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We study the formation of topological defects (quantum vortices) during the formation of a 2D
polariton condensate at the Γ point of a honeycomb lattice via the Kibble-Zurek mechanism. The
lattice modifies the single-particle dispersion. The typical interaction energies at the quench time
correspond to the linear part of the dispersion. The resulting scaling exponent for the density of
topological defects is numerically found as 0.95± 0.05. This value differs from the one expected for
2D massive particles (1/2), but is indeed compatible with the one expected for a linear dispersion.
We moreover demonstrate that the vortices can be pinned to the lattice, which prevents their
recombination and could facilitate their observation and counting in continuous wave experiments.

I. INTRODUCTION

Topological photonics is a rapidly developing area
which already covers a wide range of hot topics of modern
physics1,2. Interesting non-trivial effects with important
practical applications, such as the quantum Hall effect
(normal and anomalous) and the associated chiral edge
states that can be used for topological lasing3–7 or optical
isolation8, were observed in photonic lattices. Photonic
systems have allowed measuring the Berry curvature9

characterizing such topological effects.

Among different photonic platforms, exciton-
polaritons (polaritons)10 claim a special place thanks
to their strong intrinsic non-linearity. Indeed, they
arise from strong light-matter coupling, and as such can
benefit from the repulsive exciton-exciton interactions,
ensuring an effective χ3 coefficient 106 times higher than
the typical Kerr nonlinearity11. The polariton platform
is also extremely practical from the experimental point
of view, offering full access to the system’s wavefunction
(density and phase) control and measurement both in
the real space and in the reciprocal space.

These unique features of exciton-polaritons allow
merging topological photonics1 with the field of inter-
acting quantum fluids12,13. The first important question
arising at the crossroads of the two fields is the modifi-
cation of topology by interactions of the fluids14–16 and,
in particular, the stability of the topologically protected
modes in lasers17–19. The possibilities of synergy of the
two fields were already demonstrated by enhancement of
topological protection in lattices due to quantum fluid
interactions20.

Aside from the band topology context, quantum flu-
ids have been known since the dawn of their study
to support topological defects21, the most famous ex-
ample being the quantum vortex22. Quantum vortices
are protected by a particular real-space topological in-
variant known as the winding number23, which ensures
their stability. They can only be removed via vortex-
antivortex annihilation, or by reaching the zero-density
system boundaries. Quantum vortices have been ob-

served in liquid Helium24,25, in atomic condensates26, in
light beams propagating in atomic vapors27, and also
in polaritonic systems28. Here, quantum vortices can
be created in non-equilibrium flows via quantum turbu-
lence mechanisms29,30. Another way is based on preferen-
tial condensation at selected orbital angular momentum
states31–33. It is also possible to imprint quantum vor-
tices at will under resonant pumping34,35, using spatial
light modulators.

A particularly interesting mechanism of generation
of topological defects is the Kibble-Zurek mechanism
(KZM), based on the intrinsic non-adiabaticity of second-
order phase transitions. Initially proposed in the con-
text of the spontaneous symmetry breaking defects in
the early Universe evolution by Kibble36, it was later ap-
plied to determine the residual quantum vortex density
in superfluid liquid Helium by Zurek37,38, and then gen-
eralized to other systems and configurations39,40. KZM
is characterised by a particular scaling of the density
of the topological defects as a function of the quench-
ing speed (the characteristic time of the phase transi-
tion). For homogeneous polariton condensates (without
lattices), these scalings were studied in several recent the-
oretical works41–43. One of the most important problems
for the experimental studies of this mechanism is the re-
combination of the topological defects (vortex-antivortex
recombination): if they are allowed to move freely and do
not benefit from any additional protection, their density
decreases with time after the transition has occurred (as
already noticed by Kibble36), and drops to zero at long
time scales. Recently, it was shown how this problem can
be solved by additional topological protection for the de-
fects in 1D polariton lattices3. KZM in lattices was the
subject of several recent studies44,45, some of which were
focused on Dirac points46,47 and topological insulators48.
A specificity brought by lattices with respect to homo-
geneous system is the change of the dispersion, whose
non-parabolicity can affect the scaling exponents. The
honeycomb lattice is particularly interesting among oth-
ers, because it can exhibit a non-trivial topology if the
gap is opened at the Dirac point, which can be done, for
example, by using the spin-anisotropic interactions15.
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In this work, we address polariton condensation at the
lowest energy state (the Γ point) of a honeycomb lattice
of micropillar cavities. We demonstrate that the vortices
formed via the KZM can be pinned to the potential of
the lattice. This prevents their recombination and allows
their observation and counting in cw (continuous wave)
single-switch-on experiments. We demonstrate that the
density of quantum vortices exhibits a power-law scaling
with the pumping power, with the exponent correspond-
ing to the mean-field predictions for a 2D system with
a linear dispersion, which in our case is induced by the
lattice.

