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Highlights 19 

Microbes are involved in many ecosystems but remain understudied mostly due to 20 

technical limitations.  21 

Applying -omics technologies to microbes involve changes in the scales of ecological 22 

studies.  23 

Single-cell omics offer the opportunity to study microbes at a finer scale than meta-24 

omics tools.  25 

Single microbial cell omics enable to assess and explore the dynamics of genetic 26 

changes from individuals to higher levels of ecological complexity. 27 

 28 

Abstract 29 

Microorganisms play key roles in various ecosystems but many of their functions and 30 

interactions remain undefined. To investigate the ecological relevance of microbial 31 

communities, new molecular tools are being developed. Among them, single-cell 32 

omics assessing genetic diversity at the population and community level and linking 33 

each individual cell to its functions is gaining interest in microbial ecology. By giving 34 

access to a bigger range of ecological scales (from individual to community) than 35 

culture-based approaches and meta-omics, single-cell omics can contribute to 36 

microorganisms genomes and functions identification but also to the testing of 37 

concepts in ecology.  Here, we discuss the contribution of single-cell omics to 38 

possible breakthroughs in concepts and knowledge on microbial ecosystems and 39 

eco-evolutionary processes. 40 
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 Main Text 41 

Ecological scales 42 

Interactions between organisms take place at all organizational levels, from 43 

molecules to communities, within or between species, and shape ecosystem 44 

dynamics. Ecological interactions are difficult to understand due to the number of 45 

biotic and abiotic parameters involved. Assembling knowledge at various ecological 46 

scales and from different standpoints is therefore crucial in the study of ecological 47 

and evolutionary processes. This is particularly true in the case of microbes, which 48 

individuals can be seen as metabolic units involved in complex metabolic networks 49 

at much higher ecological scales (e.g. [1,2]). Therefore, accessing genetic and 50 

metabolic information of microbes is a necessary step to understand ecosystem 51 

functioning. In microbial metabolic units, “small” changes in genomes and metabolic 52 

pathways may have significant impact on the microbial community organization and 53 

hence on ecosystems. Deciphering large ecological scale processes therefore 54 

requires observation of fine ecological scale (i.e. at the individual cell level), which is 55 

the biggest challenge of current environmental microbiology [3] (Figure 1a).  56 

A fundamental level of organization in ecology is the species. However, due to gene 57 

flow between cells that increases with ecological overlap and genetic similarity [4], 58 

microbial species concept and thus, populations (see Glossary), are not clearly 59 

defined entities. Interactions and diversity at the populational level, i.e. between 60 

individual cells of the same population (Box 1), is still obscure since it is not often 61 

analyzed in environmental microbiology. Given the natural mutation rate in bacteria 62 

(~10-7 substitution per nucleotide, e.g. [5]), even a single colony contains genetic 63 

variations, i.e. variants within a cell population. The population has been suggested 64 
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to be more relevant than the species level for microbes [6,7] and species usually 65 

contain genetically divergent microorganisms. Considering the hierarchical levels of 66 

ecology, populations are keys to assessing genetic structure within species and over 67 

time, changes therein.  They thereby provide insights into eco-evolutionary 68 

processes and advance our understanding of microbiota composition dynamics (Box 69 

1).  70 

Our understanding of the microbial world and its ecological roles is still very limited 71 

[8]. Understanding the functions played by microbial cells in a complex community 72 

remains a frontier in microbial ecology. Beyond the technical limits that microbiology 73 

is facing, the information gathered from culture-based studies or from natural 74 

ecosystems can be difficult to interpret (Figure 1a). Laboratory experiments attempt 75 

to reproduce optimal ecological conditions for microbes by selecting among the 76 

many biotic and environmental parameters [6] in order to understand specific 77 

processes such as trait tradeoffs [9], interactions between strains [10], the production 78 

of metabolites [11] or genome evolution [12]. Extrapolating observations obtained in 79 

vitro, at restricted scales, to higher ecological scales such as natural communities 80 

