N

N

An Immersed Boundary Methodology for Multi-Step Ice
Accretion using a Level-Set

Pierre Lavoie, Emmanuel Radenac, Ghislain Blanchard, Eric Laurendeau,
Philippe Villedieu

» To cite this version:

Pierre Lavoie, Emmanuel Radenac, Ghislain Blanchard, Eric Laurendeau, Philippe Villedieu. An
Immersed Boundary Methodology for Multi-Step Ice Accretion using a Level-Set. AIAA Aviation
2021 Forum, Aug 2021, Virtual event, United States. pp.AIAA 2021-2630, 10.2514/6.2021-2630 .
hal-03414581

HAL Id: hal-03414581
https://hal.science/hal-03414581

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03414581
https://hal.archives-ouvertes.fr

An Immersed Boundary Methodology for Multi-Step Ice
Accretion using a Level-Set

Pierre Lavoie *
Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada

Emmanuel Radenac’ and Ghislain Blanchard *
ONERA / DMPE, Université de Toulouse, F-31055 Toulouse, France

Eric Laurendeau’
Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada

Philippe Villedieu 1
ONERA / DMPE, Université de Toulouse, F-31055 Toulouse, France

The numerical prediction of in-flight ice accretion involves a sequential call to different
modules including mesh generation, aerodynamics, droplet trajectories, wall heat transfer, ice
accretion and geometry update. The automation of this process is critical as these solvers
are embedded in a time loop which is repeated several times to obtain an accurate ice shape
prediction. The robustness of ice accretion tools is often limited by the difficulty of generating
meshes on complex ice shapes and also by the geometry update which can exhibit overlaps if not
treated properly. As a replacement to the usual body-fitted approach, this paper investigates
the application of an immersed boundary method in the ice accretion framework to avoid the
mesh generation step. A level-set method is also used for the geometry update to automatically
handle pathological cases. The proposed methodology is tested on 2D rime and glaze ice cases
from the 1st ATAA Ice Prediction Workshop, showing good correspondence with the body-fitted
approach. The new methodology also performs well for a 2D three-element airfoil configuration
when a proper mesh refinement is used. The immersed boundary method combined with the
level-set ice accretion provides a viable alternative to the body-fitted approach.

I. Introduction

Numerical tools for the prediction of ice accretion on aircraft are typically based on a quasi-steady assumption where
modules are called sequentially and solved to steady state within a time-iterative scheme. The process is illustrated
in Fig. [T|where the modules are: (1) a mesh generation tool, (2) a solver for the aerodynamics, (3) a solver to obtain
the droplet trajectories and impingement rates, (4) a solver to obtain the wall convective heat transfer (in the boundary
layer), (5) a solver to perform a heat and mass balance applied to the deposited water to obtain the ice accretion rate and
finally (6) a tool to update the geometry based on the ice thickness evolution. Modules (1) to (6) are embedded in a
time loop for which the total ice accretion time is divided in time steps (multi-step) generating successive layers of ice
(multi-layer). When using Body-Fitted meshes, a mesh update is required with each new ice layer. It can be repeated
several times in order to obtain the final ice shape prediction. This leads to additional costs related to the mesh update
and additional difficulty in updating the ice shape which can exhibit unphysical surface overlaps in concave regions
when using a Lagrangian approach (displacement of surface mesh nodes, a method which is usually employed in ice
accretion codes).
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Fig. 1 Sequential call to modules in multi-step icing simulations.
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This paper is concerned by the methods required to automate icing suites using a multi-step approach, more
specifically by the geometry and mesh updates. An Immersed Boundary Method (IBM) can be used to help automate
ice accretion tools by avoiding the re-meshing or at least, minimizing the work required to adapt the mesh.

Immersed Boundary Methods have been applied with success in many fields but have rare applications to the
prediction of ice accretion. The CIRA used a discrete IBM to solve compressible inviscid flows on 3D Cartesian grids
in [[1]] which was later extended for compressible viscous flows [2,13]. A discrete IBM was also applied to an Eulerian
droplet solver [4] with the intent of performing ice accretion simulations. However, no ice prediction results using these
IBMs have been published yet.

Another research team from the University of Strasbourg applied IBMs to a 3D ice accretion code (NSMB-ICE) with
a level-set approach [5]. The compressible viscous flow solver employs a penalty method (an IBM) and the Eulerian
droplet solver uses a discrete approach similar to the one of [4]. The level-set approach was initially proposed by [6] for
single step ice accretion and is used to update the iced geometry. Multi-step ice accretion results are presented up to 5
steps on a single test case in [5]. According to the authors, the implementation is currently limited to laminar flow and
rime ice. Furthermore, no comparison is made against a more classical body-fitted approach nor experimental results.
The idea of using a level-set for the prediction of ice accretion is also reused in [[7]] where multi-step simulations are
performed in 2D combined with the use of NURBS. An explicit tracking of the air-ice interface is also performed in
order to enforce mass conservation.