II. MODEL

We simulate the polariton condensation under non-
resonant pumping and the polariton dynamics in the hon-
eycomb lattice using the Gross-Pitaevskii equation with
lifetime, energy relaxation, and saturated gain

ih̄
∂ψ

∂t
= − (1− iΛ)

h̄2

2m
∆ψ + g |ψ|2 ψ

+

(
U + iγ(ntot)−

ih̄

2τ

)
ψ + χ (1)

Here, m is the polariton mass, g is the polariton-polariton
interaction constant, U is the potential forming the hon-
eycomb lattice of polariton graphene, γ(n) is the sat-
urated gain term, ntot the total polariton density, τ is
the polariton lifetime, χ is the noise describing the spon-
taneuous scattering from the excitonic reservoir, and Λ
characterizes the efficiency of the energy relaxation49.
We solve Eq. 1 numerically using the 3rd-order Adams
method for the time derivative and a GPU-accelerated
FFT for the Laplacian. We have chosen the parameters
of a typical polariton graphene lattice50 that we have
already used to describe the polariton condensation in
such lattice at the top of the first band. However, here
we have increased the energy relaxation constant Λ and
replaced the localized Gaussian pumping of Ref.50 by a
homogeneous pumping. Indeed, the numerous studies
on the dynamics of polariton condensation have demon-
strated that depending on the parameters of the system,
in particular, on the exciton-photon detuning and on the
size of the pumping spot, the condensation can occur
either as an equilibrium thermodynamic process or as
an out-of-equilibrium dynamical process51–53. Increasing
the detuning and the size of the pumping spot makes
polariton energy relaxation more efficient. The transi-
tion between the condensation in excited states and in
the ground state with these parameters has been demon-
strated experimentally in a homogeneous 2D system54.

Figure 1(a) shows the numerically calculated disper-
sion of the polariton graphene (without the condensate)
in the direction ky (Γ → K → M → K ′ → Γ, marked
with red characters), with well-resolved energy bands
(the whole s band and a part of the p band). This

dispersion quite accurately reproduces the experimental
observations for polariton graphene50,55. The numerical
dispersion is obtained by solving Eq. 1 in linear regime,
keeping only the kinetic energy and the potential of the
lattice. Panel (b) shows the cut in the direction kx
(Γ → M). The band extrema where the polariton con-
densation has been observed experimentally are marked
with magenta numbers from 1 to 3 (corresponding to
Refs.50,55,56). One can see that it is possible to observe
condensation not only in the negative mass states (fa-
vored by localized pumping), but also in positive mass
states, as in Ref.56. Condensation has also been observed
in positive mass states at the Dirac point of a triangular
polariton lattice57. Number 4 marks the theoretical re-
sult of the present work. We have decided to focus at the
lowest energy state, because it provides a direct compar-
ison to a system without a lattice. It will also serve as a
reference point for the future studies of KZM in the con-
densation at the other particular points, especially the K
point.

We consider the case, where polariton condensation
occurs as a dynamical process, when the effective tem-
perature of the system (determined by the parameter Λ)
is kept constant, whereas the density of the particles in-
creases over time because of the constant pumping from
the reservoir (described by the term γ), which overcomes
the losses. Figure 1(c) shows the contour of the lattice
potential (black line), with the hexagonal unit cell shown
with white lines. The spatial distribution of the density
of the condensate n(x, y) = |ψ(x, y)|2 is plotted using a
normalized false color scale. Finally, Fig. 1(d) shows the
reciprocal space image of the polariton condensate, con-
firming that if the energy relaxation is sufficiently strong,
the condensate can form at the lowest energy state: the
Γ point of the first Brillouin zone. This is also confirmed
by the spatial distribution of the density of the conden-
sate: the condensate shown in Fig. 1(a) exhibits rela-
tively weak density modulations, contrary to the Bloch
state of the highest energy state of this band (where the
condensation has been observed in Ref.50), which is com-
pletely antisymmetric, changes sign between the sites of
the lattice, and therefore exhibits zero density between
the sites.