and ecosystems requires particular attention. Conversely, observations made from 81 

environmental samples, including microbial community composition, diversity or 82 

global functions are less specific and represent an average of the microbial 83 

community. Ideally, we want to get the most information out of each level of 84 

approach (i.e precise interactions and genetic dynamics from culture-based studies 85 

coupled with global function and diversity of a community with meta-omics). 86 

However, our ignorance of intricacies and interactions of ecological scales with one 87 

another still jeopardize the assembly of the resulting information to answer specific 88 

ecological questions in environmental microbiology. Moreover, the uncertainty of 89 



 

community composition and the complexity of microb90 

more difficult to target specific scientific hypotheses on natural communities and to 91 

choose the appropriate tools.92 

93 

 Figure 1: Gradient of ecological complexity, study scales and associated 94 

approaches. 95 

Although other higher levels of ecology can be used, individual96 

community-environment scales describe much of the subject of ecology. 97 

culture-based approaches aim at studying microbial populations or a very limited 98 

number of strains, therefore the outcoming data cannot be fully informative about 99 

higher levels of ecology. On the contrary, meta100 

community to environmental scales of microbial ecology and does not provide 101 

finer information on the ecological gradi102 

unattainable while being at the basis of ecological processes. b) Single103 

cover the scales from the individual microbe to the community from the same 104 

environmental sample which allows to connect the out105 

ecological scale. 106 
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 107 

Specific tools for specific ecological questions  108 

Like in any new field of exploration, ecological patterns within microbial communities 109 

are firstly observed and described but poorly understood [13], testifying to the 110 

enormous lack of knowledge concerning microbes [14]. The use of DNA- and RNA-111 

based methods to study natural microbial communities have demonstrated the 112 

existence of a prodigious wealth of microorganisms which remained unsuspected 113 

some years ago (e.g. [15]). Among meta-omics techniques, metagenomics and 114 

metatranscriptomics are the most widely used methods to explore microbiota. These 115 

techniques enabled a breakthrough in our understanding of microbial phylogenetic 116 

relationships [16], species diversity and abundance [17], metabolic abilities [18] and 117 

functional diversification [19]. The development and use of metagenome-118 

assembled genomes (MAGs) led to discoveries that advanced our understanding 119 

of bacterial life and modified our perception of the tree of life [15,19]. Some studies 120 

attempted to reconstitute population level genomes from metagenomes. For 121 

example, Crits-Christoph et al. [20] investigated genetic variation within populations 122 

of highly abundant soil bacteria by studying MAGs and observed spatial 123 

differentiation of alleles. However, inferring population features from meta-omics 124 

data remains limited, especially when genomes are inaccurately or incompletely 125 

reconstructed from short sequence fragments (Figure 2, Key Figure). The use of 126 

MAGs becomes challenging when microbial richness and diversity within a 127 

community are high and taxa are phylogenetically close [21]. During genome 128 

assembly, stitching of fragments from different individual genomes and/or 129 

contaminant DNA can occur, creating chimeras that are irrelevant for the study of 130 
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populations. In this case, the approach would necessarily conceal a considerable 131 

proportion of molecular diversity [22]. In addition, the molecular biology and 132 

bioinformatics methods used in meta-omics approaches are varied and based on 133 

different criteria and assumptions in the absence of a consensus, leading to 134 

contrasting results and interpretations [23,24]. Overall, it might be difficult to directly 135 

link the detected functions to their original microbial cell from meta-omics data, 136 

thereby limiting the identification of signaling pathways and trade-offs in gene 137 

regulation. Meta-omics approaches proved useful in describing communities using 138 

large-scale sampling and make it possible to answer questions related to community 139 

composition and its associated global functions but not to fully understand the 140 

mechanisms underlying these patterns. Nevertheless, bioinformatics research has 141 

developed algorithms aiming to identify genetic variations in microbial populations: 142 

vertically and horizontally inherited genes can be differentiated, and from population-143 

specific sweeps, single nucleotide polymorphisms can be detected (e.g. DiscoSNP; 144 

