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ABSTRACT
We present a formulation and implementation of anisotropic and isotropic electronic circular dichroism (ECD) using the full semi-classical
light–matter interaction operator within a four-component relativistic framework. Our treatment uniquely accounts for both beyond-first-
order light–matter interactions and relativistic effects, enabling us to investigate the ECD response across the electromagnetic spectrum
from optical to x-ray wavelengths where relativistic selection rules and spatial field variations gain increasing importance. We consider
the isotropic and oriented ECD across the valence transition and sulfur L- and K-edge transitions in the simplest disulfides, H2S2 and
(CH3S)2, and evaluate the influence of the full interaction by comparing to a traditional truncated formulation in the Coulomb gauge
(velocity representation). Additionally, we demonstrate that in the relativistic formalism, it is possible to work in the velocity represen-
tation, hence keeping order-by-order gauge-origin invariance, contrary to the multipolar gauge, yet being able to distinguish electric and
magnetic multipole contributions. Going beyond a first-order treatment in the wave vector is mandatory in the higher-energy end of the
soft x-ray region and beyond where the consequent intensity redistribution becomes significant. While the sulfur K-edge absorption spec-
trum is essentially unaffected by this redistribution, the signed differential counterpart is not: At least third-order contributions are required
to describe the differential absorption profile that is otherwise overestimated by a factor of about two. The first-order description dete-
riorates at higher transition energies (beyond ∼1000 eV) where it may even fail to predict the sign of individual differential oscillator
strengths.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077502

I. INTRODUCTION

Chirality is fundamental to life on Earth, and the origin of
homochirality of natural amino acids and sugars remains an unre-
solved question.1 Enantiomers of a chiral molecule interact differ-
ently with chiral objects, such as chiral receptors or left and right
circularly polarized light. The former is central in chiral molecu-
lar recognition, e.g., drug-receptor binding, while the latter enables
spectroscopic detection of chirality. Electronic circular dichroism

(ECD) is the lowest-order natural chiroptical response: It measures
the differential linear absorption between left and right circularly
polarized light in the spectral region of electronic transitions.2 Many
biomolecules are optically active either intrinsically due to the pres-
ence of a chiral center or induced through structural and electronic
perturbations by a chiral environment such as through electronic
coupling within a chiral arrangement of achiral chromophores.3,4

ECD in the valence region is therefore extensively used to pro-
vide stereochemical, conformational, and binding information of
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molecular systems.5 Anisotropic circular dichroism allows for addi-
tional information, which would otherwise be lost in the isotropic
signal. As an example, anisotropic ECD was recently proposed as a
way to distinguish different transitions in light-harvesting complex
II oriented by its embedding in a membrane.6,7

While the discovery of the natural optical activity in the visi-
ble region dates back more than two hundred years to the work of
Arago8 and Biot,9 its existence in the x-ray range was only estab-
lished in 1998: The detection of x-ray natural circular dichroism
(XNCD) in non-centrosymmetric crystals10–13 was enabled by the
advent of intense third-generation synchrotron x-ray sources with
full polarization control. Like other resonant core-level spectro-
scopies, XNCD exploits the site- and element-specificity of x-ray
probes to provide information about the local symmetry around the
absorbing atom(s). In addition to chiral crystals, XNCD has also
been measured for small organic molecules including several amino
acids (see, e.g., Refs. 14–17).

From a multipole expansion of the light–matter interactions
in orders of the wave vector, the leading-order contributions to
ECD (i.e., first order) are governed by the electric-dipole/magnetic-
dipole (E1–M1) and electric-dipole/electric-quadrupole (E1–E2)
interference terms. The latter is traceless and hence vanishes
for isotropic samples. While the electric-dipole/magnetic-dipole
interference dominates in the optical region (in the center-of-
mass frame), it is difficult to observe at K(L1)-edges18,19 because
the magnetic transition-dipole moment involving the atomic-like
1(2)s-orbitals becomes forbidden within a zeroth-order approxima-
tion in the non-relativistic domain.13,20 The electric-dipole/electric-
quadrupole interference term, on the other hand, gains intensity in
the x-ray region due to its dependency on the spatial variations of
the electromagnetic field.20,21 For these reasons, substantial XNCD
signals are expected only for oriented samples, although weak
electric-dipole/magnetic-dipole contributions have been reported in
the absence of orientational order (e.g., in solution or powdered
samples19,22).

