
HAL Id: hal-03414599
https://hal.science/hal-03414599

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum metric and wave packets at exceptional points
in non-Hermitian systems

D. D Solnyshkov, C. Leblanc, L. Bessonart, A. Nalitov, Jiahuan Ren, Qing
Liao, Feng Li, Guillaume Malpuech

To cite this version:
D. D Solnyshkov, C. Leblanc, L. Bessonart, A. Nalitov, Jiahuan Ren, et al.. Quantum metric and
wave packets at exceptional points in non-Hermitian systems. Physical Review B, 2021, 103 (12),
pp.125302. �10.1103/PhysRevB.103.125302�. �hal-03414599�

https://hal.science/hal-03414599
https://hal.archives-ouvertes.fr


Quantum metric and wavepackets at exceptional points in non-Hermitian systems

D. D. Solnyshkov,1, 2 C. Leblanc,1 L. Bessonart,1 A. Nalitov,1, 3 J. Ren,4, 5 Q. Liao,4 F. Li,6 and G. Malpuech1

1Institut Pascal, PHOTON-N2, Université Clermont Auvergne,
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The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly
to non-Hermitian systems. We show that another object, the quantum metric, which often plays
a secondary role in Hermitian systems, becomes a crucial quantity near exceptional points in non-
Hermitian systems, where it diverges in a way that fully controls the description of wavepacket
trajectories. The quantum metric behaviour is responsible for a constant acceleration with a fixed
direction, and for a non-vanishing constant velocity with a controllable direction. Both contributions
are independent of the wavepacket size.

Non-Hermitian systems in quantum mechanics [1] and
optics [2] expand the spectrum of possibilities much be-
yond that of the Hermitian ones [3, 4]. A topic of very
strong interest interesting is offered by the merging of
the so-called topological and non-Hermitian physics. For
example, the non-Hermitian systems cannot be described
by the same topological invariants as the Hermitian ones:
it is not the Chern number, but the winding number of
a complex effective field, which determines the topology
in the non-Hermitian case [5]. Partially because of this,
the quantum geometry of the eigenstates (determining
the Chern number) has not been studied extensively in
non-Hermitian systems [6–8]. This geometry is described
by the quantum geometric tensor [9] (QGT), which in-
cludes the Berry curvature (the cornerstone of Hermi-
tian topological physics) and the quantum metric. Even
in Hermitian systems, the whole QGT has been mea-
sured experimentally relatively recently [10, 11] and the
quantum metric often plays a secondary role with respect
to the ubiquitous Berry curvature. It is so far used in
the calculations of quantum phase transitions [12], elec-
tronic orbital magnetic susceptibility [13, 14], excitonic
levels [15], and superfluidity in flat bands [16, 17]. The
anomalous Hall effect, corresponding to a lateral shift of
a wavepacket (WP) evolving adiabatically within a sin-
gle dispersion branch, involves both components of the
QGT, but the dominant role is played by the Berry cur-
vature, while the quantum metric appears as a correction
[13, 18]. The situation is different in vicinity of the ex-
ceptional points in non-Hermitian systems. Such points
arise where the Hermitian and non-Hermitian parts of
the Hamiltonian exactly compensate each other. The
exceptional points can be encircled either statically (in

so-called ”stroboscopic” experiments) or dynamically, by
changing the Hamiltonian parameters over time. In the
first case, one has the access to all branches of the com-
plex energy dispersion, and the topological winding num-
bers [5, 19] can be studied [20]. In the second case,
the non-Hermitian properties of the system bring chi-
rality into the dynamics of the system, making the ex-
ponentially decaying eigenstates completely inaccessible
[21, 22]. In particular, it is actually impossible to encircle
the exceptional point twice in any direction [23]. While
from the Hermitian point of view, this may seem as a
flaw, one can actually take advantage of this feature to
construct chiral optical transmitters [24, 25]. The non-
Hermitian systems thus require switching to a new way
of thinking. Thus, very recent studies started to focus on
the divergence of the quantum metric [8, 26].