Our initial attempt at applying IBMs to an ice accretion suite is presented in [8], where a penalization method
(a specific type of immersed boundary method) is applied to the aerodynamic (Euler equations) and droplet solvers
(Eulerian formulation). The 15¢ step of the multi-step process is performed using a Body-Fitted mesh while for the
subsequent steps, the ice shape is immersed on the initial mesh. A geometric approach was used to evaluate the signed
distance field required by the penalization method. Furthermore, a Lagrangian node displacement approach was used to
update the geometry.

This paper extends the contribution of [8] with several key features. First, an improved penalization method suitable
for ice horn accretion is applied to the Euler equations [9]. Second, a level-set approach [6] is implemented in the IBM
multi-step ice accretion process to solve the issues related to unphysical geometry update, replacing the Lagrangian
geometry update. Third, several icing cases are examined, including 2D cases from the AIAA Ice Prediction Workshop
[10].

The paper first presents the ice accretion suite used as the development platform, IGLOO2D [11]. Then,
implementation details for the penalization and level-set methods are covered: preprocessing, penalization of the Euler
equations, penalization of the droplet solver, extraction of the surface data and implementation of the level-set method.
A section discusses the benefits of using the level-set method in the IBM ice accretion framework on a manufactured
case. Then, rime and glaze ice cases from the AIAA Ice Prediction Workshop (IPW) are used for verification where the
Body-Fitted and penalized solutions are compared using the multi-step process. Additional validations are performed
for the ice accretion on a NACAOQO12 airfoil. Finally, ice accretion simulations are performed on a three-element airfoil
before conclusions are drawn.



I1. Methodology

The 2D ice accretion suite IGLOO2D [11] is used as the development environment. In IGLOO2D, different types
of solvers are available for each module but only the ones used in this paper are discussed. The unstructured mesh
generation is handled by GMSH [12]. The aerodynamic field is evaluated using the Euler equations and the convective
heat transfer is evaluated using a simplified integral boundary layer method (SIM2D) [[11]]. For the droplet trajectories
and impingement evaluation, the Eulerian solver is selected. The ice accretion solver is based on a Messinger-type mass
and energy balance to obtain the ice thickness. Finally, the ice geometry is generated by a Lagrangian displacement of
the surface nodes. The Eulerian evolution of the geometry using a level-set is also treated in this paper.

The modules can be classified either as volume or surface solvers. The aerodynamics (EULER2D) and the Eulerian
droplet trajectories (TRAJE2D) are solved on 2D volume meshes. On the other hand, the simplified integral boundary
layer method (SIM2D) and the ice accretion (MESSINGER2D) are solved on 1D surface grids.

For the application of the IBM, the suggested approach is to start the multi-step ice accretion process from a standard
Body-Fitted (BF) mesh, thus keeping the original BF solution for the 1°¢ ice layer (as well as for the clean areas of the
surface for the following steps). Usually, the BF mesh is updated to match the new ice geometry for each subsequent
step. With our IBM, the volume mesh update is avoided and a penalization method is applied to the volume solvers
(airflow and droplets trajectory) to impose the correct boundary conditions on the immersed boundary which arbitrarily
cuts through the mesh. The ice surface is, however, re-meshed to retain an adequate representation of the ice shape for
the IBM. The use of the penalization method requires some modifications to the ice accretion suite : the addition of a
preprocessing step, the modification of the volume solvers and the extraction of surface data, as highlighted in red in Fig.
[2] These modifications are discussed in the following sections along with the integration of the level-set method in the

multi-step process.
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Fig.2 Sequential call to modules in a multi-step icing simulation using an immersed boundary method.

A. Immersed Boundary Pre-Processing

In this paper, both an explicit and implicit definition of the Immersed Boundary (IB) are required. The multi-step ice
accretion process starts from a BF volume mesh, thus initially providing a surface mesh which represents the solid-air
interface. It can be interpreted as an Immersed Boundary which correspond to the BF surface for the first step. This
explicit definition must be conserved throughout the multi-step ice accretion process in order to use the surface solvers
(i.e., ice accretion, boundary layer). On the other hand, the penalization methods (a type of IBM) implemented in
IGLOO2D use a signed distance field (implicit definition) to obtain information about the interface at any point in the
volume mesh.

The IB preprocessor evaluates the signed distance field (¢) by first detecting the inside (solid) and outside (fluid)
cells. Knowing the list of edges defining a closed immersed boundary, a ray casting algorithm can be used for this matter
[13]. Once this information is known, it can be used to determine the sign of the signed distance field where ¢ > 0 in
the fluid and ¢ < 0 in the solid. The distance is evaluated by taking advantage of the available explicit definition of the
interface. For each cell, a geometric approach determines the minimum projected distance to the list of edges (or faces
in 3D) defining the IB. Then, the normals to the IB (ny) and its curvature (x) can be evaluated from the signed distance



field (¢) as:
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Notice that ny is defined to point towards the solid, contrary to the usual definition, which is useful in the implementation
of the penalization methods. An example of signed distance field around a clean NACA23012 airfoil is illustrated in Fig.
E| along with the normals to the wall (ng). Here, the signed distance field is strictly positive because it is evaluated on a
BF mesh where the contour ¢ = 0 is the surface of the airfoil.

y/c

Fig. 3 Signed distance contours (¢) and surface normals (n,) for a clean NACA23012 airfoil

Although the volume mesh update is avoided when using the IBM, the IB is re-meshed at the pre-processing phase
for the 2¢ ice accretion step and further. This is possible because the immersed boundary discretization (surface mesh)
is independent of the volume mesh. The surface re-meshing is done using GMSH where a B-spline is fitted through the
discrete list of nodes defining the ice shape. The nodes are then redistributed according to a user-specified characteristic
mesh size. This provides a surface mesh discretization which is very close to what is obtained with the BF ice accretion
process.