Theoretical simulations play a key role in the assignment of
experimental ECD spectra. Traditionally, these rely on the afore-
mentioned multipole expansion of the ECD signal through first
order in the wave vector. However, caution has to be exercised
to ensure gauge-origin independent results, e.g., by performing
calculations in the velocity representation23 or by employing gauge-
including atomic orbitals.24,25 An additional aspect arising in the
x-ray regime, where the wavelength of the electromagnetic field
approaches molecular dimensions, is the importance of higher-order
terms in the expansion. To address these issues in the context of
linear absorption of linearly polarized light, we recently proposed
using the full semi-classical light–matter interaction operator in
both the non-relativistic26,27 and relativistic regimes.28 In addition
to providing compatible transformation properties for both light
and matter, the relativistic formulation is particularly simple because
the light–matter interaction is linear in both the scalar and vector
potentials.

In this work, we present a four-component relativistic formu-
lation and implementation of isotropic and anisotropic ECD using
the full semi-classical light–matter interaction. This allows us to
investigate the ECD response across the electromagnetic spectrum,
from optical to x-ray regimes. So far, previous theoretical stud-
ies of the isotropic XNCD of molecules have only considered

the first-order truncated interaction in a non-relativistic
framework.18,22,29–35 In these studies, the only source of non-
vanishing response at the L1- and K-edges is the polarization away
from the atomic symmetry of the core orbitals. Our implementation
accounts for two additional possible contributions: (i) effects of
beyond first-order light–matter interactions and (ii) inclusion of
relativistic effects, notably spin–orbit coupling that modifies selec-
tion rules (in particular, the magnetic transition-dipole selection
rule36,37). Consequently, this allows, for the first time, to realistically
examine the ECD response of molecules across the valence and x-ray
regimes.

As test systems, we consider the simplest disulfide chro-
mophore models, dihydrogen disulfide H2S2 and dimethyl disulfide
(CH3S)2. Because of the low disulfide torsional barriers (∼6–11
kcal/mol38–41), the two enantiomeric forms (P- and M-helix) can-
not be resolved experimentally. However, the disulfide bridge is
an important structural element in proteins,42 where it preferen-
tially occurs in non-planar, chiral conformations (C2 symmetry) and
hence displays structurally induced axial chirality. An interesting
perspective for complex systems (e.g., proteins) is the potential use
of XNCD as a local probe of chirality.30,35 This could potentially
complement the delocalized conformational information encoded
in valence ECD. Because of its computational tractability, H2S2 has
been widely used to benchmark electronic structure methods for
the calculation of chiroptical properties.43–49 For the same reason,
Goulon et al. also used it to estimate the relative magnitudes of
XNCD responses within the first-order truncated interaction and
non-relativistic framework, reporting values below the experimental
detection limits.18 Here, we revisit the ECD of the disulfide chro-
mophore across the valence and L- and K-edges, going beyond these
approximations.

II. THEORY
A. Full light–matter interaction

We begin with a description of our ECD formulation using the
full semi-classical light–matter interaction, which has been imple-
mented in a development version of the DIRAC electronic struc-
ture program.50,51 We consider a circularly polarized monochro-
matic (angular frequency ω) electromagnetic field with electric and
magnetic components given by

E(M)(r, t) =
1
√

2
Eω[ϵ1 sin(k ⋅ r − ωt) + (−1)Mϵ2 cos(k ⋅ r − ωt)],

B(M)(r, t) =
1
√

2
Eω

c
[ϵ2 sin(k ⋅ r − ωt) − (−1)Mϵ1 cos(k ⋅ r − ωt)],

(1)

where appears the polarization vectors ϵ1 and ϵ2 that, together with
the wave vector k = kek (k = ω

c ), form a right-handed coordinate
system; the field amplitude Eω; and the integer M that specifies the
handedness of the field, i.e., left (even) and right (odd) circularly
polarized light, respectively, following the International Union of
Pure and Applied Chemistry (IUPAC) recommendation.52 Such an
electromagnetic wave is conventionally represented in the Coulomb
gauge by the scalar and vector potentials,
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ϕ(M)(r, t) = 0,

A(M)(r, t) = −
1
√

2
Eω

ω
[ϵ1 cos(k ⋅ r − ωt) − (−1)Mϵ2 sin(k ⋅ r − ωt)].