Many different experimental implementations of ex-
ceptional points are currently studied in photonics [2].
They include coupled waveguides and resonators, as well
as various lattices [27, 28], with foreseen applications
such as enhanced sensors [29] and quantum information
[30]. Microcavities [31], with their widely tunable prop-
erties, represent a particularly versatile platform for non-
Hermitian physics [32, 33]. The singular optical axes, also
called Voigt points [34], represent a particularly interest-
ing configuration, fascinating scientists for more than a
century [35]. They appear in optical systems combining
spin-orbit coupling and polarization-dependent absorp-
tion [36, 37]. Recently, the square root topology of such
points has been demonstrated in a ZnO-based microcav-
ity [38, 39]. Contrary to other non-Hermitian systems,
many of which are described by a synthetic parameter
space (e.g. coupling constant, detuning, and gain/loss
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for coupled resonators), these points occur in the recip-
rocal space describing the direction of the propagation of
a beam. This allows to study effects linked with the WP
dynamics in real and reciprocal spaces, like the anoma-
lous Hall effect in Hermitian systems. However, because
of the gain and decay, we can expect the correct descrip-
tion to be essentially non-adiabatic, representing a su-
perposition of branches, and thus not controlled by the
Berry curvature any more.

In this work, we study the dynamics of WPs centered
at an exceptional point, taking the Voigt point as a par-
ticular example. We demonstrate that the quantum met-
ric of the eigenstates in the vicinity of exceptional points
plays a dominant role in the WP dynamics, leading to a
non-vanishing polarization-dependent group velocity.

We begin with the definition of the quantum metric,
allowing to calculate the distances between the quantum
states [9]. In general, such distance ds between the states
ψ(λ) and ψ(λ+ δλ) is linked with their overlap:

ds2 = gijdλidλj = 1− | 〈ψ(λ)|ψ(λ+ δλ)〉 |2 (1)

where the metric tensor gij can be found as a real part
of the QGT, gij = ReTij :

Tij =

〈
∂ψ

∂λi

∣∣∣∣ ∂ψ∂λj
〉
−
〈
ψ

∣∣∣∣ ∂ψ∂λi
〉〈

∂ψ

∂λj

∣∣∣∣ψ〉 (2)

The overlap integral between an arbitrary state |ψ〉 and
another state |ψ1〉 can therefore be written using the met-
ric tensor gij as

I = 1−

 |ψ1〉∫
|ψ〉

√
gijdλidλj


2

(3)

where the integral should be taken along a geodesic line.
These integrals determine the behavior of the coefficients
cl(λ) (|cl|2 = I) which define the representation of an
arbitrary initial state ψ as a superposition of the branches
l of the eigenstates |ψl(λ)〉 used in the general solution
of the Schrödinger equation

|ψ(λ, t)〉 =
∑
l

cl(λ)e−i
El(λ)

h̄ t |ψl(λ)〉 (4)

Diabolical and exceptional points We first consider a
simple Hamiltonian with a diabolical point, which will
serve as a reference:

Ĥ0 = h̄c

(
0 qe−iϕ

qeiϕ 0

)
= h̄cq · σ (5)

Here, q is a wave vector in polar coordinates (ϕ is its
polar angle), c is the celerity, and σ is a vector of Pauli
matrices. This 2D massless Dirac Hamiltonian, written
for light on the circular basis, actually describes the old-
est known diabolical point, dating back to Hamilton [40]
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FIG. 1: a) Dispersion of a diabolical point (conical inter-
section). b) Transformation of a diabolical point into two
exceptional points. c) Zoom on a single exceptional point at
the origin. The false color shows the imaginary part of the
energy.

and Lloyd [41]. The most striking manifestation of the
diabolical point is the conical refraction, where a Gaus-
sian WP is transformed into a ring. This is illustrated
by Fig. 1(a) showing the conical intersection at the di-
abolical point. In microcavities, such diabolical points
can arise from the combination of TE-TM splitting and
birefringence [10, 42].