B. Volume Penalization Method
With a volume penalization method, the boundary conditions are applied by the addition of source terms in the
continuous form of the governing equations in order to enforce the desired condition at the immersed boundary. The
source terms are turned on if the computational volume (a cell) is located inside the solid zone and turned off if in the
fluid zone. Hence the governing equations are solved as usual in the fluid but penalized in the solid. The source terms
are turned on and off using a mask function (y) which takes the form of a sharp Heaviside function (Eq. (E[)).
_J 0 ¢ =0 (fluid) 3)
1 ¢ < 0 (solid)
For the aerodynamics, the penalization of the Euler equations is performed using the CBVP-Hs method of [9]. This

approach enforces the no-penetration velocity (slip wall, Eq. (@) and uses the normal momentum relation to account
for the wall curvature in the pressure extrapolation (Eq. (3)). The conservation of total enthalpy (Eq. (6)) and entropy



(Eq. (7)) are also enforced across the immersed boundary to close the system.

(v-ng)ng =0 4)
n, - VP = rp||v|[? 5)
1’1¢-VH:0 (6)
ng Vs=0 (7)

This method was found to perform well for ice shapes exhibiting high curvature such as ice horns. The set of penalized
Euler equations is given by Eq. (§) where the penalization terms enforcing Eqs. (@)—(7) are gathered on the right-hand
side (RHS).

Op _ _ X _ P’ 2
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In Eq. , v is the air velocity, I is the identity tensor, F is the total energy, 1 and 1/7),. are penalization parameters that
can be respectively interpreted as a characteristic time and a characteristic velocity.

For the Eulerian droplet equations, the penalization method of [14] is used. When droplets impinge the body
(vq -ng > 0), no penalization is applied and the physical equations are solved in the solid. The droplets are thus allowed
to cross the immersed boundary and enter the body. However, when the droplets enter the computational domain from
the solid (v4 - ng < 0) a boundary condition is applied on the primitive variables (Eq. @[)), enforcing a null flux and
avoiding re-injection of the droplets.

=0
@ }if Vi ny <0 9)
Vg = 0
To translate this behavior to the droplet equations using penalization terms, the usual mask function (y, Eq. (EI)) is
multiplied by a droplet mask function (x4, Eq. (@])), ensuring the penalization term is only active in the solid if the
droplets are reinjected in the fluid.

0 avyg-ng > 0 (impingement)

1 avg-ng <0 (re-injection)

The set of penalized droplet equations is given by Eq. (TI)), where the influence of gravity is neglected and the
penalization terms are highlighted in red.
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In Eq. , « is the non-dimensional volume fraction of water, v is the non-dimensional droplets velocity, v, is the
non-dimensional air velocity and Cp is the droplets drag coefficient. The droplets Reynolds number (Re4) and the
Stokes number (Stk) are:
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where Dy is the droplet diameter, 1 the dynamic viscosity of air and L a characteristic dimension (e.g., the chord length

for an airfoil). The drag model of Schiller and Naumann [15] is used for the droplets which are assumed to remain
spherical:

Regq 12)

Stk = (13)
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o - (140.15Reg®™)  Req <1000
b 0.4 Req > 1000



The penalization parameters must be small (n < 1, . < 1) to accurately enforce the boundary conditions, which
leads to a stiff system of equations. The penalization terms are thus treated implicitly when solving the system of
equations for both the aerodynamics and droplet trajectories.

C. Surface Data Extraction

Relevant surface information from the volume solvers (aerodynamics and droplet trajectory) must be communicated
to the surface solvers (boundary layer, ice accretion) at each step of the multi-step loop (e.g., pressure, velocity,
droplet impingement rate). However, the penalization method does not explicitly provide the data on the Immersed
Boundary (IB). Instead, the variables are known in the surrounding cells and an additional extraction step is thus
required to recover the surface data.