(2)
In the relativistic domain, this leads to an interaction operator for
left/right-handed (L/R) circularly polarized light of the form

V̂L/R(t) = ec(α ⋅AL/R) = −
1
2

Eω∑
±ω

T̂L/R(ω)e−iωt ,

T̂L/R(ω) =
e
ω
(cα ⋅ ϵL/R)eik⋅r,

(3)

where T̂L/R(ω) is the effective interaction operator (cf. Ref. 28), α are
Dirac matrices, and

ϵL/R =
1
√

2
(ϵ1 ± iϵ2) = ϵ∗R/L. (4)

For notational simplicity, we tacitly assume the summation over
electrons in the effective interaction operator in Eq. (3). Consider-
able simplifications arise from the fact that the relativistic interaction
operator is linear in the vector potential and there is no separation
into spin and spatial parts.

The linear absorption cross section between initial and final
states, ∣i⟩ and ∣ f ⟩, respectively, is then given by

σL/R(ω) =
πω

ε0h̵c
∣ϵL/R ⋅ T∣2 f (ω, ω f i, γ f i), T = ⟨ f ∣

e
ω

cαeik⋅r
∣i⟩. (5)

The use of Fermi’s golden rule for a transition between discrete states
is justified by the inclusion of a (Lorentzian) line shape function
f (ω, ω fi, γ fi) expressing the finite lifetime of excited states (see the
discussion in Ref. 28). Moreover, the line shape function, having the
dimension of time, has to be included in order for the absorption
cross section to have the correct dimension of area. On the other
hand, the dimensionless differential oscillator strength is obtained
from the absorption cross section by the pre-factor substitution

πω
ϵ0 h̵c →

2meω
h̵e2 and removal of the line shape function. In the inter-

est of compact expressions, we shall in the following carry out our
derivations using oscillator strengths rather than absorption cross
sections.

Evaluating the differential oscillator strengths between left and
right circularly polarized light starting from Eq. (5) provides the
expression for the anisotropic differential oscillator strength using
the full semi-classical interaction operator,

Δ f = fL − fR =
2meω

h̵e2 {(ϵL ⋅ T)(ϵR ⋅ T∗) − (ϵL ⋅ T∗)(ϵR ⋅ T)}

=
2meω

h̵e2 (ϵL × ϵR) ⋅ (T × T∗)

= −i
2meω

h̵e2 ek ⋅ (T × T∗), (6)

where we have used Eq. (4) and the vector relation

(a × b) ⋅ (c × d) = (a ⋅ c)(b ⋅ d) − (a ⋅ d)(b ⋅ c). (7)

This final, compact expression represents the relativistic extension
of the expression previously reported by Hansen and Avery.53

It is instructive to compare the differential oscillator strength
in Eq. (6) (ECD) with the oscillator strength associated with lin-
early polarized light. The latter is obtained by replacing the complex
polarization vector ϵL/R in Eq. (5) by the polarization vector ϵ giving
the direction of the electric field vector in the plane perpendicular to
the wave vector. One immediately notes that the differential oscil-
lator strength contains no reference to polarization vectors at all,
which can be understood as a manifestation of axial symmetry. This
simplifies the rotational averaging appropriate for samples such as
liquids and gases, with freely tumbling molecules. Specifically, the
rotational average involves three angles (θ, ϕ, χ): The first two are
associated with an average over propagation direction, whereas the
polarization angle χ now becomes redundant.