III. RESULTS AND DISCUSSION

Now that we have demonstrated the possibility of the
formation of the condensate at the Γ point of the hon-
eycomb lattice, we begin studying the formation of the
topological defects via the Kibble-Zurek mechanism and
their behavior after the condensation. As explained
above, according to the Ginzburg-Landau theory of the
phase transitions, in any second-order phase transition
the relaxation time diverges when approaching the tran-
sition point. At the same time, the characteristic size
of the fluctuations diverges as well, because their energy
cost tends to zero. For quantum fluids described by a
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FIG. 1: a,b) The numerically calculated energy dispersions of
the polariton graphene in the directions (a) ky (Γ → K →
M → K′) and kx (Γ→M → Γ). Magenta numbers mark the
condensation points in Refs.50,55,56 and in the present work,
respectively. c) Spatial image of the lattice potential and the
density of the condensate formed at the Γ point. A unit cell
of the lattice is shown with white lines. d) Reciprocal space
image confirming the condensation at the Γ point of the first
Brillouin zone. White dashed lines mark the cuts shown in
panels (a,b).

wave function, such domains (formed within the normal
phase) correspond to the domains of coherence of the
phase. The phase of the wavefunction is constant within
a single domain and different between the domains. The
lines of the phase jumps terminate on topological defects
which are quantum vortices, whose density is propor-
tional to the density of the phase domains and inversely
proportional to their size. The details of the calculation
of the defect density will be given below, because first we
would like to discuss the dynamics of the defects after the
condensation and the possibilities of their experimental
observation.

It is difficult to detect vortices by studying only the
density of the polariton condensate (such as shown in
Fig. 1(a)), especially since the vortices are attracted by
low-density regions, which are the centers of the unit
cells. We therefore use the curl of the condensate wave
function ∇ × ψ to track their positions. Indeed, since
the quantum fluid described by a complex-valued wave-
function is irrotational, the only points with non-zero
curl are the centers of the vortices with zero density21.
Figure 2 shows the spatial image of the curl of the con-
densate wavefunction with a certain number of vortices
(red spots) and anti-vortices (blue spots). This type of
image can be observed immediately after the condensa-

tion, and the density of vortices is expected to depend on
the quench time via the Kibble-Zurek mechanism. How-
ever, before studying this dependence, we will focus on
the dynamics of these vortices after the condensation.

Depending on the conditions (in particular, on the
characteristic interaction energy after the condensation),
these vortices can either freely migrate in the system or
become immediately pinned to the potential of the lattice
(felt by the vortices via the density of the condensate).
In the first case, the vortices and anti-vortices, exhibit-
ing random walks, eventually approach each other or the
boundary of the lattice and annihilate. Phase ordering
kinetics in such conditions was studied recently for po-
lariton condensates in Ref.58. The number of vortices
(shown in Fig. 2(b) with black and red points) decreases
over time. This decay is expected to be hyperbolic at
high densities59 (due to vortex-vortex interaction) and
then turn to exponential (due to the decay on the bound-
aries). An exponential decay fit (solid black and red lines)
gives a characteristic time of about 330±20 ps. It means
that in a cw experiment all vortices formed during the
condensation via the Kibble-Zurek mechanism will dis-
appear before the observation (whose typical time scale
is measured in seconds, and not in picoseconds).

However, we have found that the vortices are pinned
to the minima of the density (which are at the cen-
ters of the unit cells) if the characteristic interaction en-
ergy gn (with n being the maximal value of the den-
sity observed at the centers of the lattice sites) is suf-
ficient. Vortex pinning is a well-known phenomenon,
which has enabled the first experimental observation of
a quantum vortex in liquid helium60. It also occurs in
superconductors61 and in atomic condensates62. How-
ever, in most cases vortices are pinned to defects. Pin-
ning to a lattice requires the vortex size ξ = h̄/