In this paper, the data is interpolated on the IB using a weighted least square approach. The nearest cell to the
interpolation point is first detected. Then, all the cells sharing a node with the identified cell are flagged as neighbors and
used for the interpolation. The penalization methods used in this paper are designed to fill the solid cell with valid data.
The solid cells are included in the interpolation stencil, hence the need for methods ensuring a controlled continuity of
the solution across the solid-fluid interface, as described in [9}[14]]. The interpolation uses an inverse distance weight
with a smoothing parameter to avoid dividing by zero when the interpolation point and stencil points are too close. The
weight between a cell center J (part of the stencil) and the interpolation point P is evaluated as:

_ ; (15)

wy =
Vileps||? + €

where ||rp ;|| is the distance between P and J. The smoothing parameter is selected as e = 0.5Ax ; with Az ; the
characteristic size of cell J,

D. Geometry Update via the Level-Set method
A Lagrangian approach can be used to update the geometry according to the normals to the wall (n, pointing towards
the fluid) and the ice thickness (h;..) provided by the ice accretion solver. A simple node update can be performed as:

Xpew = Xold T hicen (16)

where X,,¢,, and x4 are respectively the new and old node locations. This type of approach does not naturally handle
the overlaps that can occur near concave region and requires methods for collision detection and front merging to
obtain a usable surface mesh. A simple fix can be implemented in 2D as described in [16]. However, it does not
directly translate to a 3D implementation which involves more complex geometric operations for a 2D surface mesh.
Alternatively, the level-set method can be used to update the geometry. This was done for instance by [6] where the
level-set equation (Eq. , [17]) is used with an icing velocity field (V;..) and solved on the volume mesh.
99

This approach has the benefit of being valid for both 2D and 3D simulations. It also naturally handles the issues related
to the geometry update such as geometry overlaps. Here, the level-set method reuses the signed distance field (¢)
computed at the IB pre-processing step. The interface (IB or BF) is represented by the contour ¢ = 0 and is advanced in
time (Eq. (I7)) to generate the ice shape, following the icing velocity vector field V... In this paper, the level-set is
discretized using a 2"? order scheme in time (Heun’s method) and space (upwind with MUSCL extrapolation). The
following sections describe a method to retrieve the icing velocity field and discuss the need for a re-initialization step in
the advection of the level-set.

1. Velocity Propagation
The icing velocity magnitude (Vce sur¢) can be computed from the ice accretion time (At;..) and the ice thickness
(hjce) provided on the surface mesh by the thermodynamics solver.

h.
V;Jce,surf = A;C.e
ice

(18)



However, V¢ sury must be propagated in the volume mesh in order to perform the level-set advection (Eq. @). To
obtain a behavior similar to the Lagrangian node displacement approach (Eq. (T6)), the icing velocity is propagated
from the surface mesh in the normal direction, producing constant velocity bands. A PDE-based approach (Eq. (T9)) is
used to propagate the information from the surface (Ve surs) to the field (V;..) following the normal direction to the
surface. 5

‘(;;CE = sign(¢)n¢ “VVice (19)
When the surface mesh corresponds to the Body-Fitted mesh boundary, Ve sy is imposed as a Dirichlet boundary
condition using ghost cells and is propagated in the fluid zone to obtain (V;..). When the ice shape is immersed in the
mesh (IB), the surface no longer corresponds to the mesh boundaries. For instance, this occurs from the 2"¢ ice layer
onward in the multi-step icing process. In this situation, a band of cells in the vicinity of the interface is initialized by a
nearest neighbor search, taking advantage of the explicit definition of the interface. These cells are then frozen (no
update) so they can act as ghost cells when solving Eq. (I9) on both sides of the IB. The update is prevented by setting
the Right Hand Side (RHS) of Eq. (I9) to zero for the frozen cells. The propagation Eq. (I9) accounts for the sign of ¢
in order to propagate Vjce sur¢ from the band of initialized cells towards the fluid (¢ > 0) and solid zones (¢ < 0).

Once the icing velocity magnitude is known in the volume mesh, the vector field is set as:

Vice = _Vvicenqb,(] (20)

where n o represents the normal to the initial contour ¢ = 0 (before the advection process begins). In other words, the
icing velocity field remains fixed during the advection of the level-set. An example of propagated icing velocity field is
illustrated in Fig. ] showing the constant velocity bands in the normal direction to the interface.
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Fig. 4 Example of a propagated icing velocity field for a clean NACA23012 airfoil, body-fitted surface. Coor-
dinates and velocity non-dimensionalized by the chord (c).

2. Level-Set Advection and Re-Initialization

While the contour ¢ = 0 is advected using the level-set equation (T7), ¢ does not conserve the properties of a signed
distance field [18]]. A re-initialization of the level-set is thus performed (i.e., the signed distance field is re-evaluated).
This could be done by reusing the geometric approach from the pre-processing step. Because the new location of the IB
is only known via its implicit definition at this stage, this would imply the application of a contour extraction technique
to obtain an explicit definition of the interface (new surface mesh). The signed distance field is instead updated using
the re-initialization equation [[17], as follows:

B = 5(60) (n - V6 +1) e
S(gy) = 2 (22)



This equation incorporates a smoothed sign function S(¢) which is based on the signed distance before re-initialization
(¢0). According to [18]], it ensures that ¢ remains unchanged at the interface during the re-initialization process. In
practice, numerical experiments showed the introduction of wiggles in the contour ¢ = 0 when using this approach, an
undesirable behavior as a surface mesh is to be constructed from this extracted interface. To ensure the interface remains
exactly at the same location, the idea used for the velocity propagation is repurposed here: freezing the update of a band
of cells in the vicinity of the interface. Again, it is done by setting the RHS to zero in Eq. (2I) for the frozen cells. This
approach follows the assumptions that ¢ remains close to a signed distance field in the vicinity of the interface. In
this paper, two iterations of Eq. (ZI)) are performed at every time step of the level-set advection process (Eq. (T7)). An
example of level-set advection is shown on Fig. [5] where the ¢ contours are displayed inside the ice shape only. Without
re-initialization (Fig. [5a), the signed distance field is distorted inside the solid while activating the re-initialization (Fig.
[5b) provides a more regular and sensible solution.
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Fig. 5 Example of level-set advection from a clean NACA23012 airfoil, single step ice accretion on a BF mesh

