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The geometry of Hamiltonian’s eigenstates is encoded in the quantum geometric tensor (QGT)

1–3. It contains both the Berry curvature, central to the description of topological matter and

the quantum metric. So far the full QGT has been measured only in Hermitian systems 4, 5,
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where the role of the quantum metric is mostly shown to determine corrections to physical

effects 6–10. On the contrary, in non-Hermitian systems, and in particular near exceptional

points 11–14, the quantum metric is expected to diverge 15 and to often play a dominant role, for

example on the enhanced sensing 16 and on wave packet dynamics 17. In this work, we report

the first experimental measurement of the quantum metric in a non-Hermitian system. The

specific platform under study is an organic microcavity with exciton-polariton eigenstates,

which demonstrate exceptional points. We measure the quantum metric’s divergence and

we determine the scaling exponent n = −1.01± 0.08, which is in agreement with theoretical

predictions for the second-order exceptional points.

The recent development of experimental techniques and theoretical understanding has al-

lowed to measure both components of the quantum geometric tensor (the Berry curvature and

the quantum metric) experimentally 4, 5. In particular, the use of optical systems allows to access

the non-trivial geometry of real photonic bands and to observe the related consequences on wave

packet propagation and the anomalous Hall effect 5.

At the same time, the studies of non-Hermitian systems 11–14 have also started to deal with

the topology of the exceptional points, which are the branch points of the multi-valued Riemann

surface formed by the eigenvalues of the Hamiltonian of such systems. It was shown that the chiral

dynamics associated with this non-Hermiticity is extremely promising for applications 18, 19. Cru-

cially, the good topological invariant in vicinity of these points is not anymore associated with the

Berry curvature of the eigenstates, but with the winding number of the so-called effective field 20, 21
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(and the associated complex eigenvalues), determined by the Hermitian and non-Hermitian parts

of the Hamiltonian itself. Indeed, because of the non-Hermitian contribution, the adiabatic de-

scription of dynamics based on the Berry curvature becomes irrelevant 22, 23. On the other hand, the

quantum metric should exhibit a hyperbolic divergence at the exceptional points of 2nd order (with

square root topology) 15. This divergence has remarkable physical consequences for the dynamics

of wave packets centered at exceptional points 17. Here, the quantum metric is not responsible

for small corrections, it has a dominant role, determining a non-vanishing constant group velocity

with a polarization-dependent direction. However, the quantum metric of a non-Hermitian system

has never been measured experimentally so far, in spite of the extended studies of such points in

optics 14, 24 which date back to Voigt 25, and of their recent observation in microcavities 26.

In this work, we study the modes of an organic microcavity 27 exhibiting a polarization-

dependent strong coupling, which provides a pronounced non-Hermitian response ensuring well-

defined exceptional points. We measure the Stokes parameters of the eigenmodes in vicinity of the

exceptional points and extract the corresponding quantum metric. We demonstrate that this metric

is diverging, exhibiting a scaling exponent n = −1.01 ± 0.08. The coefficients of the measured

hyperbola correspond to the analytical predictions based on an effective Hamiltonian.

The sample we study is an organic microcavity with metallic mirrors, shown in Fig. 1(a)28.

The active layer is a microcrystal of a an organic molecule, 4,4’-bis[4-(di-p-tolylamino)styryl]biphenyl

(DPAVBi), whose structure is shown in Fig. 1(b). The properties of the sample are strongly

anisotropic along the axes of the active microbelt crystal, also shown in the figure.
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We begin by showing the unpolarized reflectivity of the sample in the two orthogonal direc-

tions (Fig. 1(c,d)). The reflectivity is plotted as a function of energy and wave vector kx and ky.

We focus on two particular eigenmodes, which exhibit the clearest behavior. First of all, we note

that the two branches show very different effective masses and very different linewidths. This is

due to the strongly polarized nature of excitons in DPAVBi (see Methods and Supplemental Figure

1, demonstrating the anisotropy of the excitonic absorption by the microbelt). The exciton (Ex 2.7

eV) strongly couples with the photonic modes only in the H polarization (exhibiting a Rabi split-

ting of 80 meV), whereas the V -polarized modes remain unaffected by the excitonic resonance.

The strongly-coupled modes exhibit a higher mass and a smaller linewidth, both because of their

reduced photonic fraction.

