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Abstract. We define and study Noetherian topologies for spaces of
infinite sets and for spaces of infinite words. In each case, we also obtain
S-representations, namely, computable presentations of the sobrifications
of those spaces.

1. Introduction

A quasi-ordering, a.k.a. a preordering, is a reflexive and transitive rela-

tion. A well-quasi-order (wqo) is a quasi-ordered set in which every infinite

sequence (xn)n∈N must contain two elements xm ≤ xn with m < n. Well-

quasi-orders are a fundamental tool in mathematics and computer science,

however they are not closed under several infinitary constructions; e.g., the

set of all subsets of a wqo is not in general wqo [12], and a similar problem

plagues sets of infinite words, and of infinite trees, over a well-quasi-ordered

alphabet. Nash-Williams discovered that a strengthening of the notion of

wqo, the notion of better quasi-orders (bqo), was closed under the usual

finitary constructions that preserved being wqo (finite words, finite trees,

etc.), and also under their infinitary variants [11].

A Noetherian space is a topological space in which every open set is

compact, i.e., in which every open cover of an open set contains a finite

subcover—we do not assume any separation axiom here. It was observed in

[3] that Noetherian spaces formed a natural topological generalization of the

order-theoretic notion of wqo. Noetherian spaces are closed under the same

finitary constructions as wqos (finite words under embedding, finite trees

under homeomorphic embedding, etc., see [4, Section 9.7]), but also under

some infinitary constructions. In [3], notably, we remarked that the so-called
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Hoare powerdomain of a Noetherian space—equivalently, its powerset under

the so-called lower Vietoris topology—is Noetherian.

The main purpose of this paper is to show that Noetherianness is pre-

served under some of the usual infinitary constructions that spurred the

invention of bqos.

A secondary purpose is to design those infinitary constructions in such

a way that the closed subsets have finite representations suitable for an

implementation on a computer. We do not mean to develop this here, but

one should note that infinite words are pervasive in verification, mostly as

infinite runs in various forms of automata, such as Büchi automata, see

[14] for a survey. Downwards-closed subsets of runs, a very closely related

notion, were instrumental in the pioneering paper by Leroux and Schmitz

on the complexity of VASS reachability [9], too.

Let us illustrate our goal by an example of a finitary construction, taken

from [4, Section 9.7] and [2, Section 7]. Let X∗ denote the set of finite

words over an alphabet X (not necessarily finite). For every quasi-ordering

≤ on X, the (scattered) word embedding quasi-ordering ≤∗ on X∗ is de-

fined by w ≤∗ w′ if and only if w′ can be obtained from w by increas-

ing some letters from w and by inserting arbitrarily many new letters at

arbitrary positions. Higman’s Lemma [6] states that ≤∗ is a well-quasi-

ordering if and only if ≤ is. Similarly, the word topology on X∗, where X

is now a topological space, is generated by basic open sets of the form

〈U1;U2; · · · ;Un〉
def
= X∗U1X

∗U2 · · ·X∗UnX∗, where n ∈ N and each Ui is

open in X—those are the sets of words that contain a letter in U1, then a

letter in U2 to the right of the previous one, and so on, until we find a letter

in Un. (Note that they form a base, not just a subbase.) Then the following

hold (all required notions will be introduced in Section 2):

(A) X is Noetherian if and only if X∗ (with the word topology) is Noe-

therian.

(B) The specialization preordering of X∗ is ≤∗, where ≤ denotes the

specialization preordering of X.

(C) If X is wqo, then so is X∗.

(D) If X has an S-representation (a certain, computable, way of repre-

senting the irreducible closed subsets of X, and therefore all closed

subsets of X), then X∗ has an S-representation, too.

We wish to obtain similar results for infinitary constructions, e.g., spaces

of infinite words. Our proposals will allow us to obtain equivalents of (A)

and (D). (B) will only hold if X is wqo, and (C) will hold if and only if
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X is essentially finite (see below); however negative the latter result seems,

one should note that we define a topological space as wqo if and only if its

specialization preordering is a wqo and its topology is Alexandroff—that is

a pretty strong requirement.

Outline. After some preliminaries in Section 2, we examine the case of the

powerset P(X) for Noetherian X. That P(X) is Noetherian in that case

is not new [3, 4, 2], but it seems important to understand why. This will

occupy Section 3.1, in which we will deal with properties (A) and (D) in that

case. In Section 3.2, we examine properties (B) and (C). That is new. As

promised, property (B) will hold only when X is wqo, and (C) only when X

is essentially finite We then make a small detour and introduce a few useful

results pertaining to so-called initial maps in Section 4. With all that in our

hands, we will proceed to show that the space Xω of all infinite words over

X, with a natural topology, enjoys properties (A) through (D)—in the case

of (B) and (C), exactly with the same restrictions on X as above.

2. Preliminaries

We have already defined well-quasi-orders. They can be defined in many

equivalent ways. Notably, as already observed by Higman [6, Theorem 2.1],

it is equivalent to require any of the following properties, for a quasi-ordered

set X: (i) every upwards-closed subset of X is the upward-closure of a finite

set; (ii) the lattice of upwards-closed subsets of X has the ascending chain

condition, namely: every ascending sequence (Un)n∈N of upwards-closed sub-

sets is stationary, in other words, there is a rank n0 such that Un = Un0 for

every n ≥ n0 (in general, we say that a quasi-ordering ≤ has the ascending

chain condition if and only if it has no strictly ascending infinite sequence

x0 < x1 < · · · < xn < · · · , where x < y means x ≤ y and y 6≤ x); (iv) every

infinite sequence of elements of X has an infinite ascending subsequence;

(v) X is wqo. (We omit characterizations (iii) and (vi), which we will not

require.)

Let us turn to topology, for which we refer the reader to [4]. Noetherian

spaces are specifically covered in Section 9.7 there. Note that none of the

topologies we will consider are Hausdorff. In fact, a Hausdorff topological

space is Noetherian if and only if it is finite.

A subbase of a topology is any family of open sets that generates the

family. A base of a topology is a family of open sets such that every open

set can be written as a union of basic open sets. We write cl(A) for the
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closure of a subset A of a topological space. We will often use the fact that

cl(A) intersects an open set U if and only if A intersects U .

Noetherian spaces have many equivalent characterizations (compare with

the equivalent characterizations (i)–(vi) of wqos mentioned earlier). Those

are also the spaces in which every ascending sequence (Un)n∈N of open sub-

sets is stationary; or also the spaces in which every descending sequence

(Cn)n∈N of closed subsets is stationary. The first of those characterizations

shows that Noetherianness is a property that depends only on the lattice of

open subsets of the space, not on its point.

Noetherian spaces are closed under finite products, finite coproducts,

subspaces, under the process of replacing the topology by a coarser one,

under images by continuous maps, and various other constructions, such as

the X∗ construction.

Every topological space has a specialization preordering ≤, defined by

x ≤ y if and only if every open neighborhood of x contains y. We then say

that x is less than or equal to y, or below y, or that y is larger than or equal

to x, or above x. The closure of {x} is the principal ideal ↓x, namely the set

of all points below x in that quasi-ordering. (Symmetrically, we write ↑x
for the set of all points above x.) An Alexandroff topology is a topology in

which every intersection of open subsets is open, or equivalently, in which

the open subsets are exactly the upwards-closed subsets in the specializa-

tion preordering ≤. The Alexandroff topology of a given quasi-ordering ≤
is, correspondingly, the collection of all its upwards-closed sets. Among the

topologies with a given specialization preordering ≤, the Alexandroff topol-

ogy is the finest, and the coarsest is the upper topology, whose closed sets

are intersections of sets of the form ↓E, E finite; the notation ↓E denotes⋃
x∈E ↓x.

There is some degree of ambiguity in a notation such as ↓E, which will

be particularly apparent when we work in spaces of subsets. For E ∈ P(X),

where P(X) is equipped with the inclusion ordering, say, ↓E might denote

{E ′ ∈ P(X) | E ′ ⊆ E} or {x ∈ X | ∃y ∈ E, x ≤ y}. In such cases, we will

disambiguate by writing ↓P(X)E for the first set, and ↓X E for the second

one.

It turns out that a quasi-ordering ≤ is a well-quasi-ordering if and only

if its Alexandroff topology is Noetherian [4, Proposition 9.7.17]. For short,

we will say that a topological space is a wqo if and only if it is Noetherian

and its topology is the Alexandroff topology, equivalently if and only if its

topology is the Alexandroff topology of a well-quasi-ordering.
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A subset C of a topological space X is irreducible if and only if it is

non-empty, and for all closed subsets C1, C2 of X such that C ⊆ C1 ∪ C2,

we have C ⊆ C1 or C ⊆ C2. Equivalently: C is non-empty, and for all open

subsets U1, U2 of X that intersect C, U1 ∩ U2 also intersects C.

A sober space is a topological space in which every irreducible closed

subset is the closure cl({x}) = ↓x of a unique point x. (Chapter 8 of [4] is all

about sober spaces.) The (standard) sobrification SX of a topological space

X is its set of irreducible closed subsets, with the hull-kernel topology, whose

open subsets are (exactly) the sets of the form �U def
= {C ∈ SX | C ∩ U 6=

∅}, where U ranges over the open subsets of X. The specialization (quasi-

)ordering of SX is inclusion. SX is always sober, there is a continuous map

ηX : X → SX : x 7→ ↓x, and for every continuous map f : X → Y where Y

is sober, there is a unique continuous map f̂ : SX → Y such that f̂ ◦ηX = f .

S defines a endofunctor on the category of topological spaces, and its

action on morphisms is defined by S(f)(C)
def
= cl(f [C]), where f [C] denotes

the image of C under f . In particular, cl(f [C]) is irreducible closed for every

irreducible closed set C and every continuous map f .

Sober spaces are closed under arbitrary topological products. Further-

more, the sobrification of any product of spaces is homeomorphic to the

product of the sobrifications. Explicitly, and in the binary case, given any

two irreducible closed subsets C of X and C ′ of Y , C × C ′ is irreducible

closed in X×Y . Moreover, all irreducible closed subsets of X×Y are of this

form: (C,C ′) 7→ C×C ′ is the indicated homeomorphism from S(X)×S(Y )

to S(X × Y ).

A space is Noetherian if and only if its sobrification is Noetherian. Indeed,

the map U 7→ �U is an order-isomorphism, hence the lattice of open sets of

X has the ascending chain condition if and only if the lattice of open sets

of SX has it as well.

We say that a quasi-ordered set (resp., a topological space) is essentially

finite if and only if it has only finitely many upwards-closed subsets (resp.,

open subsets). Note that the topology of an essentially finite topological

space is Alexandroff, and trivially Noetherian. A topological space X is

essentially finite if and only if its T0 quotient, namely the quotient X/ ≡
where ≡def

=≤ ∩ ≥, is finite.