The dispersion is strongly modified in the presence of
non-Hermitian terms in the Hamiltonian. Such terms
can split a single diabolical point into two exceptional
points (Fig. 1(b)). If these points are sufficiently far in
the parameter space, it becomes possible to study each
of them separately (Fig. 1(c)). We therefore consider a
simplest Hamiltonian with an exceptional point in the
center of the parameter space (reciprocal space), with
h̄ = 1:

Ĥ1 =

(
0 αqe−iϕ + a

αqeiϕ + a 0

)
+ i

(
0 −ia
ia 0

)
(6)

The first part of the Hamiltonian describes a real q-
dependent Rashba-type effective field αq and a constant
contribution a along x. The second part is a non-
Hermitian imaginary part which is proportional to σy
and can be described as an imaginary effective field point-
ing along y. Its magnitude a exactly equal to the con-
stant real field along x. This configuration corresponds to
the combination of TE-TM field, birefringence, and lin-
ear dichroism (polarization-dependent absorption) in the
microcavities [39]. Equivalent Hamiltonians have been
considered in other works [5].

The energy dispersion of this Hamiltonian is indeed
very different from the case of the Dirac Hamiltonian:
for small q, E(q) = ±

√
2aαqe−iϕ/2 (the so-called square-

root topology). The real part of the energy is shown in
Fig. 1(b,c) as the z coordinate. It determines the group
velocity, which diverges as 1/

√
q. Moreover, the group

velocity is, in general, not aligned with the wave vector.
We note that the imaginary part of the energy (shown
in Fig. 1(b,c) with false color) is complementary to the
real part: ReE ∼ ±√q cosϕ/2, ImE ∼ ±√q sinϕ/2. It
determines the decay or the growth of the corresponding
states. The imaginary part is zero only along a single
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FIG. 2: Circular-polarized WP at an exceptional point. a)
The center of mass position as a function of time. b) The
center of mass velocity as a function of time, demonstrating
constant acceleration. Solid, dashed, and dash-dotted lines
correspond to different WP sizes.

line in the parameter space (given by ϕ = 0), ending at
the exceptional point. For all other points, the states are
either growing or decaying, which affects the behavior of
WPs in dynamical experiments, as we will see below.

Circular-polarized WP. Contrary to a diabolical point,
associated with two degenerate eigenstates (which al-
lows any linear combination of them to be a solution),
an exceptional point corresponds to a single eigenstate.
For the Hamiltonian (6) at q = 0, this eigenstate is
|ψ0〉 = (1, 0)T : a circularly-polarized mode, typical for
the Voigt points in optics. We begin by considering a
WP corresponding to the polarization of this eigenstate.
It shows a finite wave-vector distribution σq (linked with
the finite size of the exciting beam σr = 2π/σq) centered
on the exceptional point.

A WP dynamics depends on its projections on the
eigenstates of the two branches. The most convenient
tool to describe this projection in this multi-level sys-
tem is the Eq. (3) with the metric tensor. Let us
start by calculating the radial component of the met-
ric gqq. For small q, the eigenstates of (6) behave as

|ψq〉 = (1−αq/4a, eiϕ/2
√
αq/2a)T , which allows to find:

gqq ≈
α2

16a2
+

α

8aq
(7)

using Eq. (2). This q−1 divergence of the metric is a gen-
eral result, valid for any second-order exceptional point
[8]. We note that the divergence can be different for
higher-order exceptional points, which will be discussed
in a separate work. We also note that the other com-
ponent of the metric tensor gϕϕ, whose divergence de-
termines the dynamics of a WP center on a diabolical
point, is now linear in q: gϕϕ ≈ αq/8a. Since the metric
gqq does not depend on ϕ, the equation for the overlap
integral between the states |ψ0〉 and |ψq〉 can be explicitly
written as:

Icirc = 1−

 q∫
0

√
gqq (dq)2

2

6= f(ϕ) (8)

Since there is no dependence on ϕ, the WP is initially
symmetrically distributed around the exceptional point
on both branches. However, each individual state starts
to grow or decline according to the imaginary part of its
energy ImE. The highest growth and decay rates are
observed along the line ϕ = π, where sinϕ/2 = 1. The
group velocity for all points along this line is perpendic-

ular to the wave vector. It behaves as vy ∼ q
−1/2
x (see

[43] for details). At the same time, the growth and de-

cay rates of the bands behave as Γ ∼ ±q1/2x . The growing
and decaying parts of the WP (n+ and n−) belong to dif-
ferent branches propagating in opposite directions along
y. The average WP velocity for sufficiently small times
and WP size is therefore given by