√
2gnm

to be comparable with the lattice parameter a. For
atomic condensates in optical lattices, the pinning transi-
tion was considered theoretically63,64 and demonstrated
experimentally62. The possibility to prevent the vortex
decay in the Kibble-Zurek mechanism by the pinning was
suggested by Zurek38 for superconductors in 2D. We note
that the boundary of the system not only attracts vor-
tices (which could pin them), but also acts as a source of
decay, as a region of zero density where the phase is not
defined. When the vortices are pinned, the vortex mutual
annihilation is effectively suppressed. The condition for
the transition between the two regimes is gn ∼ t, where t
is the characteristic width of the energy band. With the
parameters of a typical GaAs-based polariton graphene
t ≈ 0.25 meV50, we find a critical interaction energy of
the order of 0.5 meV. Above this value, the vortices are
pinned to the lattice. In this case, the vortex lifetime is
infinite, their numbers do not change over time (blue and
cyan points in Fig. 2(b)), and they can be counted even
in a cw experiment by self-interference measurements31,
because they are completely pinned and do not move at
all. The possibilities to stabilize vortices in polariton
condensates in inhomogeneous systems were found pre-
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FIG. 2: a) Spatial image of the curl of the wavefunction af-
ter condensation exhibiting topological defects. The lattice
potential is shown as a black line. b) The number of topo-
logical defects as a function of time in the case of strong
(gn = 1 meV) and weak (gn = 0.25 meV) interactions (points
– pinned and free vortices, respectively). Solid lines show ex-
ponential decay fits.

viously experimentally and theoretically in Refs.29,65.
Now that we have established the possibility of the ex-

perimental measurement of the scaling and demonstrated
the formation of the topological defects in numerical ex-
periments, let us discuss the scaling of their density that
one can expect to observe. In Kibble-Zurek mechanism,
the scaling of the density of the topological defects with
the dimensionless temperature ε in vicinity of the tran-
sition is determined by two scaling exponents: ν, the
critical exponent of the correlation length, and z, the dy-
namic critical exponent39. The correlation length writes

ξ (ε) =
ξ0
|ε|ν

(2)

while the equilibrium relaxation time τ writes

τ (ε) =
τ0
|ε|zν

(3)

The key feature of the condensation in the lattice of po-
lariton graphene is that the critical exponent of the corre-
lation length ν changes with respect to the condensation
in a system without a lattice. Indeed, it is the disper-
sion of an empty (bare) system (before the formation
of the condensate), which determines the scaling in the
Kibble-Zurek mechanism. However, it is the dispersion
at the interaction energy gn corresponding to the mo-
ment of the loss of adiabaticity which has to be taken
into account. For a very low density and interaction en-
ergy gn � t at the transition, one could expect to ob-
serve the same scaling as predicted for a homogeneous
2D system (ν = 1/2). However, in realistic experiments
requiring vortex pinning, but also a reasonable number
of topological defects in a finite-size sample, gn ∼ t, as
discussed above. The dispersion of polariton graphene is
not parabolic, but linear in a broad range close to this
value, which allows writing the following expression for
the correlation length

h̄c0
1

ξ
∼ gn ∼ ε ⇐⇒ ξ =

ξ0
|ε|1

(4)

giving the critical exponent ν = 1. We note that it is
not the dispersion of the weak excitations of the conden-
sate which needs to be used to determine the correlation
length, because the defect density is determined at the
moment of the loss of adiabaticity during the quench,
when the extended condensate is not formed yet, and
thus the low-wavevector (long wavelength) bogolons can-
not exist. We also note that the association of the vortex
pinning regime with the linear dispersion at the interac-
tion energy is not a coincidence or a peculiarity of the
honeycomb lattice. It can be expected to occur in any
strong lattice well-described by the tight-binding approx-
imation, where the dispersion is always described by co-
sine functions E(k) ∼ cos ka, and the condition for the
vortex localization ξ ∼ a (see above) qualitatively corre-
sponds to the region with a vanishing second derivative
∂2E(k)/∂k2 ≈ 0 and a linear dispersion.

The dynamical critical exponent, linked with the en-
ergy relaxation, is controlled by the energy relaxation
term iΛ∆ψ in Eq. (1). In order to determine how exactly
the corresponding decay rate scales with mode energy, we
have performed numerical simulations in the absence of
the condensate (as for the dispersions shown in Fig. 1)
using relatively long pulses for the excitation of the sys-
tem. The results are shown in Fig. 3(a): the decay rate
depends linearly on the energy of the mode in a wide
range of values up to the Dirac point (E ≈ 0.7 meV),
which means that the relaxation time in Eq. (3) diverges
hyperbolically, and the product zν = 1, which gives z = 1
(and not z = 2).