In the two k-space directions, the behavior of the two modes is qualitatively different: a

crossing of the weakly and strongly coupled polarization branches occurs in the x direction and an

anti-crossing in the y direction. This anti-crossing is not the result of the above mentioned strong

exciton-photon coupling. It is rather due to the emergent optical activity of the structure, which

becomes sufficiently large at the anticrossing wave vector. Optical activity has recently been shown

to emerge at the macroscopic level in cavity structures, when the linear birefringence is so high

that oppositely-polarized modes of opposite parity become degenerate 29. It is therefore a coupling

which occurs between the photonic part of the modes. This is illustrated by Supplementary Figure

2, showing (with a thicker sample) that the anticrossing only appears for opposite parity branches.

Because of the time-reversal symmetry of the optical activity, it must change sign with the wave

vector in one direction and is therefore zero along the perpendicular direction, which is why no

4



-5 0 5 10 15 20 25 30 35

2,620

2,625

2,630

2,635

2,640

2,645
Re(E1)
Re(E2)
Im(E1)
Im(E2)

Re
(E
)
(e
V)

Fi (°)

45

50

55

60

65

70

75

80

85

90

95

100

105

110

Im
(E
)
(m
eV
)

Y direction

X direction

35 nm Ag

20 nm SiO2

20 nm SiO2
80 nm Ag
Slide Glass

DPAVBI cristal
E
(e
V)

E
(e
V)

kx (µm-1) ky (µm-1)

(a)

(c)

(b)

(d)

0 0−5 −55 510 10−10 −10
2.5 2.5

2.6 2.6

2.7 2.7

CH3

N

CH3

CH3

N

H3C

0 20 40

2.6

2.62

2.64

2.66

2.642.64

2.63

2.62

0 20 40 60

60

80

100

Γ 1
,2
(m
eV
)

R
e(
E 1

,2
)(
eV
)

E
(e
V
)

φ (degrees)φ (degrees)

(e) (f)
Re(E1)

Γ1
Γ2

Re(E2)

60

Figure 1: Reflectivity of the organic microcavity. a) Scheme of the microcavity sample. b)

Structure of the DPAVBi molecule. c), d) Reflectivity as a function of wave vector kx and ky

(respectively) and energy, exhibiting anticrossing along ky. e) Reflectivity as a function of the

in-plane polar angle φ for |k| = |k∗| (EP wave vector). f) Real and imaginary parts of the mode

energies (dots with error bars – experiment, lines – theory).
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anticrossing is observed along kx.

The two closest branches can be described by a 2 × 2 effective non-Hermitian Hamiltonian

describing two polarization subbands with two different effective masses stemming from a different

coupling with the exciton. The non-Hermitian contribution has to be included because of the

difference of the linewidths. The Hamiltonian is written in the linear polarization basis:

H0 =

 β0 + (ξ − β)k2 + iΓ− iΓ0 V kx

V kx −β0 + (ξ + β)k2 − iΓ− iΓ0

 (1)

where β0 represents the splitting of the two modes at k = 0, ξ = h̄2/2m∗ with m∗ = mHmV

mH+mV
, V

represents the emergent optical activity along the kx axis, Γ is the half-difference of the broaden-

ings of the modes, and Γ0 is the half-average of the broadenings. Finally, β is the difference of the

effective masses of the two modes, which comes from the fact that one mode is coupled with the

exciton, while there is no coupling for the other mode. The theoretical dispersions calculated with

the Hamiltonian (1) are shown in Fig. 1(c,d) with dashed lines. The best fit is obtained with the

following parameters: β0 = 130 meV, Γ = 22 meV, β = 1 meV/µm2 , m∗ = 9.97× 10−6 me and

V = 1.8× 10−6 meV.