PopCOGenT) [4, 25].  145 

To complement meta-omics data, modelling approaches are used to explore 146 

microbial interactions, fluxes of metabolites, and to reconstruct ecological networks 147 

in complex microbiomes [26-29]. These approaches provide a possible explanation 148 

and scenarios of interactions in natural communities, but sometimes end in 149 

contradictions with culture-based experiments [1]. Indeed, models can predict a 150 

certain kind of interaction (e.g. cross-feeding) that is not verified or proven wrong in 151 

an experimental setup due to the oversight of key parameters such as growing 152 

conditions, space and (very often) time [1]. They also rely on the co-occurrence of 153 

phenomena, which is more associated with correlations than cause-consequences 154 

relationships. Culture-dependent approaches may help reach the population level in 155 
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simple community compositions through controlled and simplified laboratory-scale 156 

experiments [30] and can be effective for testing patterns observed in meta-omics 157 

studies and deconstructing mechanistic hypotheses (e.g. interactions, metabolism) 158 

(e.g. [31]). The lack of information on individual cells and mostly on populations (i.e. 159 

both functions and phylogeny) using existing methods limits our understanding of 160 

observed processes. Many studies aim at unravelling microbiota diversity, primarily 161 

in plants, soil, water, and animal bodies, but few explain associated community 162 

assembly and evolutionary mechanisms [32-34]. In this context, microbiologists and 163 

ecologists are searching for other technical possibilities or approaches such as 164 

single-cell omics to complete the knowledge provided by current methods. 165 

The alternative scope of single -cell omics     166 

Single-cell whole genome sequencing (scWGS) and single-cell transcriptomics 167 

(scRNA-seq) were first developed for eukaryotic cells and used in cancer research, 168 

revealing both intra-population genetic diversity and heterogeneous genome 169 

expression. As in cancer research where differentiation in space of the genome 170 

expression among cell has been observed [35], a pioneer paper on Pseudomonas 171 

aeruginosa biofilm using a fluorescent based approach (i.e. parallel sequential 172 

fluorescence in situ hybridization (par-seqFISH)), revealed a differentiation in space 173 

and time of cell-expression [36]. Because spatial single-cell microbial approaches 174 

could allow the understanding of the drivers and mechanisms leading to the self-175 

organization of these microbial structures, new developments are expected to 176 

expand in health science and many other fields of microbial ecology research. 177 

Single-cell approaches are promising candidates for microbial studies, as they 178 
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provide a complementary view to metagenomics and metatranscriptomics that have 179 

different strengths, but also weaknesses (Figure 2). 180 

Single-cell omics technologies require additional steps to prepare a sample for 181 

sequencing as compared to meta-omics techniques, especially with regards to cell 182 

isolation, for which different technical options are available [37,38]. Once the cells 183 

lysed, DNA and RNA content from a single cell is in the femtogram scale for 184 

bacteria, i.e. 1,000-fold less than in animal cells. Preparing the sequencing library, 185 

which typically requires ng ranges of material, will need an ultra-efficient prior 186 

amplification step (e.g. Multiple Displacement Amplification (MDA), the most widely 187 

used approach for bacteria [39]).   188 

Single-cell approaches enable accurate access to genomic and transcriptomic 189 

information for each cell, so that the assembled cell information is highly 190 

representative of the original population (Figure 2). This enables the identification of 191 

heterogeneity in gene assemblage, gene expression and metabolic pathways 192 

between cells. Single-cell transcriptomic and genomic information provide a link 193 

between phylogeny and functional traits and reveal the physiological status of an 194 

individual cell, at the time of sampling. This is particularly important considering that 195 

the individual gene expression profiles of genetically close cells may differ. What is 196 

more, some cell isolation tools such as automated image-based isolation devices 197 