The sober Noetherian spaces are particularly interesting, as they can be

characterized entirely in terms of their specialization preordering. Explicitly,

the sober Noetherian spaces are exactly the sets X with a well-founded

quasi-ordering ≤ such that every finite intersection of principal ideals can
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be expressed as a finite union of principal ideals (a quasi-ordering ≤ is well-

founded if and only if every strictly descending chain is finite); furthermore,

the topology of X is uniquely determined as the upper topology of≤. In that

case, the closed subsets are exactly the sets of the form ↓E with E finite,

which makes them suitable for a representation on a computer—provided

all the elements of E are themselves representable.

As a corollary, the closed subsets C of a Noetherian space X are exactly

the finite unions of irreducible closed subsets C1, . . . , Cn of X. Indeed, given

any closed subset C of X, the set ↓SX C of all irreducible closed subsets of

X below (included in) C is equal to SX r �(X r C), hence is closed in

SX. Also, η−1X (↓{C}) = C. Since SX is Noetherian, one can write ↓{C}
as ↓{C1, · · · , Cn} for finitely many points C1, . . . , Cn of SX, and then

C = η−1X (↓{C}) is the union of the finitely many irreducible closed subsets

η−1X (↓{Ci}) = Ci, 1 ≤ i ≤ n.

We will be interested in computer representations of irreducible closed

subsets of X (i.e., of elements of S(X)), and this will immediately allow us

to represent all closed subsets C as finite sets {C1, · · · , Cn}, where each Ci is

in S(X). If we can decide inclusion of irreducible closed subsets, one can also

decide the inclusion of arbitrary closed subsets: if C is represented by the

finite set {C1, · · · , Cm} and C ′ is represented by the finite set {C ′1, · · · , C ′n},
then C ⊆ C ′ if and only if for every i, there is a j such that Ci ⊆ C ′j. This

is a simple consequence of the fact that each Ci is irreducible. We will also

require to be able to compute the intersection C ∩C ′ of any two irreducible

closed subsets of X as a finite union C1 ∪ · · · ∪ Cn of irreducible closed

subsets.

Those computability requirements are formalized by the notion of an S-

representation [2, Definition 5.1]. An S-representation of a Noetherian space

X is a 5-tuple (S, J K ,�, τ,∧) where:

(1) S is a recursively enumerable set of so-called codes (of irreducible

closed subsets);

(2) J K is a surjective map from S to SX;

(3) � is a decidable relation such that, for all codes a, b ∈ S, a � b iff

JaK ≤ JbK;
(4) τ is a finite subset of S, such that X =

⋃
a∈τ JaK;

(5) ∧ is a computable map (the intersection map) from S × S to the

collection Pfin(S) of finite subsets of S (and we write a ∧ b for

∧ (a, b)) such that JaK ∩ JbK =
⋃
c∈a∧b JcK.
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Let us take X∗, with the word topology, as an example. We use standard

notations for certain regular languages on X: for every C ⊆ X, C? denotes

the set of words of at most one letter, and that letter is in C; for every

F ⊆ X, F ∗ is the set of words whose letters are all in F ; for all A,B ⊆ X∗,

AB denotes the set of all concatenations of one word from A and one from

B; ε denotes both the empty word and the language {ε}. A word product is

a language of the form P
def
= A1A2 · · ·AN , where each Ai is an atom, i.e., a

language of the form C? with C ∈ SX or F ∗ where F is a closed subset of X.

When X is Noetherian, the irreducible closed subsets of X∗ are exactly the

word products [2, Proposition 7.14]. One can also decide inclusion of word

products in polynomial time with an oracle deciding inclusion in SX [2,

Lemma 7.10, Corollary 7.11], and compute intersections of word products as

finite unions of word products in polynomial time with an oracle computing

binary intersections in SX as finite unions of irreducible closed subsets [2,

Lemma 7.13]. Formally:

Proposition 2.1 (Theorem 7.15 of [2]). Given an S-representation (S, J K ,�,
τ,∧) of a Noetherian space X, the following tuple (S ′, J K′ ,�′, τ ′,∧′) is an

S-representation of X∗:

(1) S ′ is the collection of all (syntactic) word products over the alphabet

S, namely all regular expressions A1A2 · · ·AN where each Ai is either

an expression of the form a? with a ∈ S, or u∗ where u is a finite

subset of S (we write ε when N = 0).

(2) JA1A2 · · ·ANK′ def
= JA1K

′ JA2K
′ · · · JANK′, where we let

q
a?

y′ def
= JaK?

and J{a1, · · · , an}∗K′
def
= (Ja1K ∪ · · · ∪ JanK)∗.

(3) �′ is defined inductively by:

ε�′ Q is always true

P �′ ε is false, if P 6= ε

a?P �′ b?Q iff

{
P �′ Q if a� b
a?P �′ Q otherwise

a?P �′ v∗Q iff

{
P �′ v∗Q if ∃b ∈ v, a� b
a?P �′ Q otherwise

u∗P �′ b?Q iff

{
P �′ b?Q if u = ∅
u∗P �′ Q otherwise

u∗P �′ v∗Q iff

{
P �′ v∗Q if ∀a ∈ u,∃b ∈ v, a� b
u∗P �′ Q otherwise

(4) τ ′ is {τ ∗}.
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(5) ∧′ is implemented by the following clauses (together with the obvious

symmetric clauses):

ε ∧′ Q def
= {ε} (2.1)

a?P ∧′ b?Q def
= (a?P ∧′ Q) ∪ (P ∧′ b?Q) (2.2)

∪ {c?R | c ∈ a ∧ b, R ∈ P ∧′ Q}

a?P ∧′ v∗Q def
=

 {c
?R | c ∈

⋃
b∈v(a ∧ b), R ∈ P ∧′ v∗Q} ∪ (a?P ∧′ Q)

if a ∧ b 6= ∅ for some b ∈ v,
(P ∧′ v∗Q) ∪ (a?P ∧′ Q) otherwise

(2.3)

u∗P ∧′ v∗Q def
= {(

⋃
a∈u,b∈v

a ∧ b)∗R | R ∈ (P ∧′ v∗Q) ∪ (u∗P ∧′ Q)}. (2.4)

Remark 2.2. One can optimize the procedures above in a number of ways.

In the definition of ∧′, one can remove any subsumed word product in the

result. A word product P is subsumed by another one, Q, in a given set, if

and only if P �′Q, or equivalently JP K′ ⊆ JQK′. As a special case, in (2.3), if

Q = ε, then we can remove a?P ∧′ Q (= {ε}), which is subsumed by some

other word product, since JεK′ = {ε} is included in the denotation of the

remaining word products (the union of the sets
q
c?R

y′
where c ∈

⋃
b∈v(a ∧

b) and R ∈ P ∧′ v∗Q if a ∧ b 6= ∅ for some b ∈ v, the union of the sets JRK′

where R ∈ P ∧′ v∗Q otherwise).

3. Powersets

3.1. Properties (A) and (D). Let P(X) denote the powerset of a space

X, with the lower Vietoris topology, generated by subbasic open sets of

the form 3U
def
= {A ∈ P(X) | A ∩ U 6= ∅}. By that, we mean that the

open subsets of P(X) are the unions of finite intersections
⋂n
i=1 3Ui. (Note

the similarity of that notation with the open subsets �U of SX. They are

defined the same way, but the sets 3U only form a subbase of the lower

Vietoris topology, whereas the sets �U range over all the open sets in the

hull-kernel topology on SX. Also, 3 and � commute with arbitrary unions,

but � additionally commutes with finite intersections.)

The subset of P(X) consisting of all closed subsets of X is called the

Hoare powerspace of X, and will be written as H(X). We again write 3U

for the open set {C ∈ H(X) | C∩U 6= ∅}. Those sets generate the subspace

topology on H(X), and we will also call it the lower Vietoris topology. For

any set A, A intersects an open set U if and only if cl(A) intersects U ,

and this implies that the function that maps every open subset of P(X) to

its intersection with H(X) is an order-isomorphism. The following lemma,
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which is of independent interest, shows that H(X) is homeomorphic to

S(P(X)). We also deal with P∗(X), the subspace of non-empty subsets of

X, and with H∗(X), the subspace of non-empty closed subsets of X.

Lemma 3.1 (Lemma 5.10 of [2]). The map F 7→ ↓F is a homeomorphism

from H(X) onto S(P(X)), resp. from H∗(X) onto S(P∗(X)). �

It follows that for every space X, P(X) is Noetherian if and only if H(X)

is Noetherian, and similarly for P∗(X) and H∗(X). It is easy to see that

every subspace and every homeomorph of a Noetherian space is Noetherian,

so any of those properties implies that X, which is homeomorphic to the

subspace of points {x} in P(X) (resp., P∗(X)), is Noetherian. Conversely, if

X is Noetherian, then ⊆ is well-founded on H(X). Any finite intersection

of principal ideals ↓H(X) Fi, 1 ≤ i ≤ n, in H(X) can be expressed as a finite

union of principal ideals, in fact just as ↓H(X)(F1 ∩ · · · ∩Fn). It follows that

H(X) is Noetherian, and sober, with the upper topology of inclusion. Since

the complement of ↓H(X){F1, · · · , Fn} is equal to 3U1 ∩ · · · ∩ 3Un, where

each Ui is the complement of Fi in X, that upper topology is none other

than the lower Vietoris topology.

The next proposition follows easily, and is a reformulation of Theo-

rem 5.11, (A)–(C), of [2]; that theorem actually gives a full description

of an S-representation for P(X) and for P∗(X), while Theorem 5.8 of [2]

gives the analogous S-representation for H(X) and for H∗(X).

Proposition 3.2. For every topological space X, X is Noetherian if and

only if P(X) (resp., H(X), P∗(X), H∗(X)) is.

Letting Y
def
= P(X) (resp., P∗(X)), the irreducible closed subsets of Y are

exactly the sets of the form ↓Y F = {A ∈ Y | A ⊆ F}, where F ∈ H(X)

(resp., H∗(X)).

In particular, if X is Noetherian, then the irreducible closed subsets of

Y can be represented as finite sets {C1, · · · , Cn} (resp., with n ≥ 1), de-

noting ↓Y (C1 ∪ · · · ∪ Cn), where each Ci ∈ SX; if inclusion is decidable

on SX, then inclusion is decidable on SY : if F is represented by the finite

set {C1, · · · , Cm} and F ′ is represented by the finite set {C ′1, · · · , C ′n}, then

F ⊆ F ′ if and only if for every i, there is a j such that Ci ⊆ C ′j. �

Those match properties (A) and (D) mentioned in the introduction, as

promised.

3.2. Properties (B) and (C). As for property (B), the specialization

preordering on P(X) (resp., P∗(X)) is given by A ≤[ B if and only if cl(A) ⊆
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cl(B). When X is a wqo, cl(A) = ↓X A, so A ≤[ B if and only if for every

a ∈ A, there is a b ∈ B such that a ≤ b, and we retrieve the usual domination

(a.k.a., Hoare) quasi-ordering.