E. Surface Mesh Extraction

Once the level-set advection is completed and the signed distance field is re-initialized, the surface mesh extraction
can be performed. It consists of two parts: (1) the contour extraction providing an explicit definition of the IB from the
level-set and (2) the meshing of the surface (i.e., using GMSH). The first part is performed in the level-set module
(geometry evolution solver) while the second part is performed when preprocessing the IB.

A surface discretization can be obtained by performing the extraction of the contour ¢ = 0. The contour extraction
is performed after the re-initialization to avoid possible issues in using a non re-initialized and distorted signed distance
field (Fig. [5a)). In this paper, 2D unstructured meshes made of triangles are used which allows for a simple contour
extraction method. An edge-based interpolation is performed assuming a single intersection point per edge. The process
marches from cell to cell and adds consecutive intersection points to a linked list, forming a surface discretization.
Tested edges are tagged along the way to avoid adding duplicates to the list. Once the marching process can no longer
find any intersection on untested edges, the contour is completed. An edge is intersected by the contour if there is a sign
change in ¢ between its two vertices. If ¢ at one vertex is below a specified threshold, the intersection is assumed to
occur at the vertex and no interpolation is made. In this case, all the edges sharing the vertex are tagged as tested. This
approach retains the discretization of the body-fitted surface where there is no ice accretion (¢ ~ 0) and perform a
more classical contour extraction for the immersed boundary. It also directly provides an ordered list of points (surface
mesh) for each body when dealing with a multi-element configuration. Note that in IGLOO2D, ¢ is reconstructed at the
vertices from a weighted least square interpolation using the cell-center solution. An example of the marching process
illustrated in Fig. [l where the vertices are identified as positive, negative or zero and the extracted contour is illustrated
in red.



Fig. 6 Example for the contour extraction marching process

The extraction process usually produces an irregular discretization where nodes can be very close to each other
when the edge intersection is detected near a vertex. To help retrieve a more uniform and smoother surface mesh, nodes
are merged if they are too close and inserted if they are too far apart. An example of contour extraction is provided in
Fig. [Ta|near the leading edge of an iced NACA23012. The effect of node merging and insertion is illustrated in Figs.
Note that this node correction process is not mandatory as the surface is later re-meshed using GMSH. However
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it was found to improve the quality of the resulting mesh.
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Fig. 7 Example of a level-set extraction on an iced NACA23012 airfoil. red: surface extraction; blue: ice
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III. Ice Accretion Results

In this section, the new ice accretion framework using the IB and level-set methods is assessed. The objective is
to reproduce the ice accretion results obtained with a classical BF approach while improving the robustness of the
numerical tool (e.g., no failure). In order to demonstrate the benefits of using the level-set approach, ice accretion over a
manufactured ice shape is first performed using the level-set method and compared to the Lagrangian node displacement
method. Then, rime ice case 241 and glaze ice case 242 from the 15t ATAA Ice Prediction Workshop (IPW, [[1Q]) are
tested. These cases are respectively run ED1977 and run ED1978 from [19]], with slightly corrected icing conditions.
Additional ice accretion cases from [[L1]] (cases 001, 003 and 004) are also tested to further demonstrate the behavior of
the IBM. Finally, the new framework is tested on the multi-element McDonnell-Douglas LB606b Airfoil (MDA) [20] to
illustrate the flexibility of the method on complex high-lift systems. The simulation parameters are summarized in Table

[

Table 1 Simulation Parameters

Rime 241 Glaze 242 Case 001 Case 003 Case 004 Multi-Element

Geometry NACA23012 NACA23012 NACA0012 NACA0012 NACA0012 MDA
Chord [m] 0.4572 0.4572 0.5334 0.5334 0.5334 0.9144
AoA [deg] 2.0 2.0 4.0 4.0 4.0 8.0
Mach 0.325 0.315 0.325 0.317 0.317 0.27
Pgtatic [kPa] 92.528 92.941 101.325 101.325 101.325 101.325
Tetatic [K] 250.15 266.05 250.7 262.3 262.3 268.2
LWC [g/m?] 0.42 0.81 0.55 1.0 0.6 0.6
MVD [pum] 30.0 15.0 20.0 20.0 15.0 20.0
Icing Time [s] 300 300 420 231 384 360
Roughness (ks) [mm)] 0.4572 0.4572 0.5334 0.5334 0.5334 0.9144

In this section, two methods are available for the representation of the ice shape (IBM or BF) and two for the
geometry update (node displacement or Level-Set). This makes four possible combinations. When simply referring
to the Immersed Boundary Method, the use of the level-set method is implied. Similarly, when referring to the
Body-Fitted method, the use of the Lagrangian node displacement approach is implied (the standard approach in the
icing community). In addition, the calculations are carried out with IGLOO2D. The default options described in [[11]
were used for the Body-Fitted approach, in particular for the MESSINGER2D solver and the boundary-layer solver
SIM2D. Regarding the meshes, unstructured grids generated by GMSH were systematically used. The wall mesh size is
in the range of 1e-3 to 5e-3 chords (with a refinement in the range of 5e-4 chords for blunt trailing edges). These mesh
sizes are fairly representative of default mesh sizes used in IGLOO2D. They generally allow obtaining a good trade-off
between solution accuracy and computational time.