The final expression for the density of topological de-
fects contains also the dimensionality of the space D = 2
and the dimensionality of the topological defects d = 0.
It reads

nvort =

(
τ0
τq

)(D−d) ν
1+zν

=

(
τ0
τq

)1

(5)

The final scaling exponent is therefore equal to 1.
Changing the system’s temperature with time is not

the only way to vary the dimensionless temperature
ε = (T − Tc)/Tc and to cross the transition point ε = 0.
While it is indeed possible to observe polariton conden-
sation by varying temperature, this variation occurs at
macroscopic time scales and its speed is difficult to con-
trol. Another option is much better suited to this sys-
tem: one can vary the critical temperature Tc by vary-
ing the particle density n, because Tc ≈ h̄2n/2mkB (in
2D quasi-condensation). When the amplification exceeds
the losses, the particle density behaves as n(t) ∼ exp(Γt).
Linearizing this dependence at the condensation thresh-
old density, one obtains a linear behavior for the dimen-
sionless temperature ε(t) = t/τq, with the quench time
τq ∼ Γ−1 and Γ ∼ (P−Pc). The quench time is therefore
inversely proportional to the pumping intensity excess
over the threshold value. In terms of Eq. (1), the rele-
vant parameter can be written as (γ0 − γeff)/γeff, where
γ0 is the low-density limit of the saturated gain γ(n) and
γeff are the total losses determined by the polariton life-
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a) b)

FIG. 3: (a) Effective decay rate scales linearly with mode en-
ergy (circles – numerical simulation, solid line – linear fit).
(b) Density of topological defects as a function of the quench-
ing parameter (effective pumping) and a power law fit with a
scaling exponent 0.95± 0.05.

time τ and the energy relaxation Λ. Taking into account
the scaling exponent found above and the fact that the
vortex pinning occurs for interaction energies gn ≈ J ,
we can expect that at the pumping powers correspond-
ing to vortex pinning, the density of topological defects
should increase linearly with the pumping power (scaling
exponent 1).

To test these analytical results we have performed a set
of numerical experiments changing the gain γ0, which is
equivalent to changing the quench time in the Kibble-
Zurek mechanism, as discussed above. The results are
plotted in Fig. 3(b), with the number of vortices ob-
served in a system of the size 120 µm × 120 µm shown
as black points with error bars. Each point is an average
over ten simulations and the error bar correspond to the
root-mean-square deviation. The red line is a power law
fit, which shows that the density of topological defects
in our numerical simulations exhibits a scaling exponent
of 0.95 ± 0.05. This value corresponds to the analytical
predictions of a mean-field theory in 2D with a linear dis-
persion. As explained above, the dispersion of graphene
is approximately linear in the region corresponding to
the critical interaction energy of the vortex pinning.The
scaling behavior is different from what was observed the-
oretically for a 1D system with a lattice in Ref.3, where
the protection against the decay of the topological defects

was ensured not by pinning, but by a topological invari-
ant (the Zak phase). Low density regime was accessible
in that case, and the scaling exponent was corresponding
to the mean-field predictions for a parabolic dispersion
in 1D. In the framework of the present work, one can
also expect that for very low pumping powers, where the
vortices are not pinned, the scaling exponent should tend
to the mean-field 2D limit of 1/2. This limit should be
tested by counting the vortex density immediately after
the condensation, to avoid the effect of the decay. The
leftmost point in Fig. 3(b) seems to indicate the onset
of the 1/2 scaling exponent corresponding to the low-
wavevector limit of the dispersion (this slope is shown by
a blue dashed line).

IV. CONCLUSIONS

To conclude, we have studied the polariton conden-
sation in a honeycomb lattice. We have demonstrated
that with a sufficiently fast energy relaxation, the con-
densation can occur at the ground state of the system
(at the Γ point of the reciprocal space). We have shown
that the quantum vortices formed during the condensa-
tion via the Kibble-Zurek mechanism can be pinned to
the underlying lattice, which facilitates their experimen-
tal observation in the cw regime. We demonstrate that
the presence of the lattice affects the scaling exponent
of the density of the topological defects, which is found
to be 0.95± 0.05 in numerical experiments, in agreement
with the mean-field prediction of 1 accounting for the lat-
tice, as compared with a value of 1/2 expected without
a lattice.
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L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Nature
Photonics 11, 651 (2017), ISSN 1749-4893, URL https:

//doi.org/10.1038/s41566-017-0006-2.
5 B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fain-
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