B. Truncated interaction
1. Multipoles in the velocity representation

In our previous work on the absorption of linearly polarized
light, we considered two schemes involving truncated light–matter
interaction.28 In the first scheme, referred to as the generalized veloc-
ity representation, the truncated interaction is obtained via a Taylor
expansion of the oscillator strength in orders of the wave vector.
This is a relativistic extension of the theory developed by Bernadotte
et al.54 Applying this to Eq. (6), we obtain the following expressions
for the differential oscillator strength to even and odd order in the
wave vector:

Δ f [2n]
=

2meω
h̵e2 ek ⋅

n

∑
m=0
(−1)m

(2 − δm0)

× Im{(T[n+m]
× T[n−m]∗

)} = 0, (8)

Δ f [2n+1]
=

2meω
h̵e2 ek ⋅

n

∑
m=0
(−1)m2 Re{T[n+m+1]

× T[n−m]∗
}, (9)

where

T[n] ⋅ ϵL/R = ⟨ f ∣T̂[n]L/R∣i⟩, T̂[n]L/R =
e
ω

1
n!
(icα ⋅ ϵL/R)(k ⋅ r)n. (10)

Note that only odd-order terms are sensitive to the handedness and
hence contribute to the expansion. This is a consequence of the time-
reversal symmetry of the truncated interaction operators, making
the corresponding transition moments real.28 It should be stressed
that the (differential) oscillator strength is gauge-origin invariant
in each order, whereas the transition moments are intrinsically
gauge-origin dependent.28,54

In the second scheme, referred to as generalized length repre-
sentation, we transform to multipolar gauge (mg).28,55–59 Using the
Einstein summation convention, the full interaction operator is then
expressed as

V̂mg(ω) =
∞

∑
n=0

V̂[n]mg (ω),

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂[0]mg(ω) = −Q̂[1]p E[0]p ,

V̂[n≠0]
mg (ω) = −

1
(n + 1)!

Q̂[n+1]
j1...jnpE[n]p;j1...jn

−
1
n!

m̂[n]j1...jn−1 ;rB[n−1]
r;j1...jn−1

,
(11)
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where appears electric and magnetic multipole operators,

Q̂[n+1]
j1...jnp = −erj1 rj2 . . . rjn rp, (12)

m̂[n]j1...jn−1 ;r =
n

n + 1
rj1 rj2 . . . rjn−1(r × ĵ)r , ĵ = −ecα, (13)

which couple to the electric and magnetic fields and their derivatives,

F[n]p;j1...jn
=

∂nFp

∂rj1∂rj2 . . . ∂rjn

∣

r=0
, F = E, B, (14)

at a selected expansion point, here set to the origin. The cor-
responding nth-order effective interaction operator is given by

T̂[n]mg;L/R(ω) = −e[
1

(n + 1)!
(r ⋅ ϵL/R)(ik ⋅ r)n

−
i
ω

n
(n + 1)!

× (ik × ϵL/R) ⋅ (r × cα)(ik ⋅ r)n−1
]. (15)

In the component form, the effective interaction operator is
conveniently expressed as

T̂[n]mg;L/R(ω) = inϵL/Rpkj1 kj2 . . . kjn X̂[n]j1...jn ;p(ω), (16)

in terms of a multipole operator,28

X̂[n]j1...jn ;p(ω) =
1

(n + 1)!
Q̂[n+1]

j1...jn ,p −
i
ω

1
n!

m̂[n]j1...jn−1 ;rεrjnp, (17)

(εrjnp is the Levi–Cività symbol). However, in contrast to the general-
ized velocity representation, we now loose the origin independence
of oscillator strengths.28

It is possible, though, to combine the best of both worlds.
In our previous work,28 we have shown that it is possible within
the generalized velocity representation to distinguish electric and
magnetic multipole components, while maintaining origin indepen-
dence of the oscillator strengths, although its individual components
still exhibit this dependency. The operator manipulations required
for this separation do not involve commutators with the Hamil-
tonian and are therefore also valid when using finite basis sets.
We here review and expand this result. Using the vector relation
in Eq. (7), the effective interaction operator of Eq. (10) can be
rewritten as

T̂[n]L/R =
e
ω
[

1
(n + 1)!

{(icα ⋅ ϵL/R)(k ⋅ r)n
+ n(k ⋅ icα)

× (ϵL/R ⋅ r)(k ⋅ r)n−1
} +

n
(n + 1)!