We now inquire about property (C). One may wonder when P(X) is

wqo, in the sense that its topology is both Alexandroff and Noetherian.

One might think that this would be the case if and only if X is ω2-wqo (see

[8, 10] or [7] for example). This is wrong, as we will see in Proposition 3.4

below. If X is ω2-wqo, what we obtain is that the domination quasi-ordering

on P(X) is a well-quasi-ordering (this can be taken as a definition of an ω2-

wqo), not that the lower Vietoris topology is Alexandroff. We will use the

following lemma.

Lemma 3.3. (1) A topological space whose lattice of open subsets is

well-founded under inclusion has the Alexandroff topology of its spe-

cialization preordering, and that quasi-ordering has the ascending

chain condition.

(2) A well-quasi-ordering with the ascending chain condition is essen-

tially finite.

(3) A Noetherian space whose lattice of open subsets is well-founded is

essentially finite.

Proof. (1) Let us assume that the lattice of open subsets of X is well-

founded. Given any x ∈ X, there is a minimal open neighborhood Ux of

x. By definition of the specialization preordering ≤, for every point y ∈ X
such that x 6≤ y, there is an open subset U of X that contains x but not y.

Since U ∩Ux is an open neighborhood of x, the minimality of Ux entails that

U ∩Ux = Ux, that is, Ux ⊆ U . It follows that y is not in Ux. We have shown

the implication x 6≤ y ⇒ y 6∈ Ux, from which we deduce Ux ⊆ ↑x. Every

open set is upwards-closed in the specialization preordering, so Ux = ↑x.

From this, we deduce that ↑x is open for every x ∈ X. Every upwards-

closed subset A is equal to
⋃
x∈A ↑x, hence is open. Hence the topology of

X is the Alexandroff topology of ≤.

We now consider any strictly increasing sequence x0 < x1 < · · · < xn <

· · · . Then the sets ↑xn form a strictly descending sequence of open subsets,

contradicting our well-foundedness assumption. Hence ≤ has the ascending

chain condition.

(2) By contradiction, let us assume that there is an infinite set A whose

elements are pairwise inequivalent with respect to ≡def
=≤ ∩ ≥. We extract

a countable infinite subset (xn)n∈N of A. In a well-quasi-ordering, every

infinite sequence has an infinite ascending subsequence, so we may assume
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without loss of generality that x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · . By the ascending

chain condition, only finitely many of those inequalities can be strict, hence

xn ≡ xn+1 for at least one n. That is absurd.

(3) If X is Noetherian with a well-founded lattice of open subsets, by

(1) it is Alexandroff, hence wqo, and satisfies the ascending chain condition.

We conclude by (2). �

Proposition 3.4. Let X be a Noetherian space. The lower Vietoris topology

on P(X) (resp., H(X), P∗(X), H∗(X)) is Alexandroff if and only if X is

essentially finite.

Proof. The if direction is clear. Let Y be P(X) (resp.,H(X), P∗(X),H∗(X)),

and let us assume that Y is Alexandroff. We use Lemma 3.3 (3), first showing

that the lattice of open subsets of X is well-founded, or equivalently that

there is no infinite strictly ascending sequence of closed subsets of X.

For the sake of contradiction, we assume that there is such an infinite

strictly ascending sequence F0 ( F1 ( · · · ( Fn ( · · · . Up to the removal of

F0, we may assume that every Fn is non-empty: this is needed for the cases

where Y is P∗(X) or H∗(X). For each n ∈ N, ↓Y Fn = Y r 3(X r Fn) is

closed. Since Y is Alexandroff, any union of closed subsets of Y is closed,

so F def
=
⋃
n∈N ↓Y Fn is closed.

Let F∞ be the closure of
⋃
n∈N Fn in X. We claim that F∞ is in F .

Otherwise, by the definition of the lower Vietoris topology, F∞ would be in

some finite intersection
⋂m
i=13Ui, disjoint from F , where each Ui is open

in X. For each i, Ui would then intersect F∞, hence
⋃
n∈N Fn, hence Fni

for some ni ∈ N. Let n ∈ N be larger than every ni, 1 ≤ i ≤ m. Then Fn

intersects every Ui, 1 ≤ i ≤ m, as well, so Fn ∈
⋂m
i=1 3Ui. However, Fn is in

F , by definition of F , which is impossible since F is disjoint from
⋂m
i=1 3Ui

by assumption.

Since F∞ is in F , it is in some ↓Y Fn. In particular, Fn+1 ⊆ F∞ ⊆ Fn,

which is impossible. Hence there is no strictly ascending sequence of closed

subsets of X, and we conclude by Lemma 3.3 (3). �

4. Initial maps

We will use the following additional facts about Noetherian spaces. An

initial map f : Y → Z between topological spaces is one such that the open

subsets of Y are exactly the sets of the form f−1(W ), W open in Z. All

initial maps are continuous.
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Remark 4.1. Given a subbase of the topology of Y , a practical way of

checking that f : Y → Z is initial consists in verifying that f is continuous,

and that every subbasic open subset V of Y can be written as f−1(W ) for

some open subset W of Z. In other words, we do not need to check the latter

for every open subset of Y , just for subbasic open sets. Indeed, every open

subset V of Y can be written as
⋃
i∈I
⋂ni

j=1 Vij where each Vij is subbasic,

and if we can write each Vij as f−1(Wij) with Wij open in Z, then V is

equal to f−1(
⋃
i∈I
⋂ni

j=1Wij).

A general way of finding initial maps is as follows. Let Z be a topological

space and f be a map from a set Y to Z. With the coarsest topology on Y

that makes f continuous, f is initial. This is notably the case of topological

embeddings, which are those initial maps that are injective.

Lemma 4.2. Let f : Y → Z be an initial map between topological spaces.

If Z is Noetherian, then Y is Noetherian.

Proof. The open subsets of Y are the sets f−1(W ), W open in Z. Let

(f−1(Wn))n∈N be a monotonic sequence of open subsets in Y . Replacing

Wn by W0 ∪W1 ∪ · · · ∪Wn, we may assume that (Wn)n∈N is also a mono-

tonic sequence. Since Z is Noetherian, all sets Wn are equal for n large

enough. Hence all sets f−1(Wn) are equal for n large enough. �

Lemma 4.3. Let f : Y → Z be an initial map. The irreducible closed subsets

D of Y are all of the form f−1(C) where C is some irreducible closed in Z.

More precisely, one can always choose C
def
= cl(f [D]).

Proof. Let D be irreducible closed in Y , and consider C
def
= cl(f [D]). Recall

that C = S(f)(D) is irreducible closed.

Since f is initial, D = f−1(C ′) for some closed subset C ′ of Z. Then

f [f−1(C ′)] is included in C ′, so its closure C
def
= cl(f [D]) is also included in

C ′. In particular, f−1(C) is included in f−1(C ′) = D. Conversely, for every

y ∈ D, f(y) is in f [D] hence in C, so D is included in f−1(C). Therefore

D = f−1(C), where C is irreducible closed. �

Note that Lemma 4.3 does not say that every set f−1(C), C ∈ SZ, is

irreducible closed in Y , just that every irreducible closed subset of Y must

be of that form. We have a complete characterization when the image of f

is open or closed:

Lemma 4.4. Let f : Y → Z be an initial map.
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(1) If the image of f is open, then the irreducible closed subsets of Y

are exactly those sets of the form f−1(C) where C ranges over the

irreducible closed subsets of Z that intersect the image of f .

(2) If the image of f is closed, then the irreducible closed subsets of Y

are exactly those sets of the form f−1(C) where C ranges over the

irreducible closed subsets of Z that are included in the image of f .

Proof. 1. Let us assume that the image Im f of f is open. By Lemma 4.3,

every irreducible closed subset of Y must be of the form f−1(C), with C

irreducible closed in Z. Necessarily, f−1(C) must be non-empty, and that

implies that C intersects the image Im f of f .

In the converse direction, let C be irreducible closed in Z, and let us

assume that C intersects Im f . Then f−1(C) is non-empty. Let us now

consider two open subsets of Y that intersect f−1(C). Since f is initial,

they must be of the form f−1(U) and f−1(V ), where U and V are open

in Z. Since f−1(C) intersects f−1(U), there is a point y ∈ Y such that

f(y) is in C and in U , and therefore Im f ∩ U ∩ C is non-empty. In other

words, C intersects Im f ∩ U . Similarly, C also intersects Im f ∩ V . Both

Im f∩U and Im f∩V are open in Z. Since C is irreducible, it must intersect

their intersection, which is Im f ∩ U ∩ V . Hence there is a point f(y) (with

y ∈ Y ) in Im f which is also in C, U , and V . Then y is in f−1(C), f−1(U)

and f−1(V ), so f−1(C) intersects f−1(U)∩f−1(V ). We conclude that f−1(C)

is irreducible.

2. We now assume that Im f is closed. By Lemma 4.3, every irreducible

closed subset D of Y must be of the form f−1(C), where C
def
= cl(f [D]) is

irreducible closed in Z. Since f [D] ⊆ Im f and Im f is closed, cl(f [D]) is

also included in Im f , so C is included in the image of f .

In the converse direction, let C be irreducible closed in Z, and let us

assume that C ⊆ Im f . Since C is non-empty, f−1(C) is non-empty. Let us

now consider two closed subsets of Y whose union contains f−1(C). Since f

is initial, they must be of the form f−1(C1) and f−1(C1), where C1 and C2

are closed in Z. For every z ∈ C, we can write z as f(y) for some y ∈ Y since

C ⊆ Im f . Then y is in f−1(C), hence in f−1(C1) or in f−1(C2). It follows

that z is in C1 or in C2. This shows that C is included in C1 ∪ C2, hence

in C1 or in C2, using irreducibility. In the first case, f−1(C) is included in

f−1(C1), otherwise in f−1(C2). We conclude that f−1(C) is irreducible. �
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5. Infinite words

Let X be an alphabet, by which we simply mean a topological space, not

necessarily finite. An infinite word on X is an infinite sequence of elements

of X, i.e., a function from N to X. We let Xω denote the set of all infinite

words on X. We write every w ∈ Xω as w0w1 · · ·wn · · · , where wn ∈ X. We

also write w<n for the length n prefix w0w1 · · ·wn−1 of w, and w≥n for the

remainder wnwn+1 · · · .
We will also consider the set of finite-or-infinite words X≤ω

def
= Xω ∪X∗.

Those can be defined as the functions w from an initial segment domw of

N to X.

There is a standard quasi-ordering ≤ω on X≤ω, defined by w ≤ω w′ if

and only if w is a subword of w′, namely if there is a monotonic, injective

map f : domw → domw′ such that wn ≤ w′f(n) for every n ∈ domw. (As

usual, ≤ is the specialization preordering of X.)