The Hamiltonian is symmetric versus ky and anti-symmetric versus kx. Since the branches

are crossing along kx and anticrossing along ky, there are necessarily 4 points at which the tran-

sition between the two regimes occurs. These are the famous exceptional points characteristic for

non-Hermitian systems. The plot of experimentally measured reflectivity along a circle of constant

|k| passing through one of the exceptional points is shown in Fig. 1(e). The extracted mode ener-
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Figure 2: Stokes vector components of the lowest energy eigenstates (experiment and theory).

a)-c) experiment (S1, S2, S3); d)-f) theory (S1, S2, S3). A region where the pseudospin could not

be extracted experimentally is hatched.

gies and linewidths are shown in Fig. 1(f) with points, and the corresponding real and imaginary

parts of the theoretical eigenenergies appear as solid lines. In systems with perfectly balanced gain

and losses, the exceptional points correspond to the transition between the PT-symmetric regime

with real eigenvalues and the PT-broken regime with imaginary eigenvalues 30. The same transition

is still present in our case, in spite of the overall decay Γ0 and the observed behavior of the modes

confirms the presence of a second order exceptional point at k∗.

The eigenvalues do not tell everything about physical systems: the corresponding eigen-

states are also important. While the famous Berry curvature and its integral, the Chern number,
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seem to be less relevant for non-Hermitian systems in the vicinity of exceptional points due to the

essentially non-adiabatic behavior 22, 23, other quantities linked with the eigenstates, such as the

quantum metric, play a key role in the wavepacket or beam dynamics 17. The measurement of

the Stokes vector for each eigenstate in reciprocal space 5, 31 allows to extract the quantum metric

using the definition of the quantum geometric tensor (whose real part is the quantum metric, and

the imaginary part is the Berry curvature):

gij = Re [〈∇ψ|∇ψ〉 − 〈ψ|∇ψ〉 〈∇ψ|ψ〉] (2)

where |ψ〉 is the eigenstate (written as a spinor, e.g. a Jones vector), and the gradient is taken in

the parameter space (the reciprocal space). We now focus on a quarter of the reciprocal space con-

taining a single exceptional point, and extract the Stokes vectors of the modes from polarization-

resolved reflectivity measurements (See Methods). An energy spectrum is obtained in each of the

six polarizations (H,V,D,A,L,R) for each point of the reciprocal space. We use a Lorentzian fit

in order to get the positions, the relative intensities I , and the widths of the two modes, which

permits the extraction of a 2D reciprocal space map of the Stokes vector components S1, S2, S3

of the lower branch, shown in Fig. 2(a-c). The validity of the effective 2 × 2 Hamiltonian (1) is

confirmed by the good fit of the dispersions in Fig. 1(c,d) and by the agreement between the exper-

imentally extracted components of the Stokes vector (Fig. 2(a-c)) and the theoretically calculated

ones (Fig. 2(d-f)). The EP located at k∗x = 4.01 µm−1 and k∗y = 6.12 µm−1 is shown by a white

star. The two components S1 and S3 cancel at this point, while S2 exhibits a maximum (similar to

the circular polarization observed at the Voigt points).

Once the Stokes vectors are known, one can extract the quantum metric elements as described
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in details in 31. The results of this extraction are shown as a 2D plot of the trace of the quantum

metric gxx + gyy in Fig. 3(a). The part of the reciprocal space corresponding to the branch cut of

the Riemann surface formed by the eigenstates is covered by a gray rectangle. A clear maximum

is visible in the vicinity of the EP. The global behavior of the metric is in a good agreement with

theoretical predictions based on the eigenstates of (1) (Fig. 3b).

The quantum metric is known to diverge hyperbolically at the exceptional points of the 2nd

order (with 2 crossing branches) 15, 17, and an explicit expression for the metric in the vicinity of

the exceptional point can be written as:

gqq =

√
αx2cos2φ+ αy2sin2φ

8Γq
+
αx

2cos2φ+ αy
2sin2φ

16Γ2
(3)

where q is the wave vector measured from the exceptional point, and αx,y is proportional to the

difference of the group velocities at the crossing point (the celerity of the effective Dirac Hamil-

tonian, see Methods for details). Experimentally, the values of the quantum metric are obtained

only for a finite number of pixels in the reciprocal space, which can be close to the exceptional

point, but never fall on it exactly. In order to demonstrate the hyperbolic divergence, we choose a

particular direction in the reciprocal space, where the experimental resolution is the highest (ky),

and plot the quantum metric in log-log scale for several experimental points closest to the excep-

tional point as a function of q = |ky− k∗y|, which is the distance from this point. A fit with a power

law gqq ∼ qn allows to determine the scaling of the quantum metric n = −1.01 ± 0.08. We can

therefore conclude that we have observed the hyperbolic divergence of the quantum metric of a

2nd-order exceptional point experimentally.
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The agreement between the experiment and the theory can be checked further, by extract-

ing the second (constant) term from the trace of the quantum metric and comparing it with the

parameters of the effective Hamiltonian (1) obtained from the dispersions shown in Fig. 1(c,d).