〈vy〉 = (n+ − n−)vy ≈ 2vyΓt ≈ 2
√

2αat (9)

which does not depend on the wave vector qx, because
the dependencies of vy and Γ are inverse and compensate
each other. We can therefore expect a finite-size WP
centered at the eigenstate at the exceptional point to
exhibit a constant acceleration in the vertical direction,
because all of its components exhibit equal acceleration.
This acceleration is proportional to the celerity α and the
dichroism a.

This is confirmed by direct numerical simulations. We
solve the time-dependent spinor Schrödinger equation
with the Hamiltonian Ĥ1 defined by Eq. (6) and extract
the center of mass position as a function of time for dif-
ferent initial size of the WP, taking the parameters of the
microcavities exhibiting a large birefringence (e.g. per-
ovskite [44]). The results of the simulations are shown in
Fig. 2. Panel (a) shows the evolution of the y(t) coordi-
nate of the center of mass as a function of time, which is
clearly parabolic, and panel (b) shows the center of mass
velocity vy(t), which grows linearly, as expected. The
acceleration corresponds well to the analytical solution
(9). Changing the size of the WP in the real space σr
(as shown by the line style in Fig. 2(a,b)) also leads to a
very interesting and counter-intuitive behavior. Indeed,
the linear increase of the velocity occurs only while the
populations of the two branches n+ and n− are compa-
rable. The duration of this regime is determined by the
maximal gain/loss ratio available within the WP size in
the reciprocal space σq. For high σq, the regime of linear
increase is lost more rapidly. While the wave vector of
the center of mass q0 of the WP is at this moment higher
than for a smaller σq, the corresponding group velocity
is lower, because vg ∼ 1/

√
q0. So, a WP which is larger

in reciprocal space (dash-dotted line) exhibits a smaller
final velocity and a shorter acceleration period (and, fi-
nally, a smaller total displacement for the same amount
of time).
Linear-polarized WP. As shown above, the quantum

metric tensor gqq does not depend on ϕ, and thus the
circular-polarized WP centered on the exceptional point
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FIG. 3: a) The gradient of the imaginary part of the energy
∇ ImE for one dispersion branch. The arrows show how the
center of mass of the WP moves in the reciprocal space due
to the amplification of its components. The linear-polarized
WP projection of the branch is marked with a red circle. b)
The group velocity map ∇ReE with the trajectory of the
center of mass in red, and the corresponding group velocities
highlighted in blue.

exhibited exactly the same overlap with both branches
at any q. Because of this, we had n+ = n− at t = 0, and
the initial WP velocity was zero. The situation is differ-
ent if the polarization of the WP does not correspond to
the eigenstate of the exceptional point. As said above,
the metric is divergent, which means that the eigenstates
change very rapidly with q. Because of this, even an
infinitely small (in reciprocal space) linear-polarized WP
exhibits a different overlap with the two branches. More-
over, its center of mass on each branch is not centered at
q = 0 any more. Indeed, using Eq. (3), the overlap of the
eigenstates with the H-polarized excitation spinor can be
found as:

Ilin ≈
1

2
+

|ψ(q)〉∫
|ψ(0)〉

√
gqqdq ≈

1

2
+

√
αq

2a
(10)

where we have used trigonometric identities to express
the integral as a function of the metric at small q > 0
(Ilin = 1/2 for q ≤ 0). The fast growth of the over-
lap leads to a non-zero effective center-of-mass wave
vector q0 for a Gaussian WP of any size, behaving as

q0 ∼ σ
3/2
q

√
α/2a for small σq (large WPs in real space,

small in reciprocal space). The position of this center of
mass is determined by the polarization of the WP. This
starting point is shown in Fig. 3 with a red circle. The
evolution of the WP over time in the reciprocal space is
dictated by the imaginary part of the energy: the center
of mass q0 shifts in the direction of the gradient ∇ ImE,
as shown in Fig. 3(a) for a WP with initial H polarization
(red arrows). The ratio of the components of the gradi-
ent of the imaginary part of the energy (ηx, ηy) = ∇ ImE