The topology we will be interested in is the following. We reuse the nota-

tion 〈U1;U2; · · · ;Un〉 to denote the set of finite or infinite words that have a

(finite) subword in U1U2 · · ·Un. The context should make clear whether we

reason in X∗ or in X≤ω. The notation 〈U1;U2; · · · ;Un; (∞)U〉 denotes the

set of (necessarily infinite) words that can be written as a concatenation uw

where u is a finite word in 〈U1;U2; · · · ;Un〉 and w contains infinitely many

letters from U .

Definition 5.1. The asymptotic subword topology on X≤ω is generated by

the subbasic open sets 〈U1;U2; · · · ;Un〉 and 〈U1;U2; · · · ;Un; (∞)U〉, where

n ∈ N, and U1, . . . , Un, U are open in X.

Note that Xω is an open subset of X≤ω, since Xω = 〈(∞)X〉. It follows

that X∗ occurs as a closed subset of X≤ω.

We equip each subspace of X≤ω with the subspace topology. In particu-

lar, we will call asymptotic subword topology on Xω the subspace topology.

The subspace topology on X∗ happens to coincide with the word topology.

Fact 5.2. Every open (resp., closed) subset of X≤ω in the asymptotic sub-

word topology is upwards-closed (resp., downwards-closed) with respect to

≤ω. �

We will now show that, if X is Noetherian, then the asymptotic subword

topology is the join of two simpler topologies, the prefix and the suffix

topology. (The join of two topologies is the coarsest topology that is finer

than both. It has a base of open sets of the form U1 ∩U2, where U1 is open

in the first topology and U2 is open in the other one.)
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5.1. The prefix topology. For every w ∈ X≤ω, the set pref(w)
def
= cl({w<n |

n ∈ domw}) is irreducible in X∗: if U1 and U2 are two open subsets of X∗

that intersect pref(w), then w<m ∈ U1 and w<n ∈ U2 for some m,n ∈ domw;

since all open subsets of X∗ are upwards-closed in ≤∗, w<max(m,n) is both in

U1 and in U2, showing that pref(w) intersects U1 ∩ U2.

Definition 5.3. The prefix map pref : X≤ω → S(X∗) is defined by pref(w)
def
=

cl({w<n | n ∈ domw}) for every w ∈ X≤ω.

The prefix topology on X≤ω is the coarsest that makes pref continuous.

In other words, a subbase of the prefix topology is given by sets of the

form pref−1(�U), where U is open in X∗.

Remark 5.4. Let us take X Noetherian. Since pref(w) is in S(X∗), one

must be able to write it as a word product. The closed subsets Fn
def
= cl({wm |

m ∈ domw,m ≥ n}), n ∈ N, form a descending sequence, so there is an

index n0 such that for every n ≥ n0, Fn = Fn0 . Although we will not

use it, one can show that pref(w) = (↓w0)
?(↓w1)

? · · · (↓wn−1)?F ∗n for every

n ≥ n0. We leave this as an exercise to the reader. As a hint, first, show

that the right-hand side C def
= (↓w0)

?(↓w1)
? · · · (↓wn−1)?F ∗n does not depend

on n ≥ n0. Second, show that w<n ∈ C for every n ∈ N, and deduce

that pref(w) ⊆ C. In the reverse direction, consider any basic open set

U def
= 〈U1;U2; · · · ;Uk〉 that intersects C, say at u

def
= u0a1u1a2u2 · · ·uk−1akuk,

where each ui is in X∗, each ai is in Ui. By picking n larger than the length

of u in the definition of C, observe that a1a2 · · · ak is a subword of w<n, and

conclude that U intersects pref(w) at w<n.

For the next lemma, we recall that the sets of the form 〈U1;U2; · · · ;Un〉,
where each Ui is open in X, form a base, not just a subbase of the asymptotic

subword topology on X∗.

Lemma 5.5. The prefix map pref is continuous from X≤ω with its asymp-

totic subword topology to S(X∗). A base of the prefix topology is given by

the sets 〈U1;U2; · · · ;Un〉, where U1, . . . , Un are open in X.

The prefix topology is coarser than the asymptotic subword topology.

Proof. Every open subset of X∗ is a union of basic open subsets of the form

〈U1;U2; · · · ;Un〉 where each Ui is open in X. In order to show that pref is

continuous, since � commutes with arbitrary unions, it is enough to show

that pref−1(�(〈U1;U2; · · · ;Un〉)) is open in the asymptotic subword topol-

ogy. That is the set of finite or infinite words w such that cl({w<m | m ∈
domw}) intersects the open set 〈U1;U2; · · · ;Un〉; equivalently, such that
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some prefix w<m belongs to 〈U1;U2; · · · ;Un〉. The set pref−1(�(〈U1;U2; · · · ;Un〉))
is therefore equal to the open subset 〈U1;U2; · · · ;Un〉 of X≤ω.

This also shows that the sets 〈U1;U2; · · · ;Un〉 = pref−1(�(〈U1;U2; · · · ;Un〉))
form a subbase of the prefix topology.

Since pref−1 and � commute with finite intersections, since the sets

〈U1;U2; · · · ;Un〉 form a base of the topology on X∗, every finite intersec-

tion U of sets of the form pref−1(�(〈U1;U2; · · · ;Un〉)) can be written as

pref−1(�U) where U is a union of basic open sets of X∗. Since pref−1 and

� commute with all unions, U is also a union of subbasic open sets of the

form 〈U1;U2; · · · ;Un〉. This shows that the given subbase is a base.

The final claim is an immediate consequence of the first one. �

5.2. The suffix topology. In any complete lattice L, the limit superior

of a sequence (un)n∈N is lim supn∈N un =
∧
n∈N

∨
m≥n um. We will use that

notion in lattices of closed sets. Then lim supn∈NCn =
⋂
n∈N cl(

⋃
m≥nCm),

where cl is closure. On a Noetherian space, descending families of closed sets

are stationary, so lim supn∈NCn = cl(
⋃
m≥nCm) for large enough n. (The

quantifier “for large enough n” means “for some n0, for every n ≥ n0”.)

Let the suffix map suf : X≤ω → H(X) be defined by:

suf(w)
def
= lim sup

n∈N
↓{wm | m ∈ domw,m ≥ n}

=
⋂
n∈N

cl({wm | m ∈ domw,m ≥ n}).

Note that suf(w) is empty for every finite word w. When X is Noetherian

(or more generally, compact), this is an equivalence: suf(w) = ∅ if and only

if w ∈ X∗.
The suffix topology on X≤ω is the coarsest that makes suf continuous.

Lemma 5.6. Let X be a Noetherian space. The suffix map suf is continuous

from X≤ω with its asymptotic subword topology to H(X). A subbase of the

suffix topology is given by the sets 〈(∞)U〉, U open in X.

The suffix topology is coarser than the asymptotic subword topology.

Proof. A subbase of the suffix topology is given by the sets suf−1(3U),

U open in X. We claim that suf−1(3U) = 〈(∞)U〉. This readily implies

the first and the second claim, and the third one will be an immediate

consequence.

Let w ∈ X≤ω, and let n0 be such that lim supn∈N ↓{wm | m ∈ domw,m ≥
n} = cl({wm | m ∈ domw,m ≥ n}) for every n ≥ n0. If w ∈ suf−1(3U),

then for every n ≥ n0, cl({wm | m ∈ domw,m ≥ n}) intersects U , so wm ∈
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U for some m ∈ domw such that m ≥ n. Hence w ∈ 〈(∞)U〉. Conversely,

if w ∈ 〈(∞)U〉, then domw = N and there are infinitely many positions

n ≥ n0 where wn is in U . Take one. Then cl({wm | m ∈ domw,m ≥ n0})
intersects U at wn, showing that w is in suf−1(3U). �

Proposition 5.7. Let X be a Noetherian space. The asymptotic subword

topology on X is the join of the prefix and the suffix topologies. The function

〈pref, suf〉 : X≤ω → S(X∗)×H(X) that maps w to (pref(w), suf(w)) is initial.

Proof. The asymptotic subword topology is finer than both the prefix and

the suffix topologies, by Lemma 5.5 and Lemma 5.6. Conversely, every sub-

basic open set 〈U1;U2; · · · ;Uk〉 is prefix-open, and every subbasic open set

〈U1;U2; · · · ;Uk; (∞)U〉 is the intersection of the prefix-open set 〈U1;U2;

· · · ;Uk〉 with the suffix-open set 〈(∞)U〉.
By the first part of the lemma, the asymptotic subword topology on X≤ω

is the coarsest that makes both pref and suf continuous, hence the coarsest

that makes 〈pref, suf〉 continuous. It follows that 〈pref, suf〉 is initial. �

Property (A) follows:

Theorem 5.8. For every space X, X≤ω (with the asymptotic subword topol-

ogy) is Noetherian if and only if X is Noetherian. Similarly with Xω.

Proof. If X is Noetherian, then so are X∗, S(X∗), H(X) and their product

S(X∗) × H(X), as we have already seen in Section 2 and Section 3. Since

f
def
= 〈pref, suf〉 is initial (Proposition 5.7), Lemma 4.2 ensures that X≤ω and

its subspace Xω are Noetherian in the asymptotic subword topology.

In the converse direction, we use the following argument, which works

in both the X≤ω and Xω cases. Let g be the function that maps every

x ∈ X to the infinite word xω
def
= xx · · · x · · · (in X≤ω, resp., Xω). This is

continuous since g−1(〈U1;U2; · · · ;Uk〉) = U1∩U2∩ · · ·∩Uk and g−1(〈U1;U2;

· · · ;Uk; (∞)U〉) = U1 ∩ U2 ∩ · · · ∩ Uk ∩ U . With k
def
= 0, we also obtain that

every open subset U of X is obtained as g−1(〈(∞)U〉), so g is initial. By

Lemma 4.2, if X≤ω (resp., Xω) is Noetherian, then so is X. �

From now on, and unless noted otherwise, we understand X≤ω (and Xω)

with the asymptotic subword topology.

5.3. A few useful auxiliary results. We pause for a moment, and estab-

lish two useful results.