(k × ϵL/R)

⋅ (r × icα)(k ⋅ r)n−1
]. (18)

As evident upon comparison to Eq. (15), we have effectively recov-
ered the magnetic multipole part of the operator, and, in fact,

writing the corresponding nth-order interaction operator V̂[n]L/R out
in the component form, we recover the expression of Eq. (11),
with the important modification that the electric multipole operator
in the length representation Eq. (12) is replaced by its counterpart in
the velocity representation

Q̂[n+1]
j1...jnp =

ie
ω

rj1 . . . rjn−1((cαp)rjn + n(cαjn)rp). (19)

This somewhat curious form is perhaps best understood by noting
that the operator can equally well be expressed as

Q[n+1]
j1...jnp =

ie
ω
(cαj1 rj2 . . . rjn rp + ⋅ ⋅ ⋅ + rj1 rj2 . . . cαjn rp + rj1 rj2 . . . rjn cαp)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(n+1) terms

,

(20)

being perfectly symmetric in all indices { j1 . . . jnp}, just as Eq. (12).
The more compact expression in Eq. (19) is possible because the
relativistic velocity operator cα commutes with the coordinates, con-
trary to the corresponding non-relativistic operator p/m. Finally,
using the commutator relation with the Hamiltonian

−
i
h̵
[(r ⋅ ϵL/R)(k ⋅ r)n, ĥ] = (cα ⋅ ϵL/R)(k ⋅ r)n

+ n(r ⋅ ϵL/R)

× (k ⋅ cα)(k ⋅ r)n−1, (21)

one can show that transition moments of the electric multipole oper-
ator in the length and velocity representation will be identical.28

However, very importantly, this generally only holds in a complete
basis.

The odd-order oscillator strength of Eq. (9) may now be
expressed as

Δ f [2n+1]
=

2meω
h̵e2 k2n+1ek;j1 . . . ek;j2n+1 ek

⋅
n

∑
m=0
(−1)m2(X[n+m+1]

j1...jn+m+1
×X[n−m]

jn+m+2...j2n+1
), (22)

where the components of the real vector X[n]j1...jn
are given as the tran-

sition moments of the multipole operator in Eq. (17) in the velocity
representation, that is, using Eq. (19) for the electric multipole
operator.

2. Angular dependence of truncated ECD
In the anisotropic case, both the full and truncated differen-

tial oscillator strengths [Eqs. (6) and (22), respectively] are functions
of the orientation of the incident radiation. In the case of truncated
interaction, we make this angular dependence explicit by writing the
unit wave vector as

ek = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (23)

The first-order differential oscillator strength can then be expanded
as
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Δ f [1](θ, ϕ) = ek;iR
[1]
ij ek;j

= R[1]iso +
1
2
(R[1]zz − R[1]iso )(3cos2θ − 1)

+
1
2
(R[1]xz + R[1]zx ) sin 2θ cos ϕ

+
1
2
(R[1]yz + R[1]zy ) sin 2θ sin ϕ

+
1
2
(R[1]xx − R[1]yy )sin2 θ cos 2ϕ

+
1
2
(R[1]xy + R[1]yx )sin2 θ sin 2ϕ, (24)

where we have introduced the rotational strength tensor R[1]ij (cf.

Ref. 60) and its isotropic part R[1]iso , known as the rotational strength,

R[1]ij =
4meω2

h̵ce2 (X
[1]
j ×X[0])

i
, R[1]iso =

1
3
(R[1]xx + R[1]yy + R[1]zz ). (25)

From Eq. (24), we see that the anisotropic part of Δ f [1]
(θ, ϕ) is a

linear combination of d-orbitals weighted by the relevant elements
of the rotatory strength tensor. This can be made more explicit by
rewriting the first-order differential oscillator strength as

Δ f [1](θ, ϕ) =
√

15R[1]iso s +
√

3(R[1]zz − R[1]iso )dz2

+ (R[1]xx − R[1]yy )dx2−y2 + (R[1]xz + R[1]zx )dxz

+ (R[1]yz + R[1]zy )dyz + (R[1]xy + R[1]yx )dxy, (26)

where we have used a common normalization for all solid
harmonics.

From Eq. (22), we see that rotational strength tensors can be
generalized to arbitrary odd orders. It will also be seen that the dif-
ferential oscillator strength Δ f [2n+1] contains products of 2(n + 1)
components of the unit wave vector and is therefore spanned by
spherical harmonics of even ℓ = 0, 2, . . . , 2(n + 1).