(CellenONE Cellenion; icell8 Takara) make it possible to select cells based on their 198 

integrity, their physiology and/or functional markers, and to minimize contamination 199 

by the host or extracellular DNA. This is very promising for microbiology to, for 200 

instance, select active cells in the studied sample at the time of sampling and reveal 201 

which of them are taking part in the community productivity. 202 
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A seminal paper on single cell microbial genome analysis was published in 2005 [40] 203 

and paved the way for further improvement of single-cell omics, notably on the 204 

amplification method (here MDA) and lysis buffer. Recent studies using single-cell 205 

omics have improved our understanding of intraspecific diversification and metabolic 206 

capacities at a limited scale [41, 42]. Assessing the true individual cell gene 207 

assemblage and expression using single-cell omics will make it possible to study the 208 

hitherto unexplored microbial population level and the functioning of a given 209 

microbiome by linking the different ecological scales (Figure 1b). Indeed, single-cell -210 

omics enable access to additional information than in culture-based and meta-omics 211 

studies (the single individual ecological scale) whilst also, from the environmental 212 

sample, giving information on the population and community interactions. To a 213 

broader extent, this will enable better access to eco-evolutionary pressures and 214 

evolutionary processes within microbial communities. 215 

Applications of single-cell omics in microbial ecology 216 

Single-cell omics provide information at the cell level by changing the camera angle 217 

when studying environmental communities and can contribute to microbiology and 218 

ecology at many levels by exploring microbial diversity or microbial interactions.  219 

The tremendous diversity of single-microbe genomes. 220 

Observations of microbiota can complement/validate the diversity observed by meta-221 

omics on fungi [43], human samples [8], and marine viruses [44], and resolve cryptic 222 

bacterial species, which currently mainly rely on cultivable strains [45-47]. Single-223 

microbe -omics therefore contribute to the microbial inventory which is still in its 224 

infancy in many ecosystems [48]. The use of single-cell based approaches could 225 

demonstrate the existence of the discovered sequence-based lineages and discover 226 
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possible new branches. Isolating cells from environmental samples can also cast 227 

light on rare organisms that might be obscured in millions of genome fragments 228 

using meta-omics. These rare organisms are considered to play key roles in 229 

community dynamics since they over-proportionally contribute to the functions of the 230 

microbial community in fluctuating environments [49,50]. While most studies that 231 

apply this approach use a limited number of cells, a recent survey of the marine 232 

microbiome recovered no less than 12,000 genomes from single cells [51], revealing 233 

a high degree of uniqueness and limited clonality in the analyzed samples of sea 234 

water and providing evidence for the ecological roles of uncultured microbial groups. 235 

Single-cell genomics, by looking at individual genomes instead of core genomes 236 

from meta-omics, from natural microbial communities represent an unprecedented 237 

opportunity to complete the identification and classification of microbes. This is a key 238 

step sometimes missing in environmental microbiology [52]: knowing what to look at 239 

and why to formulate hypotheses in ecology and better understand processes 240 

involving microbes. 241 

Ecological and evolutionary hypothesis testing using single-cell -omics. 242 

 Single-cell genomics and transcriptomics approaches therefore help to answer the 243 

questions “What are these microbes?” and “What are they doing (or capable of 244 

doing)?” but also to understand why and how observed patterns happen. Linking 245 

environmental and community parameters to individual gene expression and 246 

bacterial interactions enables a mechanistic understanding of underlying biotic and 247 

abiotic conditions to patterns. This represents an opportunity to explore multiple 248 

ecological theories and hypotheses, notably on interactions of microbes at many 249 

levels: within the community, with external microbes (i.e. viruses) and with their host. 250 
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One of the hottest topics in microbial ecology is the link between diversity and 251 

function, including the productivity of the ecosystem that relies on the niche 252 

partitioning theory. This hypothesis states that species coexistence is enabled by 253 

species specialization in different available resources (or combinations of resources), 254 

thereby reducing interspecific competition [53] but likely modifying the microbial 255 

population structure [54]. Specialization in specific resources raises many questions 256 