For all the calculations, the wall mesh size is kept constant near the leading edge and extended over 0.75 chords as
shown in figure Fig. [§] This is required when using the IBM in order to avoid the re-meshing during the multi-step
process while maintaining an equivalent wall cell size compared to the BF method (with re-meshing).

A multi-step approach is adopted, using 2 to 10 steps. For the IBM approach, the calculations are performed by
changing the calculation strategy for the volume solvers EULER2D and TRAJE2D (penalization) and for the ice shape
transportation (level-set), all other parameters remaining the same.
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Fig. 8 Example mesh around a NACA23012 with an extended refinement zone near the leading edge

A. Manufactured Ice Shape

In order to clearly show the behavior of the level-set method against the usual Lagrangian node displacement
approach, a manufactured ice shape is used with a fixed ice accretion rate (thickness and time). The ice accretion time is
set to 400s and the ice thickness is enforced to 0.02m for every surface node with coordinate x < 0.05m.

This manufactured geometry was first presented in [21]] and is generated from a NACAQ012 airfoil with added
artificial ice near the leading edge. The three-horn configuration was selected to obtain multiple flow recirculation zones
and create a difficult situation for the ice growth solver because of the presence of highly concave and convex features.

On Fig. 9] the ice accreted three-horn geometry is illustrated with the enforced ice accretion thickness. The level-set
solution is represented in blue, indicating the zone with ¢ < 0. The ice shape generated by the Lagrangian node
displacement is shown as a solid black line, where the geometry overlaps can be seen near concave regions of the
geometry. The contour ¢ = 0 is extracted by our edge marching method and represented by the red line with markers.
As observed in Fig. 0] the level-set method automatically handles the geometry overlaps and the extracted contour
provides an explicit surface mesh discretization that can be used in the multi-step ice accretion process.

0.06 -

-0.06 -

006 004 002 0 _ 0
x [m]

Fig. 9 Comparison between Lagrangian node displacement and Level-Set approach with contour extraction
B. Rime Ice 241
For the results presented in this paper, only the ice shape is used as an Immersed Boundary and the clean geometry is

still treated using a Body-Fitted approach. As an illustration, the aerodynamic and droplet fields for the rime ice case are
shown in Fig. [I0]where the immersed boundary (the ice shape) is represented by the red line and the solid body is white.
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Fig. 10 Rime ice case 241: solution from the volume solvers around the 1°¢ ice layer of a two-layer simulation.

In this section, two-step and 10-step ice accretion simulations are performed for the rime ice case 241. The results
are compared between the Body-Fitted and IB methods. Here the geometry update is done using a Lagrangian node
displacement for the BF approach and using the level-set for the IBM. The wall mesh size is about 2e-3 chords with a
refinement of 5e-4 chords at the trailing edge.

In Fig. [T} the pressure coefficients (Cp) and collection efficiency () are compared for the BF and IB methods
on the 1%¢ ice layer of a two-step simulation. Ideally, the IB method should reproduce the results obtained with a BF
approach. Fig. [TTa)illustrates a slight mismatch in Cp near the point of maximum suction. Nonetheless, the collection
efficiency is very close between the two methods (Fig. [TTD). As rime ice accretion is mostly governed by the collection
efficiency, it generates very similar ice shapes for the BF and IB methods despite the difference in pressure coefficients
(Fig. [T2a). The ice shapes are also in good agreement with the experimental results. The experimental ice shape is the
so-called MCCS (Maximum-Combined-Cross-Section) [22] derived by the experimentalists from the ice scans (it is
more or less the envelope of the ice shape).
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(a) Pressure coefficient (C'p) (b) Collection efficiency (5)

Fig. 11 Rime ice case 241 — comparison of wall surface data on the 1°¢ ice layer of a two-layer simulation for
the BF and IB methods.

The discrepancy observed near 2:/c = 0.06 in Fig. can be explained by the interaction between the body-fitted
wall and the IB. As the penalization terms are applied only if ¢ < 0 at the cell centers, the boundary condition is no
longer applied relative to the ice shape but relative to the wall when the ice shape becomes thin near the ice accretion
limits. The issue could be solved by implementing a 2"¢ order discretization of the penalization terms or by performing
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a local mesh refinement to obtain a better representation of the ice shape near the impingement limits. However, the
current implementation is still able to provide a good prediction of the ice shape in comparison with the BF results (Fig.

[12).