Proposition 5.9. The concatenation map cat : X∗ ×X≤ω → X≤ω is con-

tinuous.
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Proof. Let (u,w) be any point in cat−1(W ), where W = 〈U1;U2; · · · ;Uk〉
(resp., W = 〈U1;U2; · · · ;Uk; (∞)U〉), where U1, . . . , Uk, and U are open in

X. There is an index j, 0 ≤ j ≤ k such that u is in 〈U1;U2; · · · ;Uj〉, and w

is in 〈Uj+1; · · · ;Uk〉 (resp., 〈Uj+1; · · · ;Uk; (∞)U〉) Then 〈U1;U2; · · · ;Uj〉 ×
〈Uj+1; · · · ;Uk〉 (resp., 〈U1;U2; · · · ;Uj〉 × 〈Uj+1; · · · ;Uk; (∞)U〉) is an open

neighborhood of (u,w) that is included in cat−1(W ). �

The sets 〈U1;U2; · · · ;Uk〉 and 〈U1;U2; · · · ;Uk; (∞)U〉 only form a sub-

base of Xω. We obtain a base as follows. 〈U1;U2; · · · ;Uk; (∞)V1 ∩ · · · ∩
· · · (∞)V`〉 denotes the set of finite-or-infinite words that contain letters

from U1, U2, . . . , Uk in that order, followed by a suffix that contains con-

tains infinitely many letters from V1, and also infinitely many from V2, . . . ,

and infinitely many from V`. We allow ` to be equal to 0; if ` 6= 0, then that

set only contains infinite words.

Lemma 5.10. Let X be a Noetherian space. A base of the asymptotic sub-

word topology on X≤ω is given by the subsets 〈U1;U2; · · · ;Uk; (∞)V1 ∩ · · · ∩
· · · (∞)V`〉 where U1, . . . , Un, V1, . . . , V` are open in X.

Proof. As a consequence of Proposition 5.7, a base is given by intersections

of one element 〈U1;U2; · · · ;Uk〉 of the base of the prefix topology given in

Lemma 5.5, and of one element of a base of the suffix topology. For the

latter, one can take finite intersections 〈(∞)V1〉 ∩ · · · ∩ 〈(∞)V`〉 = 〈(∞)V1 ∩
· · · ∩ (∞)V`〉. �

5.4. The sobrification of X≤ω. We extend the notion of word product

to finite-or-infinite word products : ω-regular expressions of the form PF≤ω,

where P is a word product and F is a closed subset of X. PF≤ω denotes the

sets of finite or infinite words that are obtained as the concatenation of a

finite word in P with a finite-or-infinite word whose letters are all in F . We

also write PF ω for PF≤ω ∩Xω: this is the set of infinite words obtained as

the concatenation of a finite word in P with an infinite word whose letters

are all in F . This is empty if F is empty. We call infinite word products the

expressions PF ω where P is a word product and F is a non-empty closed

subset of X.

Proposition 5.11. Let X be a Noetherian space. Every irreducible closed

subset of X≤ω is an finite-or-infinite word product.

Proof. LetD be an irreducible closed subset ofX≤ω. The map f
def
= 〈pref, suf〉

is initial by Proposition 5.7. We can therefore apply Lemma 4.3 to f , and

we obtain that D is the inverse image of some irreducible closed subset of
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S(X∗)×H(X) by f . Since the latter space is already sober (H(X) is sober

by Lemma 3.1, or by [13, Proposition 1.7]), an irreducible subset is just the

downward closure of a point (P, F ) of S(X∗) × H(X). Here P must be a

word product A1A2 · · ·AN , and F must be a closed subset of X.

Hence D is the set of words w ∈ X≤ω such that pref(w) ⊆ P and

suf(w) ⊆ F , that is, such that all the finite prefixes of w are in P and the

letters wn are in F for n ∈ domw large enough. There may be different

choices of the pair (P, F ), and we choose one such that the number N of

atoms in P is minimal, and such that given that N , F is minimal with

respect to inclusion. This is possible since X is Noetherian.

If F is empty, then D is the set of finite words w such that pref(w) ⊆ P ,

or equivalently such that every prefix of w is in P . Therefore D = P , and

that can also be written as PF≤ω, since F = ∅. Henceforth let us assume

that F is non-empty.

We note that: (∗) D is not included in X∗. Indeed, otherwise, for every

w ∈ D, w would be finite, so suf(w) would be empty. It would follow that D

would be included in f−1(↓(P, ∅)), and that would contradict the minimality

of F .

Let us write P as a product A1A2 · · ·AN of atoms, with N minimal.

Since ∅∗ = {ε}, we may simply erase all atoms of the form A∗ with A

empty: since N is minimal, no Ai is of the form ∅∗. We claim that N ≥ 1

and that AN is of the form F ′∗ for some (necessarily non-empty) closed set

F ′. We cannot have N = 0, since that would imply that for every w ∈ D,

pref(w) = {ε}, hence that D = {ε}; this is impossible since suf({ε}) = ∅,
contradicting the fact that F is non-empty. Hence let us write P as P ′AN .

We now assume that AN is of the form C? with C irreducible closed, and

we aim for a contradiction. For every infinite word w ∈ D, we note that

pref(w) is included in P ′: for every finite prefix w<n of w, the finite prefix

w<n+1 = w<nwn is in pref(w), hence in P = P ′C?, and that implies that

w<n is in P ′; since n is arbitrary, {w<n | n ∈ domw} is included in P ′, and

therefore pref(w) ⊆ P ′, since P ′ is closed. Hence every infinite word in D is

included in pref−1(P ′). Alternatively, D is included in the union of the set

X∗ of finite words and of pref−1(P ′). Since D is irreducible, and both X∗

and pref−1(P ′) are closed (the latter by Lemma 5.5), D must be included in

one of them. By (∗), D is not included in X∗, so D is included in pref−1(P ′).

It follows that D is the set of words w ∈ X≤ω such that pref(w) ⊆ P ′ (not

just P ) and suf(w) ⊆ F , and this contradicts the minimality of N .
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We have shown that P is of the form P ′F ′∗ for some non-empty closed

subset F ′ of X. We now claim that F must be included in F ′. For every

infinite word w in D, pref(w) ⊆ P , so every finite prefix of w is in P . Then,

either every finite prefix of w is in P ′—in which case pref(w) ⊆ P ′—or there

is a largest n0 ∈ N such that w<n0 is in P ′. In the latter case, every letter

wn with n ≥ n0 must be in F ′. For n1 large enough, suf(w) = cl({wm |
m ≥ n1}. By picking n1 larger than n0, every letter wn with n ≥ n1 is

also in F . Hence wn is in F ∩ F ′ for every n ≥ n1, from which we deduce

that suf(w) ⊆ F ∩ F ′. We have shown that every infinite word w in D is

in pref−1(↓P ′) ∪ suf−1(↓(F ∩ F ′)), or equivalently, that D is included in

the union of X∗, pref−1(↓P ′), and suf−1(↓(F ∩ F ′)). Those three sets are

closed, using Lemma 5.5 in the case of the second one, and Lemma 5.6 for

the third one. Since D is irreducible, it must be included in one of them.

It is not included in X∗ by (∗). It is not included in pref−1(↓P ′), otherwise

D would be included in f−1(↓(P ′, F )), contradicting the minimality of N .

Therefore D is included in suf−1(↓(F ∩F ′)). This entails that D is included

in f−1(↓(P, F ∩ F ′)). Since F is minimal, F = F ∩ F ′, hence F is included

in F ′.

Now that we know that D = f−1(↓(P ′F ′∗, F )) with F ⊆ F ′, we verify

that D = P ′F ′∗F≤ω. For every w ∈ D, suf(w) ⊆ F so there is an index

n0 such that, for every n ∈ domw with n ≥ n0, wn is in F . If w is a

finite word, we may take n0 equal to one plus the length of w. Whatever

the case, w≥n is in F≤ω. Since pref(w) ⊆ P ′F ′∗, w<n is in P ′F ′∗, so w is

in P ′F ′∗F≤ω. Conversely, let w ∈ P ′F ′∗F≤ω. If w is finite, then it is in

P ′F ′∗F ∗ ⊆ P ′F ′∗ (since F ⊆ F ′), so pref(w) ⊆ P ′F ′∗; also, suf(w) = ∅ ⊆ F ,

so w is in f−1(↓(P ′F ′∗, F )) = D. Hence let us assume that w is infinite.

There is an n0 ∈ N such that w<n0 ∈ P ′F ′
∗ and wn ∈ F for every n ≥ n0.

In particular, suf(w) is included in cl({wn | n ∈ domw, n ≥ n0}), hence in

F . For every finite prefix w<n of w, either n ≤ n0, in which case w<n is a

subword of w<n0 hence is in P ′F ′∗, or n > n0, in which case we can write

w<n as w<n0w
′ where w′ ∈ F ∗. Since F ⊆ F ′, w<n is then again in P ′F ′∗.

It follows that pref(w) ⊆ P ′F ′∗, hence that f(w) ∈ ↓(P ′F ′∗, F ), so w is in

D. �

The last part of the previous proof shows the useful fact that for every

word product P , for all closed subsets F and F ′ of X such that F ⊆ F ′,

PF ′∗F≤ω = 〈pref, suf〉−1(↓(PF ′∗, F )). When F = F ′, and since PF ∗F≤ω =

PF≤ω (resp., PF ω = PF≤ω ∩Xω), we obtain:
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Fact 5.12. Let X be a Noetherian space. For every word product P , for

every closed subset F of X, PF≤ω = 〈pref, suf〉−1(↓(PF ∗, F )). In particular,

every finite-or-infinite word product PF≤ω is closed in X≤ω (resp., every

infinite word product PF ω is closed in Xω). �

Recall that we have required the closed set F to be non-empty in infinite

products PF ω. This is unimportant in Fact 5.12, since P∅ω = ∅ is closed

anyway, but it matters in the following.

Theorem 5.13. Let X be a Noetherian space. The irreducible closed subsets

of X≤ω (resp., Xω) are the finite-or-infinite word products (resp., the infinite

word products).

Proof. We deal with X≤ω first. Considering Proposition 5.11 and Fact 5.12,

it remains to show that every finite-or-infinite word product PF≤ω is irre-

ducible (where P is a word product, and F is closed in X).

We start by showing that F≤ω is irreducible in X≤ω. It is more, namely

it is directed, with respect to the quasi-ordering ≤ω. In other words, we show

that F≤ω is is non-empty (which is clear, since it contains the empty word

ε), and that any two elements w1 and w2 of F≤ω have an upper bound in

F≤ω with respect to ≤ω. For that upper bound, we can simply take: the

concatenation w1w2 if w1 is finite (or w2w1 if w2 is finite), and the one-for-

one interleaving of w1 and w2 if both are infinite (i.e., the letters at even

positions are those from w1, the letters at odd positions are those from w2).

Every set that is directed with respect to ≤ω is irreducible: if it intersects

two open sets U1 (say at w1) and U2 (say at w2) then it intersects U1∩U2 (at

the chosen upper bound of w1 and w2 in the directed set), using Fact 5.2.

Given any word product P , we know that P is irreducible closed in X∗,

so P × F≤ω is irreducible closed in X∗ × X≤ω. Then, using the fact that

cat is continuous (Proposition 5.9), cl(cat[P × F≤ω]) is irreducible closed.