concerning microbial interactions through the exchange of metabolites [55], loss of 257 

traits [56] and genome reduction [57]. The Black Queen Hypothesis (BQH), one of 258 

the ecological theories that conceptualized this phenomenon, states that microbial 259 

community assembly and complexity are at least partially determined by functional 260 

dependencies resulting from gene loss(es). Testing this hypothesis requires using 261 

environmental samples to evaluate functional redundancy within communities, the 262 

expression and distribution of the functions between interacting (micro-)organisms 263 

and the impact of genotypic interactions on these functions. At the community level, 264 

it is impossible to access this information through meta-omics since BQH evolution is 265 

supposed to also occur at the population level [53,54] which is undetectable from 266 

most of the meta-omics tools used so far. Eco-evolutionary processes can so far be 267 

explicitly assessed only through ecological models [58] or from dedicated in-vitro 268 

experiments [42] that require deciding which gene and which organisms to look at. 269 

Single cell approaches can help to investigate such hypotheses and other theories in 270 

ecology and highlight patterns of interactions that shape microbial communities. 271 

A breach to viral-host ecology.  272 

The diversity of microbial communities is also influenced by the viral infections to 273 

which they are exposed, which is particularly difficult to evaluate in nature [59]. A 274 
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recent study assessed viral infections in the ocean thanks to single cell genomics by 275 

identifying virus sequences in uncultured protist cells [44]. Such interactions are 276 

widespread but generally missing in current microbial ecology analyses. Among 277 

other roles, viruses are known to (1) control microbial community dynamics and drive 278 

microbial-host evolution [60,61] and (2) impact ecosystem changes and 279 

biogeochemical cycles [59,62]. Single-cell omics can help us understand the roles 280 

played by viruses in microbial populations by making it possible to assess both the 281 

prevalence of prophage sequences and possible lateral gene transfers [63,64] which 282 

would reveal preferential association of specific viruses with specific bacteria.  283 

Single-cell insights into bigger scale interactions.  284 

Generally speaking, single-cell omics can highlight diverse levels of interaction in 285 

natural habitats either between the microbes that comprise a microbiota or between 286 

the microbes/microbiota and their host. Despite the great number of studies on the 287 

composition of human microbiota, very little is known about interactions between the 288 

microbes and with their host [65]. The single cell study of host-pathogen interactions 289 

paves the way for understanding infectious processes through microbiota dynamics, 290 

metabolic capacities, and host resistance [66]. Dysbiosis is often shown to display a 291 

higher beta-diversity interpreted as a higher stochasticity in the microbiota assembly 292 

[67]. Among other explanations, this apparent higher stochasticity may be the result 293 

of drastic pathogen-induced changes in the habitat (i.e. transitory state in the 294 

microbiota dynamics), modification of a component of the microbiota caused by 295 

genetic change(s) and/or a functional modification expressing a modified phenotype 296 

that leads to disequilibrium in the microbiota community. With the aim of 297 

understanding how a disorder of the microbiota leads to disease or the reverse, i.e. 298 
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how a disease can modify the composition of a microbiota, single-cell microbiota 299 

analyses of genomes and transcriptomes would help better define the characteristics 300 

of dysbiosis (i.e. dysbiosis mechanisms). Using single cell genomics makes it 301 

possible to address hypotheses related to changes in bacterial populations, while 302 

microbial single-cell transcriptomics may be more appropriate to decrypt the 303 

functions of microbes, metabolic abilities, and cellular states [68]. These two 304 

strategies are necessary to understand how microbial interactions occur within 305 

communities as well as their possible impact on the ecosystem [69,51]. 306 

 307 

Microbial single-cell omics are not solely expected to better understand functional 308 

interactions but also the underlying evolutionary processes. Microbial single-cell 309 

omics should also promote a shift in standpoint from observation to interpretation 310 

and also offer new opportunities to test macroecological theories on microbes. The 311 

development of microbial single-cell omics will have high impacts on our 312 

understanding of microbial communities in many environments. For instance (i) in 313 

freshwater and marine ecosystems, to define the interaction of bacteria and 314 

phytoplankton through the exchange of metabolites, and to test links to blooms [70], 315 