Since the simulation starts from a BF mesh, the 15¢ step is not affected by the IBM and thus, the 1%? ice layer should
be the same for both methods. However, a difference might be introduced by the geometry evolution solver which can
use either a level-set with contour extraction or the Lagrangian node displacement approach. On Fig. [I2a] a two-step
ice accretion prediction is made where the 1°¢ ice layer is illustrated with a dashed line. As the generation of the 15¢ ice
layer is not influenced by the IBM, the Lagrangian and Eulerian (level-set) geometry updates can be compared, showing
negligible difference. Thus, discrepancies observed in Fig. [IT]for the surface data can be attributed to the IB method
and not to the level-set approach.
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0.04 - 0.04 -
I Experimental (MCCS) I .
0.02 B — — — - BF Lagrangian Layer 1 0.02 B E);pf:r:\::t?;rgMCCS)
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> | — — — - IBLevel-Set Layer 1 > | NACA23012
ok — IB Level-Set Layer 2 ok
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-0.04 - -0.04 -
L L v
-0.04 -0.02 0 0.02 0.04 0.06 0.08 -0.04 -0.02 0 0.02 0.04 0.06 0.08
x/c x/c
(a) 2 layers (b) 10 layers

Fig. 12 Rime ice case 241 — multi-step ice shape predictions

For a 10-layer ice shape prediction (Fig. [I2b), the solution is still in good agreement with the experimental data for
both methods. Increasing the number of steps reduces the thickness of each ice layer and this might affect the behavior
of the penalization method for the same reason described earlier (15% order discretization of the penalization terms). For
instance, the penalization method might effectively see the same geometry for 2 consecutive ice layers even though the
ice shape has actually moved. This typically occurs if the ice layer is too thin relative to the mesh cells. For the 10-step
simulation presented here, the mesh cell size is about the same as the thickness of a single layer, providing good results.

C. Glaze Ice 242

For the glaze ice case, the mesh characteristics are the same as for the rime ice case 241. The wall mesh size is
about 2e-3 chords with a refinement to 5e-4 chords at the trailing edge.

For this case, there is again a slight mismatch on the Cp distribution (Fig. [T3a)), but a very similar collection
efficiency for both methods (Fig. [I3b). As glaze ice accretion is sensitive to the heat transfer coefficient which is in turn
driven by the aerodynamics, the mismatch in Cp might explain the slight difference observed on the ice shape Fig. [T4a]
The effect of using the Lagrangian node displacement vs. the level-set approach can again be estimated by analyzing the
1%t ice layer on Fig. where a negligible difference is observed. It suggests that the difference in Cp and /3 is due to
the IBM.
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Fig. 13 Glaze ice case 242 — comparison of wall surface data on the 1°¢ ice layer for the BF and IB simulations.

By observing Fig. the Cp distribution corresponds well between the BF and IB methods for /¢ < 0.02 and
x/c > 0.06. The zone where the discrepancy occurs is located near the ice accretion limits where the ice shape stops
sharply. For the IBM, this results in a detached flow with a recirculation zone (Fig. [[4b) while it is not the case for
the BF method, explaining the difference. Here, the comparison is made between the two methods with equivalent
mesh size. However, this result suggests that the penalization method require a finer mesh near curved features to be
equivalent to the BF approach.
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Fig. 14 Glaze ice case 242 — two-step ice accretion

Although the ice shape prediction for the 2" layer is similar for both methods, it does not reproduce the experimental
measurements (Fig. [[4a). Note that icing experiments carry large uncertainties as well as spanwise variations [23] 24].
However, the divergence from the experimental ice shape seems too large to be attributed only to these uncertainties.
Some tests were performed by refining the mesh and manually increasing the wall roughness (by a factor 2), without
significant improvement. Here, the use of a droplet size distribution might help in obtaining a prediction towards the
experimental ice shape. This option was, however, not tested as it is not yet available for use with our penalization
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method.

By increasing the number of ice layers to 10 (Fig. [I5a), the ice shape prediction is still far from the experimental
results. Moreover, an ice horn is created but not in the same location. When comparing the BF and IB methods, the ice
shape is similar for the most part, but with a larger difference near the ice horn (where the effect of the aerodynamics
becomes more dominant on the ice accretion). The difference in ice shape is due to the combined effect of the
penalization and level-set methods compared to the BF and Lagrangian approach (standard approach). In Fig. [I5b] all
four combination of methods are shown for the 10t" ice layer only. The figure illustrates that the use of the level-set
method has only a limited impact while the IB methods have a larger effect on the difference in ice shape. This is similar
to the observation made for the two-step ice accretion simulation, where the penalization method requires a finer mesh
near curved features to be equivalent to the BF solution. Using an equivalent cell size, the IBM however provides a
good approximation.
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Fig. 15 Glaze ice case 242 — 10-step ice accretion

D. Additional Cases on a NACA0012

In this section, 10-step ice accretion calculations are performed on cases 001, 003 and 004 from [11]] to further
assess the behavior of the IBM. The calculations are performed on a coarser mesh (wall mesh size of 5e-3), but it is still
representative of typical ice accretion simulations with IGLOO2D.