For this, we fit the experimentally extracted values of the quantum metric with a function f(q)

corresponding to the reduced expression (3) of the quantum metric tensor gqq:

f =
η

q
+ 4η2 (4)

where η = αy/8Γ. The fit gives us η = 0.173 ± 0.004 which can be compared to α and Γ

extracted by fitting the experimental dispersion. This fit gives Γ = 4.57 ± 0.34 meV and αy =

8± 2 meV/µm−1, which gives ηexp = 0.21± 0.07 µm−1. We can see that the value of η obtained

from fitting the extracted metric falls within the bounds of the confidence interval obtained from

the analysis of the dispersion. This agreement validates both the metric extraction procedure and

the theoretical analysis of the Hamiltonian and its eigenstates.

To conclude, we have studied exceptional points in an organic microcavity. We have ex-

tracted the Stokes vectors of the eigenstates in the vicinity of the exceptional point and then calcu-

lated the quantum metric tensor. Our measurements confirm that the quantum metric of a 2nd-order

exceptional point exhibits a hyperbolic divergence. This is expected to affect the dynamics of wave

packet (the trajectories of optical beams) at exceptional points.
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wavefunction (branch cut). c) A log-log plot of the experimentally extracted quantum metric qqq

and its fit, giving the scaling exponent n = −1.01± 0.08.

Methods

Microcavity fabrication

The DPAVBi ( 98%) was purchased from Aldrich and used directly without further purifica-

tion. The DPAVBi microbelts were prepared by re-precipitation method, by injected 200 µL

DPAVBi/THF into 2 mL Hexane under stirring. DPAVBi crystals can be obtained after stand-

ing for 0.5 h which dispersed in the Hexane solution. The microbelt’s width is around 20µm, with

the thickness of 2.0−3.0µm and the length of around several hundreds of micrometers. Because of

the crystal structure, the DPAVBi shows anisotropic excitonic absorption, which is demonstrated

in Supplemental Figure 1.

To fabricate the microcavity, firstly, we vacuum thermally evaporate 80 (±5) nm silver (Ag)

(reflectivity: R ≥ 99%) on the glass substrate, the root mean square roughness (Rq) of the silver
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film in 5µm×5µm area is 2.4 nm, a 20 (±2) nm SiO2 layer was deposited using vacuum Electron

Beam evaporate on the silver film with Rq of 2.31 nm. Then the prepared DPAVBi suspension

were uniformly dispersed on the silver/SiO2 film substrate, after the hexane evaporated, 20 (±2)

nm SiO2 layer and 35 (±2) nm (R ≈ 50%) silver was fabricate to form the microcavity. The

schematic of the DPAVBi microcavity is shown in Fig. 1(a). The 20 nm SiO2 layer is used to

prevent the fluorescence quenching of the DPAVBi microbelt caused by directly contact of the

metallic silver with the crystal28.

Optical spectroscopy

The angle-resolved spectroscopy was measured using a Halogen lamp with the wavelength range

of 400-700 nm. The light source was entered and collected by using the 100×microscope objective

with a high aperture (0.95), the collection angle can achieve ±70◦. The Momentum space of the

reflectivity was located at the back focal plane of the objective lens. Lens 1-4 formed a conjugate

plane with the back focal plane of the objective lens, the k- space light distribution can be imaged at

the right focal plane of the L2 and L4 on the spectrometer slit with a liquid-nitrogen-cooled CCD.

Using four lenses here is to adjust the magnification of the final image and provide flexibility for

effective light collection. By stepping moving the L4 lens, the image can be scanned on the slit for

tomography to obtain spectrally resolved 2D k-space images. In order to investigate the polariza-

tion properties, we placed a linear polarizer, half-wave plate and a quarter-wave plate in front of

the spectrometer slit to obtain the polarization state of each pixel in the k-space, horizontal- verti-

cal (0◦ and 90◦), diagonal (±45◦) and circular (σ+ and σ−) basis. The spectroscopy setup allows

obtaining the polarization-resolved spectra of DPAVBi exciton absorption and polaritonic/cavity
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dispersion, as shown in Supplemental Figure 1 and 2.