(ii) in soils, to better assess the provision of services by plant microbiota including 316 

nutrient and water uptake and protection against pathogens [71], (iii) in plant, human 317 

and animal health, to better decipher how dysbiosis could be cause or consequence 318 

of a disease. However, it can’t be ignored that the wide development of single-cell 319 

omics applied to microorganisms is limited by technical limits.   320 

 321 

Limits of single-cell omics on microbes 322 
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The current limited number of cells studied in the published papers questions the 323 

representativeness of the analyses. Considering the number of microbial cells 324 

contained in a given environmental sample, one can wonder how many cells need to 325 

be isolated to cover the diversity of a sample, from hundreds [41], to thousands [51]. 326 

The limited number of analyzed cells is mostly due to technical problems and the 327 

cost of such experiments. It has to be emphasized that the current use of single-cell 328 

omics for microbes have to solve many technical obstacles (Box 2), reviewed in 329 

[72,73] such as cell isolation, lysis, and a biased amplification step. The structure of 330 

the microbial cell wall is complex, and unlike the animal cells, they do not break 331 

easily. The diversity of cell wall composition across phylogeny and physiological 332 

status (peptidoglycan layer(s), spores, capsules, etc.) makes it challenging to find a 333 

universal lysis method able to breach each cell without damaging its content or 334 

inhibiting enzymatic reactions downstream. Different protocols have been used in 335 

recent microbial single-cell based studies, using either heat, temperature shocks, 336 

sonication, enzymes, detergents, or combinations of these [74,75]. In addition to 337 

technical issues, one can wonder how to be certain that cells are isolated and lysed 338 

equally and not preferentially depending on their physical/physiological status. The 339 

amplification step, usually made via MDA, has been reported to be imprecise 340 

concerning the genome amplification uniformity, even though it presents a better 341 

genome coverage than other approaches (i.e MALBAC [39]). This amplification step 342 

is highly relevant, as it was suggested to be the cause of incomplete reconstruction 343 

of single amplified genomes (SAGs) [76], although solutions are being developed 344 

[77]. As the price of library preparation represents most of the cost of these new 345 

single- cell omics for microorganisms, reduction of reaction volumes in 346 

“nanolibraries” should be very cost-effective (Box 2). The probability of contamination 347 
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robotics. Working in nanovolumes see349 

multiple problems, however this introduces new volume350 

pipetting or sample purification. 351 

For these reasons, single-cell omics have been sometimes used in combination with 352 

meta-omics to combine the possibility of fine scale analysis with high throughput 353 

[76,79]. It also represents a good opportunity to validate multiple aspects of single354 

cell omics: 1) the isolation and lysis universality, 2) the sample preparation (genome 355 

amplification and library preparation for sequencing), 3) the lack of contamination, 356 

and 4) the representativeness of the sample covered by single 357 

outstanding questions).  358 

Box 2: Single microbial cell -omics approaches are technically challenging.359 

Challenge 
1. Isolation of single microbial cells

Community representative sampling High throughput

Cell isolation from complex matrices, 

such as soil, sediments, host tissue, 

feces, mucus… 
Sonication, filtration, density 

gradient centrifugation

Exhaustive/targeted 

labelling/detection  Fluorescence, antibodies

Maintenance of axenic conditions (As) clean (as possible) room + 

2. Culturomics experiments

Maximum viability/cultivability  Gentle cell handling, liquid 

dispensing

Choice of culture conditions  High throughput media screening + 

Ⓥ

Assessment of monoclonality (= 

culture purity) Microscopy, targeted sequencing

3. Microbial cell lysis/permeabilization

Efficiency across phylogeny  (Ultra

heat, enzymolysis, detergents…

Preservation of DNA/RNA quality 

and quantity  
Gentle procedure, avoid 

purification

Minimum contamination from 

reagents and prevention of 

subsequent steps  
Physical rather than 

biological/chemical + 

4. Single-microbe WGS

16 
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Fluorescence, antibodies 