(Recall from Section 2 that cl(f [C]) = S(f)(C) is irreducible closed for

every irreducible closed subset C and every continuous map f .) Evidently,

cat[P × F≤ω] = PF≤ω, and cl(PF≤ω) = PF≤ω by Fact 5.12, so PF≤ω is

irreducible closed in X≤ω.

In the case of Xω, the inclusion map i of Xω into X≤ω is a topolog-

ical embedding (hence initial), and its image Xω = 〈(∞)X〉 is open. By

Lemma 4.4, item 1, the irreducible closed subsets of Xω are the sets of the

form i−1(PF≤ω) = PF≤ω∩Xω (P word product, F closed) such that PF≤ω

intersects Xω. Those are the sets of the form PF ω where, additionally, F is

non-empty. �
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5.5. The specialization preordering on X≤ω and Property (B). Our

first step in characterizing the specialization preordering on X≤ω is to char-

acterize the downward closure, equivalently, the closure, of its points.

Lemma 5.14. Let X be a Noetherian space. Given a fixed word w ∈ X≤ω,

let n0 be such that suf(w) = cl({wm | m ∈ domw,m ≥ n}) for every n ≥ n0.

For every n ≥ n0:

(1) the closure of w in X≤ω is (↓w0)
?(↓w1)

? · · · (↓wn−1)?(suf(w))≤ω;

(2) if w ∈ Xω, then its closure in Xω is (↓w0)
?(↓w1)

? · · · (↓wn−1)?(suf(w))ω.

Proof. Let P
def
= (↓w0)

?(↓w1)
? · · · (↓wn−1)?, F

def
= suf(w), and C

def
= PF≤ω.

1. C certainly contains w, and is closed by Fact 5.12, so cl({w}) ⊆ C.

(We write cl for closure in X≤ω here.)

We turn to the converse implication. Since cl({w}) is irreducible closed

(the closures of points are always irreducible closed), it must be a finite-or-

infinite word product P ′F ′≤ω by Theorem 5.13. P ′F ′≤ω is equal to 〈pref, suf〉−1(↓(P ′F ′∗, F ′))
by Fact 5.12. Since w is in its closure P ′F ′≤ω, pref(w) is included in P ′F ′∗

and suf(w) is included in F ′. The latter means that F ⊆ F ′. Using the

former, we claim that PF ∗ ⊆ P ′F ′∗. Since F ⊆ F ′, it is equivalent to show

that P ⊆ P ′F ′∗. That is obvious, since every element of P is a subword

of w<n, hence a subword of a finite prefix of w, hence belongs to pref(w),

which is included in P ′F ′∗.

Now that PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′, C = 〈pref, suf〉−1(↓(PF ∗, F ))

(Fact 5.12) is included in 〈pref, suf〉−1(↓(P ′F ′∗, F ′)) = cl({w}).
2. The closure of w in Xω is cl({w}) ∩Xω = PF≤ω ∩Xω = PF ω. �

Lemma 5.14 yields a description of the specialization preordering of X≤ω

and of Xω, since w′ is below w in that ordering if and only if w′ is in the

closure of w. That is far from explicit.

We can improve on that situation when X is a wqo, obtaining an ana-

logue of Property (B) for X≤ω and Xω.

Lemma 5.15. If X is a wqo, then for every w ∈ X≤ω, suf(w) is the

set of letters that are below infinitely many letters from w, and is equal

to
⋃
m∈domw,m≥n ↓wm for n large enough.

Proof. If w is finite, then suf(w) is empty, and the claim is clear. Let us

assume that w is an infinite word. Since X is a wqo, for every n ∈ N,

cl({wm | m ≥ n}) is equal to ↓{wm | m ≥ n} =
⋃
m≥n ↓wm. Hence suf(w) =⋂

n∈N
⋃
m≥n ↓wm is the set of letters that are below infinitely many letters

from w. Since suf(w) = ↓{wm | m ≥ n} for n large enough, it is also equal

to
⋃
m≥n ↓wm for n large enough. �
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Proposition 5.16. If X is a wqo, then the specialization preordering on

X≤ω is the subword preordering ≤ω.

Proof. Let us fix w ∈ X≤ω. It suffices to show that the closure of w is exactly

the set of finite-or-infinite subwords of w. By Fact 5.2, every subword of w

is in the closure of w. Conversely, let w′ be any element of the closure of

w. Using Lemma 5.14 and Lemma 5.15, there is a natural number n0 such

that, for every n ≥ n0, suf(w) =
⋃
m∈domw,m≥n ↓wm, and then w′ is in

(↓w0)
?(↓w1)

? · · · (↓wn−1)?(suf(w))≤ω.

We first use this formula for suf(w) with n
def
= n0. Then w′ = us where

u is in (↓w0)
?(↓w1)

? · · · (↓wn0−1)
?, hence is a subword of w<n0 , and s is in

(suf(w))≤ω. The latter means that s is an (infinite) word whose letters are all

in suf(w). We claim that s is a subword of w≥n0 , namely that there is a mono-

tonic injective map f : dom s → domw≥n0 such that si ≤ w≥n0(f(i)) =

wf(i)+n0 for every i ∈ dom s. We define f(i) by induction on i ∈ dom s as

follows. If i = 0 is in dom s, then s0 is in suf(w). Using the formula for

suf(w) with n
def
= n0, s0 is in ↓wm for some m ≥ n0. We define f(0) as

m − n0. For every non-zero i ∈ dom s, and remembering that f(i − 1) is

already defined by induction hypothesis, we use the formula for suf(w) with

n
def
= f(i− 1) +n0 + 1. Then si+1 is in ↓wm for some m > f(i− 1) +n0, and

we let f(i) be m− n0, so that f(i) > f(i− 1) and si ≤ wf(i)+n0 .

This establishes that s is a subword of w≥n0 . It follows that w′ = us is a

subword of w<n0w≥n0 = w. �

5.6. Property (C). We now investigate when X≤ω and Xω are themselves

wqos. In particular, this means when their topology is Alexandroff. As with

powersets, this is a different question from asking when ≤ω is a well-quasi-

ordering onXω, which is equivalent to≤ being an ω2-wqo. (That equivalence

is the special case α = ω2 of Theorem 2.8 of [10], paying attention that

what Marcone calls α-wqo is what we call ωα-wqo—some authors also use

the term ωα-bqo.)

Proposition 5.17. If X is essentially finite, then the asymptotic subword

topology on X≤ω (resp., Xω) is the Alexandroff topology of ≤ω.

Proof. We only deal with X≤ω. The case of Xω will follow, because the

subspace topology of a space with the Alexandroff topology of a preordering

� is the Alexandroff topology of the restriction of � to the subspace.

Considering Proposition 5.16, it suffices to show that every upwards-

closed subset of X≤ω, with respect to ≤ω, is open in the asymptotic subword

topology. To that end, it suffices to show that the upward closure ↑ω w of
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any w ∈ X≤ω with respect to ≤ω is open, since every upwards-closed set is

a union of such upward closures.

If w is finite, then ↑ω w = 〈↑w0; ↑w1; · · · ; ↑wn−1〉 where n is the length

of w. Note that each set ↑wi is open in X, because the topology of an

essentially finite space is always Alexandroff.

Let us assume w infinite. Since X is essentially finite, there are only

finitely many distinct sets of the form ↑wn, n ∈ N. Some of them occur at

only finitely many positions n in w: let n0 be any index exceeding all those

positions. Then every ↑wn, n ≥ n0, is also equal to ↑wm for infinitely many

indices m ≥ n0. Let {V1, · · · , V`} be the (finite, non-empty) set {↑wn | n ≥
n0}, and let U

def
= 〈↑w0; ↑w1; · · · ; ↑wn0−1; (∞)V1∩· · ·∩(∞)V`〉. This is open

in the asymptotic subword topology. U contains w, by construction. Using

Fact 5.2, ↑ω w is entirely included in U . Conversely, let w′ be any element

of U . Then w′ = us where u is a finite word that contains a letter above w0,

a later letter above w1, . . . , and a letter above wn0−1, and s ∈ Xω contains

infinitely many letters from each of V1, . . . , V`—in other words, for every

n ≥ n0, s contains infinitely many letters above wn. Hence s contains a

letter above wn0 , then a later letter above wn0+1, etc., so w≥n0 ≤ω s. It

follows that w ≤ω w′. Therefore U ⊆ ↑ω w, whence equality follows. �

Proposition 5.18. Let X be a Noetherian space. The asymptotic subword

topology on X≤ω (resp., Xω) is Alexandroff if and only if X is essentially

finite.

Proof. One direction is by Proposition 5.17. In the converse direction, we

assume that Xω is Alexandroff, and we wish to show that X is essentially

finite. The case of X≤ω reduces to that case: if X≤ω is Alexandroff, so is it

subspace Xω.

Let C0 ( C1 ( · · · ( Cn ( · · · be a strictly ascending sequence of closed

subsets of X, and let xn be a point of Cn+1 rCn for every n ∈ N. For each

n ∈ N, Cω
n is closed in Xω, by Theorem 5.13. Let C def

=
⋃
n∈NC

ω
n : since the

topology of Xω is Alexandroff, this is again closed.

Note that w
def
= x0x1 · · · xn · · · is in no Cω

n , hence not in C. By Lemma 5.10,

there is a basic open subset W
def
= 〈U1;U2; · · · ;Uk; (∞)V1 ∩ · · · ∩ (∞)V`〉 of

Xω that contains w and is disjoint from C. Since it contains w, we can

write w as w<n0w≥n0 where w<n0 ∈ 〈U1;U2; · · · ;Uk〉 and w≥n0 contains in-

finitely many letters from each of V1, . . . , V`. Let us pick one letter xn1

from w≥n0 in V1, . . . , one letter xn`
from w≥n0 in V`. Then the infinite word

w<n0(xn1 · · ·xn`
)ω is in W , but it is also in Cω

n+1, where n is any natural
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number exceeding max(n0, n1, · · · , n`). In particular, W intersects C, which

is impossible.

We conclude that there cannot be any infinite strictly ascending sequence

of closed subsets of X. By Lemma 3.3, X must be essentially finite. �

5.7. An S-representation on X≤ω and on Xω, and Property (D).

Testing inclusion of finite-or-infinite word products is as easy as testing

inclusion of finite word products.

Lemma 5.19. Let X be a Noetherian space.

(1) For all finite-or-infinite word products PF≤ω and P ′F ′≤ω, PF≤ω ⊆
P ′F ′≤ω if and only if PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′.

(2) For all infinite word products PF ω and P ′F ′ω, PF ω ⊆ P ′F ′ω if and

only if PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′.

Recall that F and F ′ are required to be non-empty in infinite word

products, not in finite-or-infinite word products.