In the supplementary material, the (first-order) rotational
strength tensor is analyzed in terms of symmetry for the C2 point
group of the disulfide configurations considered, assuming the rota-
tion axis to coincide with the z-axis. We also show that the rotational
strength tensor in the generalized velocity representation is invariant
under a shift of origin, also in a finite basis, which generally does not
hold true in the generalized length representation. As pointed out
above, the separation into electric and magnetic multipole contri-
butions generally depends on the choice of gauge origin and, thus,
is not unique. However, the presence of symmetry may introduce
additional gauge-origin invariances.61 The E1–M1 and E1–E2 con-
tributions to the R[1]z∗ elements are separately invariant under origin
shifts along the rotation axes (Sec. S3); in A symmetry, this holds for
all elements of the full rotational strength tensor.

In the case of the full interaction, the factorization of radial and
angular parts is possible using the plane wave expansion

eik⋅r
= 4π

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

iℓjℓ(kr)Ym
ℓ (ek)Y

m∗
ℓ (er) (27)

in terms of spherical harmonics Ym
ℓ and spherical Bessel functions

jℓ. However, it is more cumbersome since it involves infinite sums
over angular momentum ℓ and will not be pursued further here.

C. Rotational average
As pointed out above, rotational averaging is simplified for the

differential oscillator strength because of the absence of reference
to the polarization vectors. It is therefore limited to the solid angle
indicating the propagation direction and is defined as

⟨g(r)⟩θ,ϕ =
1

4π∫
2π

0
∫

π

0
g(r) sin θdθdϕ. (28)

In the case of the full light–matter interaction, the rotational average
is handled numerically using a Lebedev grid.27,28 In the case of the
truncated interaction, the rotational average is expressed as

⟨Δ f [2n+1]
⟩

θ,ϕ
= Δ f [2n+1]

iso =
2meω

h̵e2 k2n+1
⟨ek;j1 . . . ek;j2n+1 ek⟩θ,ϕ

⋅
n

∑
m=0
(−1)m2{X[n+m+1]

j1...jn+m+1
×X[n−m]

jn+m+2...j2n
}. (29)

In the lowest order, the isotropic differential oscillator strength
becomes

⟨Δ f [1]⟩θ,ϕ =
4meω2

3h̵ce2 ∑
j
(X[1]j ×X[0])

j

=
8meω2

3h̵ce2 ∑
j
⟨ f ∣Q̂[1]j ∣i⟩⟨ f ∣ −

i
ω

m̂[1]j ∣i⟩ = R[1]iso , (30)

where we have used that ⟨ek;jek⟩θ,ϕ =
1
3 ej and that the E1–E2

contribution vanishes since its elements form a traceless matrix.

III. IMPLEMENTATION DETAILS
In practice, the interaction operator is separated into Hermi-

tian and anti-Hermitian parts for compatibility with the quaternion
symmetry scheme of DIRAC (see Refs. 28 and 62). The imple-
mentation of Eq. (6) requires the same integrals as the linear
oscillator strength, and thus, our previous integral implementation
could be readily extended to ECD.26,27 The integral evaluation over
Lebedev points has been parallelized using MPI (Message Passing
Interface).

IV. COMPUTATIONAL DETAILS
The geometries of H2S2 and (CH3S)2 were obtained using the

B3LYP63–66 exchange–correlation functional and the cc-pVTZ67,68

basis set. Geometry optimizations were performed in Gaussian
16.69 To mimic the χ3 disulfide angle typical for protein struc-
tures,70 we performed constrained geometry optimizations for χ3
= −87○, corresponding to M-helical chirality.71 The restricted exci-
tation window approach72,73 was used to selectively target the sulfur
L- and K-edges. This also eliminates the issue of artificial transi-
tions to quasi-continuum orbitals caused by finite basis set effects
that otherwise often interfere with simulations at the L-edge.74,75 A
Gaussian model was employed for the nuclear charge distribution,76

and an 86-point Lebedev grid (Lmax = 12) was used for the isotropic
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averaging of the differential linear absorption based on the full inter-
action operator. The gauge origin was placed in the center-of-mass
(COM), and spatial symmetry was invoked in all cases except for the
gauge-origin dependence calculations.

