A) Energy vs ky in-plane momentum of unpolarized photoluminescence for B = 0 T magnetic field 
(left half panel) and under an external magnetic field, B = 9 T (right half panel) measured at T = 4 K. B) 
Photoluminescence spectra measured at kx = 0 µm−1 and ky = ± 3.7 µm−1 at zero magnetic field (red line) 
and at B = 9 T (blue line). C, D) Unpolarized photoluminescence maps in the momentum space at 
isoenergetic cross-sections of the lower polariton dispersion. The cuts are taken at the energy E = 2.316 eV 
and for a magnetic field of B = 0 T (C) and B = 9 T (D), respectively. The Zeeman effect emerging under 9 T 
is responsible for the degeneracy suppression. 
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Figure 3: A-H) Experimental and theoretical Berry curvature extracted from the polarization-resolved 
measurements, for lower energy band (corresponding to the solution with sign + in the Eq. 3) of the 
mode j (A, E) at 0 T and (E-F) at 9 T, mode j+1 (C, G) and mode j+2 (D, H) at 9 T, respectively.  
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Figure 4: A) Trend of the normalized maximal Berry curvature value (𝐵𝐵0) as a function of the magnetic 
field, for band 1 and 2 reported in Fig. S8. B) Trend of the Berry curvature value as a function of the 
sample temperature for all polariton modes reported in Extended data Fig. 1. The error bars indicate the 
measurement uncertainty. C) Summary of the values extracted of the Berry curvature for all the 
performed experiments. Red points: measurements shown in Fig. 4, panels A and B changing the 
photonic fraction on the same microcavity sample. Blue points: measurements shown in Figs. 3, S8, and 
all other experiments reported in the manuscript for different bands, resulting in different values of the 
Berry curvature.  
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METHODS 
Synthesis of 2D perovskite flakes  

A solution 0.5 M PEAI-F is prepared in a nitrogen- filled glovebox by dissolving PbI2 and 4-

Fluorophenethylammonium iodide (1:2 molar ratio) in γ-butyrolactone and stirring at 70°C for 1 

hour. 2D perovskite single crystals are synthesized using an anti-solvent vapor-assisted 

crystallization method as follows: 3 µl of perovskite solution are deposited on top a sputtered 

DBR and covered with a glass coverslip. Substrates and a small vial containing 2 ml of 

dichlorometane are placed inside a bigger Teflon vial which is closed with a screw cap and left 

undisturbed for 12 hours at room temperature. During this time, crystals slowly grow in a 

saturated environment of dichloromethane (antisolvent) and at the end millimeter-sized 

perovskite flakes appear on the top of the DBR. Their thickness varies from few to tens of 

micrometers. Using SPV 224PR-M Nitto Tape or PDMS, mechanical exfoliation is carried out on 

the perovskite flakes in order to obtain single crystals having the desired thickness. 

 
Microcavity Sample Fabrication  

The DBR is made by seven pairs of TiO2/SiO2 (63 nm/94 nm) deposited by radio-frequency (RF) 

sputtering process— in an Argon atmosphere under a total pressure of 6 · 103 mbar and at RF 

power of 250 W —on top of a 1 mm glass substrate. The perovskite single crystals are grown on 

top of the DBR (see above) and an 80 nm-thick layer of silver is thermally evaporated on top of 

the structure (deposition parameters: current = 280 A, deposition-rate = 3 Å/s). 

 
X-ray diffraction  

Single-crystal X-ray diffraction data measurements for PEAI-F were carried out at the beamline 

PXIII (X06DA-PXIII, http://www.psi.ch/sls/pxiii/) at the Swiss Light Source (SLS), Villigen, 

Switzerland, using a Parallel Robotics Inspired (PRIGo) multiaxis goniometer [47] and a PILATUS 2M-

F detector. Data collection was performed at low temperature (T = 100 K) on a selected crystal 

 

http://www.psi.ch/sls/pxiii/)
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mounted on litholoops (Molecular Dimensions). Complete data were obtained by merging two 

360° ω scans at χ=0° and χ=30° of PRIGo.  In shutterless mode, a 360° data set was collected 

in 3 min (beam energy of 17 keV, λ=0.72932 Å, focus size 90 x 50 µm2, 0.25 sec of exposure time 

per frame, 0.5° scan angle). Main experimental details are given in Table S1. Diffraction data 

were processed by XDS [48], a software organized in eight subroutines able to perform the main 

data reduction steps; the integrated intensities were scaled and corrected for absorption effects 

by the XSCALE subroutine [48]. 

Structure solution was carried out by Direct Methods [49] using SIR2019 [50] a package that 

exploits the information on unit cell parameters, diffraction intensities and expected chemical 

formula to identify the space group and determine the crystal structure by Direct Methods. The 

partial structure model located by SIR2019 was completed and refined using full-matrix least-

squares techniques by SHELXL2014/7 [51]. Non-hydrogen atoms were refined anisotropically. 

Hydrogen atoms were positioned by difference Fourier map; their atomic coordinates were freely 

refined and the following constraints on the isotropic U value of H atoms were applied: Uiso(H)=1.2 

Ueq(C) and Uiso(H)=1.5 Ueq(N) in case of hydrogen atoms bonded to C and N atoms, respectively. 

Optical setup  

The samples were inserted in a cryostat equipped with a resistor to control the operation 

temperature and cooled down to liquid helium for high magnetic field measurements.  Extended 

Data Fig. 2 shows a sketch of the optical setup. The measurements are performed in reflection 

configuration, using a closed-cycle attoDRY1000 cryostation, a continuous- wave laser at 488 nm 

(2541 meV) and an optical chopper (with rotation frequency = 300 Hz), to minimize the sample 

heating. Through the detection path, the image on the back focal plane of the detection 

objective (50 x with N.A. = 0.82) is projected on a spectrometer entrance slit. The spectrometer 

is coupled to an enhanced CCD camera for the detection of the polariton energy dispersion. The 

second 30cm lens is on a translation stage in order to scan the whole 2D-momentum space. The 

quarter-wave plate (QWP) and the half-wave plate (HWP) in front of the entrance of the 

spectrometer allow for the detection of the polarization-resolved maps in momentum space. 

 
Data availability 

The datasets generated and analysed during the current study are available in the Open Science 

Framework (OSF) repository via the following link: 

https://osf.io/x5h7v/?view_only=6a9fa8e1568343f797ec5a76d4626fe1 
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