Theory

We begin with a Hamiltonian describing two polarization subbands with two different effective

masses stemming from a different coupling with the exciton. The Hamiltonian is written in the

linear polarization basis.

H0 =

 β0 + (ξ − β)k2 + iΓ V kx

V kx −β0 + (ξ + β)k2 − iΓ


where β0 represents the splitting of the two modes at k = 0, ξ = h̄2/2m∗ with m∗ = mHmV

mH+mV
,

V represents the optical activity along the kx axis, and Γ is the difference in the broadening of

the modes. Finally β is the difference of the effective masses of the two modes, which comes

from the fact that one mode is coupled with the exciton, while there is no coupling for the other

mode. Considering the exceptional point to be at k0 = {kx0, ky0}, we apply series expansion to

the Hamiltonian H0 using
−→
k =

−→
k0 + −→q . The EP is located at the point, where the real part of

the effective field is equal and perpendicular to the imaginary part of the effective field, which

means here that V kx0 = Γ, allowing to determine kx0. The second condition reads βk2
0 = β0. The

resulting approximate Hamiltonian reads:

H1 =

 ξ β0
β

+ (ξ − β)
(

Γ
V
qx +

√
β0
β
− Γ2

V 2 qy

)
+ iΓ Γ + V qx

Γ + V qx ξ β0
β

+ (ξ + β)
(

Γ
V
qx +

√
β0
β
− Γ2

V 2 qy

)
− iΓ


This Hamiltonian describes a tilted Dirac cone transformed into two exceptional points. To sim-

plify it further, we remove the terms responsible for the tilt and keep only the terms relevant for

13



the exceptional point:

H2 =

 −β
(

Γ
V
qx +

√
β0
β
− Γ2

V 2 qy

)
+ iΓ Γ + V qx

Γ + V qx β
(

Γ
V
qx +

√
β0
β
− Γ2

V 2 qy

)
− iΓ


i.e.

H2 = (Γ + V qx)σx +

(
−β

(
Γ

V
qx +

√
β0

β
− Γ2

V 2
qy

)
+ iΓ

)
σz

Here, the term βΓqx/V is responsible only for the rotation of the system of coordinates around the

exceptional point, and we can safely neglect it in order to simplify the picture. Therefore, H2 can

take the following simple shape:

H3 = (Γ + αxqx)σx + (iΓ− αyqy)σz

For small q, the eigenstates can be written as

|ψq〉 =

(
1− q/4Γ

√
cos2(φ)αx2 + sin2(φ)αy2,

√
q/2Γ

√
cos(φ)αx − i sin(φ)αy

)T
(5)

which gives rise to a divergent symmetric distribution of the quantum metric around the exceptional

point:

gqq =

√
cos2(φ)αx2 + sin2(φ)αy2

8Γq
+

cos2(φ)αx
2 + sin2(φ)αy

2

16Γ2
(6)

We therefore extract the quantum metric from the experimental data in vicinity of the exceptional

point (q = 0), along a particular line in the reciprocal space where the experimental resolution is

the best.
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Figure S4: Anisotropy of the exciton absorption in DPAVBi. Measured transmission of a bare

DPAVBi crystal versus energy and wave vector along (a) X direction and (b) Y direction (as shown

in Figure 2b), respectively. (c) A broad absorption peak with a maximum at ∼ 2.7 eV is observed

(black line) when the polarization of the white light from a Halogen lamp is adjusted to be parallel

to the belt length direction (X direction), while the absorption is much weaker (red line) when the

polarization of the white light is vertical to the belt length direction (Y direction).
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Figure S5: Branch anticrossings. Anticrossing only appears for branches of opposite parity. (a)

Measured angle-resolved reflectivity spectrum of a microcavity with DPAVBi. Angle-resolved

reflectivity detected along (b) X direction and (c) Y direction, showing a series of cavity modes

with different dispersions, respectively. These distinct anisotropy features of cavity modes are

consistent with the fact of the highly ordered uniaxial alignment of DPAVBi molecules in single-

crystalline microbelts. Anticrossings of the modes of opposite parity and crossings of the modes

of same parity are both observed in the experiment.
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Figure S6: Schematic of the optical setup, which has been explained in detail in Methods.
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