Excitation energies, linear and differential absorption cross
sections for the full interaction operator, and the multipole expan-
sions within the generalized velocity gauge were computed using
the PBE077,78 exchange–correlation functional and the uncontracted
aug-pcX-379 and aug-pc-380–82 basis sets for sulfur and hydrogen,
respectively. The pcX-n basis set series was developed for describ-
ing core-excitation processes using the ΔSCF (Self-Consistent Field)
approach at both the nonrelativistic and relativistic levels. The
small component basis sets were generated within the condition
of restricted kinetic balance. The relativistic calculations were per-
formed using a Dirac–Coulomb Hamiltonian in which the (SS∣SS)
integrals are replaced by an interatomic SS energy correction.83

The gauge-origin invariance of our implementation of the full
semi-classical formulation of the isotropic and anisotropic rota-
tory strengths [Eq. (6)] and its first-order truncated counterpart
was confirmed numerically by shifting the gauge-origin (from 0
to 100 a0) along the C2 axis. This leads to a redistribution of the

E1–E2 and E1–M1 contributions to R[1]xx and R[1]yy for transitions
of B symmetry. As expected, the results remained unchanged for
both the full and truncated formulations (data not shown). Sim-
ulated spectra were obtained by convolving the stick spectrum
with Gaussian line shape functions with a full width at half maxi-
mum (FWHM) of 0.4 eV, and those for (CH3S)2 were shifted by
different offsets for each absorption edge to match their experimen-
tal counterparts.

V. RESULTS AND DISCUSSION
Before considering the ECD response of the disulfides, we

assign the linear absorption features across the valence and x-ray
regions. We initially focus on (CH3S)2 for which experimental gas-
phase absorption spectra are available.84–88 Expectedly, and as shown
in Fig. S1, the spectral profiles for H2S2 are similar, and because
of its greater computational tractability, we consider this minimal
disulfide in subsequent analyses.

Figure 1 displays the rotationally averaged linear and differ-
ential absorption spectra for valence transition and sulfur L- and
K-edge transitions of (CH3S)2, computed using the full interaction

FIG. 1. Isotropic linear (top) and differential (bottom) absorption spectra of (CH3S)2: (a) valence, (b) L2,3-edge, (c) L1-edge, and (d) K-edge spectra using the full interaction
operator in Eq. (3) (green shadings) or the lowest non-vanishing generalized velocity representation (orange lines). The left axes correspond to (differential) absorption
cross sections, whereas (differential) oscillator strengths (sticks) are shown on the right axes. The black sticks indicate the location of all computed transitions, whereas the
black lines are experimental spectra.84–88 The stick spectra were convolved with a Gaussian line shape with a FWHM of 0.4 eV. The theoretical absorption spectra have
been uniformly shifted to align with the experimental counterparts (shift values indicated in the top panels). The same shifts were applied to the ECD spectra.
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operator (green shading) with corresponding oscillator strengths
indicated as green sticks. Hereafter, we explicitly indicate the results
of the full interaction with the superscript “full.” For comparison,
we also provide the lowest non-vanishing terms in the truncated
generalized velocity representation (orange lines) for linear and dif-
ferential absorption, i.e., zeroth- and first-order in the magnitude
of the wave vector, respectively. The black sticks at the top indicate
the location of the underlying electronic transitions, and black lines
(solid and dashed) indicate the experimental absorption spectra.84–88

Apart from uniform shifts necessary to align the lowest-energy
band to the respective experimental spectrum, the theoretical spectra
capture well both relative intensities and peak splittings.

The first valence band [Fig. 1(a)] is dominated by the two exci-
tations from the symmetric and antisymmetric combinations of the
non-bonding 3p orbital on each sulfur to the lowest unoccupied σ∗SS
orbital (b symmetry). This assignment is consistent with the anal-
ysis by Linderberg and Michl on H2S2.89 Since the valence orbitals
are found to have well-defined spin, we adopt a non-relativistic state
notation for the valence states, i.e., 11B and 21A, respectively. They
are separated by ∼ 0.15 eV. The second valence band originates from
transitions into the σ∗CS orbital (31A and 21B).