reads simply ηy/ηx = (−qx +
√
q2x + q2y)/qy. For an
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FIG. 4: a) Polarization-dependent trajectories for WPs cen-
tered at an exceptional point. b) The x-projection of the
H-polarized WP velocity over time (solid curve – same pa-
rameters as in (a); dashed curve – increased a (gain/losses);
dash-dotted curve – increased celerity α).

initial wave vector q0, this gives a parabolic trajectory
qx = −(q2y − q20)/(2q0). For sufficiently large qx, one

finds that |qy| ≈
√

2q0|qx|. The associated group velocity
changes over time (blue arrows in Fig. 3(b)), according
to the position of the WP in the reciprocal space. The
velocity of the very first moments in time corresponds
to the high-energy terms of the Hamiltonian (celerity α),
which are determined by its q-dependent Hermitian part.
Then, the velocity drops to the value determined by the
ratio of the populations of the two bands n+ and n−, and
the respective positions of the WP projections in the two
bands. The vx projection of the group velocity for very
small WPs (and qy � qx) is vx ≈ 3

√
αaq2y/8q

2
x (see [43]).

To obtain the time dependence of the group velocity, we
need to use the center of mass wave vector qx(t), whose
calculation again involves the quantum metric via the
overlap integral Ilin. For small t, qx(t) ≈ αaq20t

2/
√

2π,
and finally, combining all coefficients, the group velocity
tends to a constant non-vanishing value

〈vx〉 ≈ 0.38α (11)

which does not depend on the WP size. Moreover, it only
depends on the celerity α of the Hermitian part of the
Hamiltonian, and not on the non-Hermitian dichroism
parameter a.

All this is indeed confirmed by numerical simulations.
Figure 4(a) shows all possible trajectories for WPs of dif-
ferent polarizations. They all demonstrate a constant ac-
celeration along y, as for a circular WP. An additional po-
larization dependent constant velocity contribution ap-
pears. For an H-polarized WP (black circles in panel
(a)), it is directed along x and therefore can be studied
independently from the other contribution vy. Fig. 4(b)
shows that the velocity vx of an H-polarized WP quickly
drops from the value given by the Hermitian part of the
Hamiltonian (vx = α) at t = 0 down to the constant value
predicted by (11) and indeed independent of the dichro-
ism a (dashed line). This finite constant velocity differs
drastically from the behavoir of a gapped Dirac Hamil-
tonian, where the radial metric decays as gqq ∼ −q2 and
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therefore does not diverge. Because of this, the associ-
ated group velocity tends to zero in the limit of a WP in-
finitely large in real space vDirac ∼ 1/σ2

r → 0. Contrary
to a diabolical point, associated with a localized Berry
curvature (delta function), an exceptional point exhibits
distributed Berry curvature [6, 7]. However, dynamical
effects associated with this Berry curvature, such as the
anomalous Hall effect, are practically unobservable, be-
cause the divergent group velocity dominates all possible
corrections.

The effects we have described can be measured op-
tically in microcavities with exceptional points [39], in
atomic vapors [28], or in dichroic birefringent crystals
[35], but the theory we developed applies to all 2nd-order
exceptional points. We note that contrary to the anoma-
lous Hall effect, recently observed in microcavities [10],
the WP displacement does not saturate and continues to
grow with time or propagation distance.

These results demonstrate that the quantum metric
plays a particularly important role in vicinity of the ex-
ceptional points, determining the dynamical behavior of
WPs. The crucial feature is that the radial component
of the quantum metric diverges. This, together with
the divergent group velocity, leads to a non-vanishing
polarization-dependent velocity for any finite-size WP,
centered at the exceptional point. Our studies are im-
portant for future research and applications in non-
Hermitian photonics.
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[16] S. Peotta and P. Törmä, Nature communications 6, 8944

(2015).
[17] L. Liang, S. Peotta, A. Harju, and P. Törmä, Phys. Rev.
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SUPPLEMENTAL MATERIALS

In this Supplemental material, we provide more details
on the derivation of the expressions for the group velocity
and the wave packet wave vector for circular and linear
polarization. We also show the additional results of nu-
merical simulations that confirm our theoretical analysis.