(As) clean (as possible) room + Ⓥ 
2. Culturomics experiments 

Gentle cell handling, liquid 

dispensing 
High throughput media screening + 
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Microscopy, targeted sequencing 

3. Microbial cell lysis/permeabilization 
(Ultra-) sonication, thermal shock, 

heat, enzymolysis, detergents… 
Gentle procedure, avoid 

purification 

Physical rather than 

biological/chemical + Ⓥ 

microbe WGS 

Fig i. Typical
cell -omics approaches. 
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Super-efficient (100K- to 1 Mo-fold) 

amplification (1-10 fg DNA 

prokaryotic cell
-1

)  

Ⓥ, molecular crowding, linear 

amplification (e.g. in vitro 

transcription) 

Even/broad coverage, high fidelity, 

and no chimera creation  

Minimum number of PCR cycles 

and/or primary template 

amplification (e.g. in vitro 

transcription) 
Minimum contamination from 

reagents  Minimum reagent amount + Ⓥ 

Cost reduction  Cell barcoding for multiplexing + Ⓥ 

Bioinformatics 
Dedicated tools for cell 

demultiplexing, monoclonality 

test… 
5. Single-microbe RNA-seq 

Same as WGS (up to 100 fg RNA 

prokaryotic cell
-1

) Ⓥ, molecular crowding 

Amplification bias  Unique molecular identifier (UMI) 

No poly-A tail on prokaryotic mRNA  
RNA poly-A tailing, random 

priming, ribosomal RNA targeted 

depletion 

Table i. Padlocks and possible keys offered by single microbial cell –omics 360 

approaches. 361 

Crucial, but solvable, issues (Table i) should be addressed at each step of single 362 

microbe approaches (Fig. i). The reduction of reaction volumes down to 363 

“nanovolumes” (see Ⓥ symbols), is often the most sensible solution, limiting 364 

contamination probability and allowing high throughput and cost reduction. 365 

Concluding Remarks 366 

Soon, single-cell omics applied to microorganisms could become a gold standard in 367 

microbial ecology thanks to the knowledge produced by focusing on individual 368 

genomes and transcriptomes, and, possibly, individual proteomes and metabolomes. 369 

Today, technical problems prevent the testing of broad ecological hypotheses. 370 

Generalizing ecological single-cell studies on microbes requires the development of 371 

robust high throughput techniques with a high-cost effectiveness ratio (See 372 

Outstanding Questions). A knowledge upshot is expected in microbial interactions 373 
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and eco-evolutionary boundaries through the enabling of mechanistic 374 

characterization of deterministic populations and community assembly processes. 375 

Currently, the use of metagenomics and single cell genomics in the same study 376 

appears as the best solution, combining the strengths of the two approaches, i.e. (i) 377 

high throughput and alpha/beta diversity, and (ii) fine scale analysis by scWGS 378 

and/or scRNAseq [76,80]. Ideally, one would not over-interpret meta-omics data and 379 

rather use those to build hypotheses on mechanisms, which can be tested using 380 

single-cell approaches. Approaches that will allow more accurate assessment of 381 

microbial genome diversity and genome functioning within complex microbiota, are 382 

impatiently awaited. Still, the future of microbial single-cell omics will likely fuel a new 383 

perception of the microorganisms world. 384 
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 388 