Proof. We first show: (i) If F is non-empty, then PF ω ⊆ P ′F ′ω implies

PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′. Henceforth, let us assume PF ω ⊆ P ′F ′ω. We

first show that F is included in F ′. Since F is non-empty, we can pick an

element x from F . Note that the empty word ε is in P . Hence xω (= εxω)

is in PF ω, and therefore in P ′F ′ω. This means that we can write xω as uv

where u ∈ P ′ and v ∈ F ′ω; the latter, together with the fact that v = xω,

implies x ∈ F ′. It follows that F ⊆ F ′. We now claim that PF ∗ ⊆ P ′F ′∗.

Let us pick any finite word w from PF ∗. The infinite word wxω is in PF ω,

hence in P ′F ′ω. It follows that wxω is of the form uv where u ∈ P ′ and

v ∈ F ′ω. If u is a prefix of w, then w is equal to the concatenation of u with

a prefix of v, hence is in P ′F ′∗. Otherwise, w is a prefix of u. Since u is in

P ′, it is also in P ′F ′∗, and since the latter is closed under ≤∗, w is also in

P ′F ′∗.

We deduce: (ii) PF≤ω ⊆ P ′F ′≤ω implies PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′. If

F is non-empty, then since PF ω = PF≤ω ∩ Xω ⊆ P ′F ′≤ω ∩ Xω = P ′F ′ω,

we can use (i) and conclude. Otherwise, since F = ∅, PF≤ω = P , so P is

included in P ′F ′≤ω. Since all the elements of P are finite words, P is in fact

included in P ′F ′≤ω ∩X∗ = P ′F ′∗. The inequality F ⊆ F ′ is trivial.

In the converse direction, we have: (iii) if PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′,

then PF≤ω ⊆ P ′F ′≤ω. Indeed:

PF≤ω = 〈pref, suf〉−1(↓(PF ∗, F )) (Fact 5.12)

⊆ 〈pref, suf〉−1(↓(P ′F ′∗, F ′)) = P ′F ′
≤ω
.
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Finally: (iv) if PF ∗ ⊆ P ′F ′∗ and F ⊆ F ′, then PF ω ⊆ P ′F ′ω. This follows

from (iii) by taking intersections with Xω.

Item 1 follows from (ii) and (iii). Item 2 follows from (i) and (iv). �

Computing intersections of infinite word products also reduces to the

case of finite word products, as we will see in Lemma 5.21 below. We notice

the following. The point if that Fi is the same for every i.

Lemma 5.20. Let X be a Noetherian space. For all finite word products P ,

P ′, for all closed subsets F , F ′ of X, PF ∗ ∩P ′F ′∗ is a finite union of word

products PiF
∗
i where Fi = F ∩ F ′ for every i.

Proof. Since X∗ is Noetherian, PF ∗ ∩ P ′F ′∗ is a finite union
⋃n
i=1 Pi where

each Pi is a word product. For every i, 1 ≤ i ≤ n, for every w ∈ Pi, for every

w′ ∈ (F∩F ′)∗, ww′ is in PF ∗(F∩F ′)∗ ⊆ PF ∗ and in P ′F ′∗(F∩F ′)∗ ⊆ P ′F ′∗,

hence in PF ∗ ∩ P ′F ′∗, and therefore in some Pj, 1 ≤ j ≤ n. It follows that⋃n
i=1 Pi(F ∩ F ′)∗ ⊆

⋃n
i=1 Pi. The converse inclusion is obvious. �

Lemma 5.21. Let X be a Noetherian space. Given any two finite-or-infinite

word products PF≤ω and P ′F ′≤ω, one can write PF ∗ ∩ P ′F ′∗ as a finite

union of finite word products of the form Pi(F ∩ F ′)∗, 1 ≤ i ≤ n, and then

PF≤ω ∩ P ′F ′≤ω =
⋃n
i=1 Pi(F ∩ F ′)≤ω.

Proof. The fact that PF ∗ ∩ P ′F ′∗ can be written as a finite union of finite

word products of the form Pi(F ∩ F ′)∗, 1 ≤ i ≤ n, is by Lemma 5.20.

Let F def
= {C ∈ S(X∗) | C ⊆ PF ∗ ∩ P ′F ′∗}. We claim that F =⋃n

i=1 ↓S(X∗)(Pi(F ∩F ′)∗). For every C ∈ F , C is included in PF ∗ ∩P ′F ′∗ =⋃n
i=1 Pi(F ∩ F ′)∗, hence in some Pi(F ∩ F ′)∗ because C is irreducible.

Hence C is also in
⋃n
i=1 ↓S(X∗)(Pi(F ∩ F ′)∗). Conversely, every element

C of
⋃n
i=1 ↓S(X∗)(Pi(F ∩ F ′)∗) is included in some Pi(F ∩ F ′)∗, hence in

PF ∗ ∩ P ′F ′∗.
Then ↓(PF ∗, F ) ∩ ↓(P ′F ′∗, F ′) = F × ↓H(X)(F ∩ F ′), so:

PF≤ω ∩ P ′F ′≤ω = 〈pref, suf〉−1(↓(PF ∗, F )) ∩ 〈pref, suf〉−1(↓(P ′F ′∗, F ′))

by Fact 5.12

= 〈pref, suf〉−1(F × ↓H(X)(F ∩ F ′)))

= 〈pref, suf〉−1(
n⋃
i=1

↓(Pi(F ∩ F ′)∗, F ∩ F ′))

=
n⋃
i=1

Pi(F ∩ F ′)≤ω,

by Fact 5.12 again. �
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We have a similar result for infinite words. We only have to pay attention

that Pi(F ∩ F ′)∗ is an infinite word product (an irreducible closed set) if

and only if F ∩ F ′ is non-empty.

Lemma 5.22. Let X be a Noetherian space. Given any two infinite word

products PF ω and P ′F ′ω,

• either F ∩ F ′ is empty and PF ω ∩ P ′F ′ω = ∅;
• or F ∩ F ′ is non-empty, and one can write PF ∗ ∩ P ′F ′∗ as a finite

union of finite word products of the form Pi(F ∩ F ′)∗, 1 ≤ i ≤ n; in

that case, PF ω ∩ P ′F ′ω =
⋃n
i=1 Pi(F ∩ F ′)ω.

Proof. If F ∩F ′ is empty, then it is clear that PF ω ∩P ′F ′ω = ∅. Otherwise,

PF ω ∩ P ′F ′ω = PF≤ω ∩ P ′F ′≤ω ∩Xω

=
n⋃
i=1

Pi(F ∩ F ′)≤ω ∩Xω by Lemma 5.21

=
n⋃
i=1

Pi(F ∩ F ′)ω.

�

Let us turn to actual S-representations. We assume an S-representation

(S, J K ,�, τ,∧) of X. For every finite subset u
def
= {a1, · · · , an} of S, let JuK

denote Ja1K∪· · ·∪JanK. For all finite subsets u and v of S, we also write u ∧ v
for
⋃
a∈u,b∈v a ∧ b, so that Ju ∧ vK = (

⋃
a∈u JaK) ∩ (

⋃
b∈v JbK) = JuK ∩ JvK.

Lemma 5.20 has the following computable equivalent, which says that

for syntactic word products Pu∗ and Qv∗, Pu∗ ∧′ Qv∗ computes the inter-

section JPu∗K′ ∩ JQv∗K′ = JP K′ JuK∗ ∩ JQK′ JvK∗ as a finite set of syntactic

word products of the form Pi(u ∧ v)∗. For this result, we need to use the

optimized version of ∧′ described in Remark 2.2.

Lemma 5.23. Let X be a Noetherian space, and (S, J K ,�, τ,∧) be an S-

representation of X. For all (syntactic) word products of the form Pu∗ and

Qv∗, their intersection, as computed using Proposition 2.1, item (5), and

removing subsumed word products as per Remark 2.2, is a finite set of word

products of the form R(u ∧ v)∗.

Proof. By induction on the sum of the length n of P and the length n′ of Q.

This is a direct appeal to the induction hypothesis if n ≥ 1 and n′ ≥ 1. The

interesting case is when n′ = 0 (or, symmetrically, n = 0). If n = n′ = 0,

then Pu∗ ∧′ Qv∗ = u∗ ∧′ v∗ = {(u ∧ v)∗R | R ∈ (ε ∧′ v∗) ∪ (u∗ ∧′ ε)} =

{(u ∧ v)∗}, by (2.4) and (2.1). If n ≥ 1 and n′ = 0, then we need to show

the claim for intersections of the form: (1) a?Pu∗ ∧′ v∗ and (2) u∗0Pu
∗ ∧′ v∗.
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In case (1), we use (2.3): the elements of a?Pu∗ ∧′ v∗ are of the form

c?R (where c ranges over u ∧ v, if u ∧ v 6= ∅) or just R (if u ∧ v = ∅),
where R ∈ Pu∗ ∧′ v∗, plus elements of a?Pu∗ ∧′ ε = {ε}. Since we remove

subsumed word products, as per Remark 2.2, the latter elements do not

occur. The elements that remain are of the form c?R or just R, where

R ∈ Pu∗ ∧′ v∗ has the required form by induction hypothesis.

In case (2), we use (2.4): the elements of u∗0Pu
∗ ∧′ v∗ are of the form

(u0 ∧ v)∗R where R ∈ (Pu∗ ∧′ v∗) ∪ (u∗0Pu
∗ ∧′ ε) = (Pu∗ ∧′ v∗) ∪ {ε}.

Let us enumerate Pu∗ ∧′ v∗: by induction hypothesis, we can write its

elements as R1(u ∧ v)∗, . . . , Rn(u ∧ v)∗. We note that n ≥ 1, because

JPu∗K′ ∩ Jv∗K is non-empty: indeed, that intersection contains the empty

word ε. Then the element (u0 ∧ v)∗ε of the set u∗0Pu
∗ ∧′ v∗ is subsumed by,

say, (u0 ∧ v)∗R1(u ∧ v)∗, and will be removed, following Remark 2.2. The

only elements that remain are (u0 ∧ v)∗Ri(u ∧ v)∗, when i varies over some

subset of {1, · · · , n}, and they are of the required form. �

Instead of redesigning an S-representation for X≤ω (or Xω) from scratch,

this allows us to reuse most of what we know for X∗. Item (3) below is jus-

tified by Lemma 5.19, and item (5) is by Lemma 5.21 (resp., Lemma 5.22),

refined using Lemma 5.23 (i.e., every element of Pu∗ ∧′ Qv∗ is of the form

R(u ∧ v)∗ for some R, where u ∧ v def
=
⋃
a∈u,b∈v(a ∧ b)).

Theorem 5.24. Given an S-representation (S, J K ,�, τ,∧) of a Noether-

ian space X, let (S ′, J K′ ,�′, τ ′,∧′) be the S-representation of X∗ given in

Proposition 2.1, with the optimization of Remark 2.2. Then the following

tuple (S ′′, J K′′ ,�′′, τ ′′,∧′′) is an S-representation of X≤ω (resp., Xω):

(1) S ′′ is the collection of pairs (P, u) where P ∈ S ′ and u is a finite

(resp., and non-empty) subset of S.