When comparing the ice shape prediction obtained from the IB and the BF methods, a good match is observed for
the rime ice case 001 (Fig. [I6a), but a larger difference is seen for the glaze ice cases 003 and 004 (Figs. [T6bHI6c).
This is in line with the observation made in the previous sections. Glaze ice shape are more sensitive to the airflow
solution and a perfect correspondence is not obtained for the wall data between the two methods (e.g., Cp distribution,
Fig. [[3a). The solution can be improved by refining the mesh. Nonetheless, using the IB and the level-set methods still
provides a good estimation of the ice shapes when compared to the experimental data (Fig. [I6), even on coarser meshes.
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Fig. 16 Additional cases on a NACA0012 airfoil, 10-step ice accretion

E. Three-Element Airfoil (MDA)

In this section, ice accretion is performed on the three-element McDonnell-Douglas Airfoil (MDA, Fig. [T7) using
the icing conditions provided in [20]. This test case is selected to show the flexibility of the immersed boundary and
level-set methods.
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Fig. 17 Global view of the McDonnell-Douglas LB606b airfoil and its experimental ice shape

A two-step ice accretion simulation is performed with both the BF and IB methods. Here the objective is to see if
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the IB method can reproduce the BF solution on this more challenging configuration. To do so, a mesh refinement
was performed to obtain similar pressure coefficients and collection efficiency on the 1°¢ ice layer (2" time step), as
shown in Fig. [T8] The wall cell sizes of the resulting mesh are summarized in Table[2} A finer mesh is required on
this test case due to the flow separation downwind of the flap. Because a Euler flow solver is used (inviscid), this flow
detachment is very sensitive to the mesh size. The current mesh set-up allowed the IB and BF to behave in a similar way
(e.g., similar onset of the flow detachment).

Table 2 Wall mesh characteristics for the three-element airfoil in terms of the chord (Ax/c)

Slat Main Flap
Wall le-3 le-3 2.5e-4
Leading Edge 1e-3 2e-3 5e-4
Trailing Edge 1le-3 1le-3 5e-4
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Fig.18 Wall data on the 1** ice layer (2"¢ step) for the McDonnell-Douglas multi-element airfoil (MDA LB606b)

Although a better ice shape prediction can be achieved using a RANS solver and a droplet size distribution, it was
shown in [20] that a fair estimation of the ice shape can be achieved using a Euler flow solver and a single size of
droplets. The ice accretion results obtained with IGLOO2D for both methods are shown for the flap, slat and main
element in Fig. [T9] The predicted ice shapes are not so far from the experiment for the flap and slat but are quite
different from the expected solution for the main element. Perhaps a simulation involving more ice layers would improve
the results. For instance, six steps are used in [20]]. The use of a polydisperse droplet distribution more representative of
the cloud composition would also help (which is not available in this version of the IBM code). In this paper we are
concerned about reproducing the ice shapes from the BF method with the IBM and in this regard, the ice shapes (Fig.
[T9) are in fact similar for both methods. The comparison still exhibits the usual discrepancy due to the accuracy of the
IBM for the aerodynamics.
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Fig. 19 Two-step ice accretion on the McDonnell-Douglas multi-element airfoil (MDA LB606b)

IV. Conclusion

This paper investigates the application of an Immersed Boundary Method (IBM) towards simulation of ice accretion
within IGLOO2D. A penalization method is applied to the aerodynamics and droplet trajectories. The surface data is
extracted using a weighted least square approach in order to use the boundary layer and ice accretion modules. The
geometry (the ice shape) is updated using either a Lagrangian or an Eulerian (level-set) approach. A contour extraction
process is also described for 2D meshes made of triangles in order to retrieve the explicit definition of the ice-air
interface.

Using a manufactured test case, the level-set is shown to automatically handle geometry folding during the ice shape
update while the Lagrangian approach fails at providing a useable surface discretization unless a correction is added.
For ice shape predictions, a Body-Fitted mesh is used for the clean geometry and only the ice shape is treated as an IB.
Following this approach, rime and glaze ice cases from the Ice Prediction Workshop are performed using up to 10 ice
layers. The IBM predicted an ice shape equivalent to the body-fitted approach on the rime ice case. For the glaze ice
case, the predicted ice shape is close to the body-fitted solution but exhibits a larger difference where ice accretion is
most dependent on the aerodynamics (e.g., near ice horns). The difference is mostly attributed to the accuracy of the
IBM and not to the use of the level-set. Additional rime and glaze ice cases on a NACAO0012 showed that the current
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approach (IBM + level-set) provides a fair estimation of the ice shape when compared to both the BF method and the
experimental results, even on coarser meshes. Moreover, a 2-step ice shape prediction on the McDonnell-Douglas
multi-element airfoil showed that with proper mesh refinement, the IBM combined with the level-set method can
reproduce the BF solution on a more challenging configuration.

Although some improvements can be made in terms of efficiency and accuracy, this paper shows the potential of the
proposed methodology for automatic multi-step ice shape predictions. Also, the extension the 3D ice accretion is, in
theory, straightforward except for the contour extraction process which will require some adaptation to deal with a 2D
surface mesh.
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