Circular wavepacket

To find this group velocity, one has first to determine
the dispersion, then to take its derivative, and then to fix
the wave vector, at which the value of the group velocity
is needed. We therefore keep both components of the
wave vector as variables at first, and only in the end of
the calculation set qy = 0. We write the series expansion

of the real part of the energy for small q along the line ϕ =
π, where we use the identity cosϕ/2 =

√
(1 + cosϕ)/2:

E(q) ≈
√

2αa
(
q2x + q2y

)1/4√1 + qx√
q2
x+q

2
y

2
≈
√
αa

qy
|qx|1/2

(12)
Here, we have first used that q is small, and then that
qy � qx, and also that |qx| = −qx for qx < 0. The group
velocity in the vertical direction is given by vy = ∂E/∂qy,
which gives the expression

vy ≈
√
αa

|qx|1/2
(13)

used in the main text.

Linearly-polarized wavepacket

The effective center of mass wave vector for one of the
branches at t = 0 is determined as:

q0 =

∫
q × Ilin × |ψ0(q)|2 dq (14)

where |ψ0(q)|2 is the excitation wavefunction (Gaussian
WP with σq width), Ilin is the overlap integral with the
chosen branch (given in the main text). The integral has
to be divided into two parts, q ≤ 0 and q > 0. The
contributions with Ilin = 1/2 compensate each other,
while the remaining term for q > 0 gives the dependence

q0 ∼ σ3/2
q indicated in the main text.

To find the expression for the group velocity projection
on the x axis, we use the expression for the real part of
the energy once again

E(q) ≈
√

2αa
(
q2x + q2y

)1/4√1 + qx√
q2
x+q

2
y

2
(15)

which we derive over qy and then apply series expansion
over qy, taking care of qx < 0. This gives the expression
for vx ≈ 3

√
αaq2y/8q

2
x given in the main text.

For the calculation of qx(t) (the x projection of the ef-
fective center of mass coordinate), we take into account
that the difference of the population of the branches
is controlled by the overlap integral, which behaves as
Ilin ≈ 1/2 +

√
αqx/2a and by the imaginary part Γt ∼√

qxt. The position of the center of mass on a given
branch is therefore given by

〈q1〉 ∼
∫
q(1 + qt)|ψ0(q)|2 dq ∼ σ2

q t (16)

while the population of this branch is given by

I1 ∼
∫

(1 + qt)|ψ0(q)|2 dq ∼ σqt (17)
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FIG. 5: The center of mass wave vector as a function of time, obtained from numerical simulations for a linearly-polarized
wave packet: a) kx(t) (parabolic growth), b) ky(t) (linear growth).

while the sum of the two branches I1+I2 remains approx-
imately constant (one branch grows, the other decays).
We therefore find that

qx(t) ∼ σ3
q t

2 (18)

where σ3
q ∼ q20 (the initial wave vector of a WP within

one of the branches). This allows to find vx using qx(t)
and qy =

√
2q0qx.

The results concerning the dynamics of a linear-
polarized wavepacket, provided in the main text, are
strongly based on its center of mass position in the recip-
rocal space. As an additional confirmation of our theoret-
ical considerations, we provide the numerical results on

the center of mass wave vector in this supplemental ma-
terial. Figure 5 shows the two projections of the center of
mass wavevector as a function of time. Panel (a) clearly
exhibits a parabolic growth (which is valid both for cir-
cular and linear wavepackets), whereas panel (b) demon-
strates a linear dependence on time. This is due to the
fact that the center of mass wave vector follows the tra-
jectories of maximal gradient of the imaginary part of the
energy shown in Fig. 3 of the main text, which represent
a family of parabolic curves, and therefore ky ∼

√
kx ∼ t.

The parameters were the same as in Fig. 4 of the main
text.
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