(2) J(P, u)K′′ = JP K′ (
⋃
a∈u JaK)≤ω (resp., JP K′ (

⋃
a∈u JaK)ω).

(3) (P, u)�′′ (Q, v) if and only if Pu∗�′ Qv∗ and for every a ∈ u, there

is an b ∈ v such that a� b.

(4) τ ′′ is (ε, τ).

(5) (P, u) ∧′′ (Q, v) is defined as follows: writing u ∧ v for
⋃
a∈u,b∈v(a ∧

b), Pu∗ ∧′ Qv∗ is a finite set of finite word products of the form

Ri(u ∧ v)∗, 1 ≤ i ≤ n, and (P, u) ∧′′ (Q, v) is then the set of pairs

(Ri, u ∧ v), 1 ≤ i ≤ n (resp., the same formula if u ∧ v 6= ∅,
otherwise ∅). �
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6. Final notes

Related work. We must cite Simon Halfon’s PhD thesis [5], and especially

Section 9.1 there. Our study of Xω is very close to his. At first glance, it

may seem that we add some generality to his study, in the sense that Halfon

studies Xω (as a preordered set) in the special case where X is an ω2-wqo.

In that case, Xω is wqo (as a set preordered by ≤ω).

In a world of preorders, it is natural to replace sobrifications by ideal

completions. Indeed, the ideal completion of a preordered set X coincides

with the sobrification of X, provided that X is given its Alexandroff topol-

ogy. Halfon obtains that the ideal completion of Xω (as a preordered set)

is characterized in terms of ω-regular expressions that are similar to the

infinite word products we introduce in Section 5.4, although slightly more

complicated, as the F ω part of ω-regular expressions no longer involves ele-

ments F of H(X) but ideals of H(X). The mismatch is due to the fact that

our space Xω will almost never have an Alexandroff topology (unless X is

essentially finite, see Proposition 5.18), and therefore the ideal completion

of Xω in general differs from S(Xω) (where Xω is given the asymptotic

subword topology, as we do, not the Alexandroff topology of ≤ω), for every

ω2-wqo X that is not essentially finite.

Other initial maps. Our study of X≤ω (resp., Xω) proceeds by finding an ini-

tial map 〈pref, suf〉 from X≤ω to the more familiar space S(X∗)×H(X). This

has notable advantages. For example, the fact that X≤ω (and its subspace

Xω) is Noetherian if and only if X is follows immediately from previously

known results on sobrifications, on the Hoare powerspace, and on spaces of

finite words. We took this further in the study of S-representations of X≤ω

(resp., Xω), where we insisted on reducing the question to S-representations

for finite words (and powersets). We could have computed intersections of

infinite word products directly, notably, but we feel that would have been

less interesting.

Remarkably, there are many other initial maps that we could have used

instead of 〈pref, suf〉. The advantage of the latter is that it shows how the

asymptotic subword topology splits into the study of finite chunks of in-

formation (prefixes) and infinite behaviors (suffixes). Here are two different

initial maps that we could have used.

The first one is the composition:

X≤ω
〈pref,suf〉

// S(X∗)×H(X)
id×j // S(X∗)× S(X∗) ∼= S(X∗ ×X∗)

S(c)
// S((X +X)∗)
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where j : H(X) → S(X∗) maps F to F ∗, and c maps every pair of fi-

nite words (a1 · · · am, b1 · · · bn) to the word ι1(a1) · · · ι1(am)ι2(b1) · · · ι2(bn),

where ι1, ι2 are the two canonical injections of X into X + X. Note that

j−1(�〈U1;U2; · · ·Un〉) = 3U1∩3U2∩· · ·∩3Un, showing that j is initial. As

for c, every open subset of X+X can be written as U+V where U and V are

open in X, and we have c−1(〈U1 + V1; · · · ;Un + Vn〉) =
⋃n
k=0〈U1; · · · ;Uk〉 ×

〈Vk+1; · · · ;Vn〉, showing that c is continuous, and as special case (with n = 2,

V1 and U2 empty) that 〈U1〉 × 〈V2〉 = c−1(〈U1 + ∅; ∅+ V2〉), which allows us

to conclude that c is initial with the help of Remark 4.1. This implies that

S(c) is initial, hence that the whole composition shown above is initial, too.

The point of using this, as an alternative to 〈pref, suf〉, is to realize that

using the Hoare powerspace is not required at all, and that the study of Xω

reduces to the study of the sobrification of a space of finite words only, on

the extended alphabet X +X.

A second alternative to 〈pref, suf〉 is the following map q : X≤ω → S((X+

X)∗) (see Appendix A for a proof that q is initial, when X is Noether-

ian). For short, let us write −a def
= (0, a) for every a ∈ X, +a

def
= (1, a),

±A def
= {−a,+a | a ∈ A} for every A ⊆ X. For every w ∈ X≤ω and

every n ∈ domw, let qn(w)
def
= (↓−w0)

?(↓−w1)
? · · · (↓−wn)?(cl(±{wm |

m ≥ n + 1}))∗. The sequence (qn(w))n∈N is a descending sequence of (ir-

reducible) closed sets. When X is Noetherian, there must therefore be

an index n0 ∈ N such that qn(w) = qn0(w) for every n ≥ n0, and we

define q(w) as qn0(w). Notice the similarity with Remark 5.4. Note also

that q is slightly different from our previous alternative, which maps w to

(↓−w0)
?(↓−w1)

? · · · (↓−wn)?(cl({−wm | m ≥ n + 1}))∗(cl({+wm | m ≥
n + 1}))∗ instead. A similar approach will turn out to be the right one in

our study of infinite trees (which should be part III of this work).

Transfinite sequences. We have dealt with the space Xω, but what would

be a proper, analogous treatment of spaces of sequences of length α, for an

arbitrary (or countable) indecomposable ordinal α? The bqo theory of such

preordered sets is well-known [11]. We will deal with that aspect in part II.
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Appendix A. q is initial

We use an alternate definition of q. Given any w ∈ Xω, let An
def
= {wm |

m ≥ n+1}. Then (cl(±An))n∈N is a descending sequence of closed subsets of

X+X. IfX is Noetherian, then there must be an index n1 such that for every

n ≥ n1, cl(±An) = cl(±An1). We pick n1 larger than or equal to the n0 given

in the definition of q. Then q(w)
def
= (↓−w0)

?(↓−w1)
? · · · (↓−wn)?(cl(±An))∗

for every n ≥ n1, by definition of q.

We proceed and show that q is continuous.

For that, we claim that: (∗) q−1(�〈U1 + V1; · · · ;U` + V`〉) is equal to⋃`
k=0〈U1; · · · ;Uk; (∞)(Uk+1 ∪ Vk+1)∩· · ·∩ (∞)(U` ∪ V`)〉, where U1, V1, . . . ,

U`, V` are arbitrary open subsets of X.

Let w ∈ X≤ω, let us fix n
def
= n1 in the definition of q(w), and let us

imagine that q(w) is in �〈U1 + V1; · · · ;U` + V`〉. There are letters a1 ∈

http://www.cs.man.ac.uk/~schalk/publ/diss.ps.gz
http://www.cs.man.ac.uk/~schalk/publ/diss.ps.gz
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U1 + V1, . . . , a` ∈ U` + V`, and indices k (0 ≤ k ≤ `) and i1 < · · · < ik

between 0 and n1 − 1 such that a1 ≤ −wi1 , . . . , ak ≤ −wik , and ak+1,

. . . , a` are all in cl(±An1). In particular, every Ui + Vi with i ≥ k + 1

intersects cl(±An1)—which is equal to cl(±An) for every n ≥ n1—hence

also ±An for every n ≥ n1. This means that there are infinitely many

indices n ≥ n1 such that −wn or +wn is in Ui + Vi, in particular such

that wn ∈ Ui ∪ Vi, and that holds for every i ≥ k + 1. Therefore w is in

〈U1; · · · ;Uk; (∞)(Uk+1 ∪ Vk+1) ∩ · · · ∩ (∞)(U` ∪ V`)〉.
In the reverse direction, let w be in 〈U1; · · · ;Uk; (∞)(Uk+1 ∪ Vk+1)∩· · ·∩

(∞)(U` ∪ V`)〉 for some k, 0 ≤ k ≤ `. Let us write w as us where u ∈
〈U1; · · · ;Uk〉 and (if ` > k) s contains infinitely many letters from each Ui∪
Vi, k+1 ≤ i ≤ `. There are letters a1 ∈ U1, . . . , ak ∈ Uk such that a1 · · · ak is

a subword of u. We write again q(w) as (↓−w0)
?(↓−w1)

? · · · (↓−wn−1)?(cl(±An))∗,

with n ≥ n1 arbitrary. We pick such an n so that it exceeds the length of u.

This way, the finite word (−a1) · · · (−ak) is in (↓−w0)
?(↓−w1)

? · · · (↓−wn−1)?.
For each i, k + 1 ≤ i ≤ `, since s contains infinitely many letters from

Ui ∪ Vi, so does w, and we can therefore find at least one of the form wm

with m ≥ n, hence in An. This implies that An intersects Ui ∪ Vi. We pick

a letter bi in the intersection, for each i with k + 1 ≤ i ≤ `. If bi is in

Ui, we let ci
def
= −bi, otherwise ci

def
= +bi, so that ci is in Ui + Vi. Then

the word (−a1) · · · (−ak)ck+1 · · · c` is in q(w), and in 〈U1; · · · ;Uk;Uk+1 ∪
Vk+1; · · · ;U` ∪ V`〉. It follows that q(w) is in �〈U1 + V1; · · · ;U` + V`〉.

That finishes to prove (∗), hence that q is continuous.

Specializing (∗) to the case where V1, . . . , Vj, Uj+1, . . . , U` are empty (for

some arbitrary j, 0 ≤ j ≤ `), the terms 〈U1; · · · ;Uk; (∞)(Uk+1 ∪ Vk+1)∩· · ·∩
(∞)(U` ∪ V`)〉 with k ≥ j+1 are all empty (because Uk is empty). The same

terms with k ≤ j instead are of the form 〈U1; · · · ;Uk; (∞)Uk+1∩· · ·∩(∞)Uj∩
(∞)Vj+1 ∩ · · · ∩ (∞)V`〉, and it is easy to see that they are all included in

the term obtained when k = j, namely 〈U1; · · · ;Uj; (∞)Vj+1∩ · · ·∩ (∞)V`〉.
It follows that q−1(�〈U1 + ∅; · · · ;Uj + ∅; ∅ + Vj+1; · · · ∅ + V`〉) is equal to

〈U1; · · · ;Uj; (∞)Vj+1 ∩ · · · ∩ (∞)V`〉. The latter is the general form of the

basic open subsets on X≤ω given in Lemma 5.10. Using Remark 4.1, q is

initial.
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