 Outstanding Questions 389 

To what extent can a single technical approach realistically reflect complex natural 390 

processes? 391 

How many cells need to be isolated from a natural environment to accurately 392 

represent the population and/or community from which they originate? And how can 393 

this be assessed?  394 

What criteria should be used to determine the scale of sampling in natural 395 

environments?  396 

How can we use information obtained by single-cell omics for a better understanding 397 

of ecosystem functioning?  398 
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How can we make the application of proteomics, metabolomics and multi-omics 399 

approaches to single microbes more realistic? 400 

 401 

Glossary 402 

Metagenome-assembled genome (MAG): in-silico reconstruction of an artificial 403 

microbial genome obtained from one or multiple binned metagenomes that represent 404 

the core genome of the population 405 

Meta-omics: group of molecular biology technologies, extensively used to access 406 

unculturable organisms, by studying the bulk pool of biomolecules from 407 

environmental samples, to reveal genomes (metagenomics), transcriptomes 408 

(metatranscriptomics), proteomes (metaproteomics) and metabolites 409 

(metabolomics). 410 

Niche complementarity/partitioning: ecological concept describing how species 411 

differential specialization in different combinations of resource uses and functions 412 

allow them to coexist in the same environment. 413 

Population: applied to bacteria in natural communities, individuals with identical or 414 

different genomes from the same species gathered in a specific environment or 415 

sample. An isolated microorganism culture also comprises a population. 416 

  417 

Box 1: Microbial population 418 
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In ecology, populations are individuals belonging to the same species, living in 419 

the same environment, although the definition varies with different viewpoints 420 

[81]. Microbial populations represent a unit of diversity and selection. Within 421 

these populations, diversity can be either genetic or phenotypic. The diversity 422 

within a population to some extent buffers an environmental stress because 423 

existing variants are able to survive the stress and/or allow rapid phenotype 424 

switching (e.g. Bet-Hedging, [82,31]) but positive selection of new variants can 425 

also be induced by the stress. This organizational level is therefore a key to 426 

understanding genetic structure and haplotype fitness, the dynamics of ecological 427 

interactions, including associations of microbial species, symbioses, host-428 

pathogen interactions, and ecosystem functioning, resilience, and stability. For 429 

instance, resistance to antibiotics can vary within populations [83] and the 430 

virulence pathogens can vary across subpopulations [84]. Genetic diversity and 431 

ecological features such as niches can vary between lineages [85], so that 432 

subpopulations are able to co-exists through niche diversity. To capture the total 433 

genetic and phenotypic diversity and get a holistic view of populations, the scale 434 

must thus be tuned down to the individuals that comprise the population in a 435 

given sample [84]. Otherwise, applying the current bacterial species concept to 436 

make population level inferences may lead to false or partial interpretation of 437 

ecological phenomena. 438 
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Figure 2 – Key Figure: Microbial communities observed through meta-707 

omics versus single-cell omics 708 

The key steps of meta-omics (left) and single-cell omics (right) approaches are 709 

shown, resulting in contrasting representations of a natural microbial community. 710 

Different genomes are represented by different colors, red, orange and yellow 711 

show genomes of close relatives, i.e. intra-population genomic variants. Dead 712 

cells are shown in grey, and extracellular or host DNA in brown. Different 713 

functions are represented by different symbols (triangles, squares, diamonds, or 714 

ovals). (a) After meta-omics sampling, the cell proportions are maintained but 715 

transient DNA and dead cells are not filtered. (b) In single-cell omics, a smaller 716 

proportion of the community is sampled, and dead cells can be excluded. (c) In 717 

meta-omics, the unit sequenced is the complete extracted sample. Metagenome 718 

assembled genomes (MAGs) are partial and include chimeras, i.e. unreal 719 

collages of closely related genomes, dead cells, and extracellular material. Meta-720 

transcriptome analysis yields averaged relative abundances (represented by the 721 

size of the symbol) of functions within the sample. (d) By contrast, in single-cell 722 

omics, each cell is a sequenced unit and can be associated with its genome 723 

and/or transcriptome. (e) The community observed through meta-omics is 724 

representative of the composition of the whole community but not of the 725 

associated genes and functions. (f) With genome and transcriptome information 726 

from single cells, the observed community is under-sampled but is closer to the 727 

natural community: if the sampling scale is appropriate, rare populations and 728 

functions are more likely to be detected. 729 