Turning to the x-ray region, the first two bands at the sulfur
L2,3-edge [Fig. 1(b)] are dominated by transitions from the symmet-
ric and antisymmetric combinations of the S 2p3/2 and 2p1/2 core
orbitals to the σ∗SS orbital. We note that the A/B pair of associated
transitions are essentially degenerate (less than 0.1 meV splitting)
because of the limited overlap between the core orbitals on each
of the sulfur atoms. The calculated spin–orbit splitting of ∼1.35 eV
between the L3- and L2-branches is comparable to the experimen-
tal splitting reported for dihydrogen sulfide (∼ 1.2 eV90,91). The
L3/L2 branching ratio of ∼1.4 : 1 (obtained by summing the under-
lying oscillator strengths) deviates significantly from its statistical
value, which is obtained only in the limit of j − j coupling.92,93 The
second peak in each branch is dominated by excitations to the
σ∗CS orbital and is separated from the first peak by ∼1.4–1.5 eV.
Consequently, the second band in the spectrum contains contri-
butions from both branches, whereas the third band is associated
with the second peak in the L2 branch. These assignments agree
with previous studies.86,94 The energy range considered as well as
the basis set used in our calculations does not cover the fourth
band in the experimental spectrum that, according to previous
work,86 originates from excitations to higher-lying orbitals of mixed

TABLE I. Beyond first-order effects in the isotropically averaged and anisotropic rotatory strengths for the lowest intense valence transition and L- and K-edge transitions
of (CH3S)2 for the full semi-classical light–matter interaction operator and in first-order within the Coulomb gauge, computed at the 4c-TD-PBE0 level of theory and the
uncontracted aug-pcx-3/aug-pc3 basis set. For the oriented case, θ = ϕ = π/2 for the valence and L2,3-edge transitions and θ = π/2, ϕ = π/4 for the L1- and K-edge transitions
[cf. Eq. (23)]. For each spectral region, the accumulated (differential) oscillator strength (ac) across the two pairs of transitions (A/B symmetry) is given in the third line. The
numbers in parentheses are exponents of 10.

Transition ΔE (eV) f full
iso f [0]iso Δ f full

iso Δ f [1]iso Δ f full
k Δ f [1]k

Valence

11B (nS → σ∗SS) 4.695 14 7.7977(−03) 7.7974(−03) −1.0856(−04) −1.0856(−04) −6.1154(−05) −6.1147(−05)
21A (nS → σ∗SS) 4.770 69 2.0797(−03) 2.0793(−03) 8.1247(−05) 8.1244(−05) 1.1759(−04) 1.1758(−04)

ac 9.8773(−03) 9.8767(−03) −2.7316(−05) −2.7317(−05) 5.6436(−05) 5.6435(−05)
L2,3-edge

6B (2p3/2 → σ∗SS) 158.087 21 3.1232(−03) 3.1230(−03) 5.0231(−04) 5.0326(−04) −1.1661(−03) −1.169 2(−03)
6A (2p3/2 → σ∗SS) 158.087 23 2.6587(−03) 2.6566(−03) −4.9798(−04) −4.9892(−04) 1.1726(−03) 1.1757(−03)

ac 5.7818(−03) 5.7796(−03) 4.3272(−06) 4.3363(−06) 6.4960(−06) 6.5232(−06)
10A (2p1/2 → σ∗SS) 159.293 75 1.2239(−03) 1.2227(−03) −2.5299(−04) −2.5345(−04) −5.7854(−04) −5.7988(−04)
10B (2p1/2 → σ∗SS) 159.293 87 1.3957(−03) 1.3953(−03) 2.5605(−04) 2.5651(−04) 5.8340(−04) 5.8476(−04)

ac 2.6196(−03) 2.6180(−03) 3.0568(−06) 3.0622(−06) 4.8616(−06) 4.8783(−06)
L1-edge

4B (2s1/2 → σ∗SS) 216.393 99 3.6733(−02) 3.6872(−02) −3.1538(−05) −3.1716(−05) −1.0027(−03) −1.008 5(−03)
4A (2s1/2 → σ∗SS) 216.395 99 2.9891(−04) 1.7881(−04) 3.1469(−05) 3.1646(−05) 1.0279(−03) 1.033 8(−03)

ac 3.7032(−02) 3.7051(−02) −6.9310(−08) −6.9637(−08) 2.5196(−05) 2.521 2(−05)
K-edge

4B (1s1/2 → σ∗SS) 2427.833 34 7.7555(−03) 1.0438(−02) −2.2670(−05) −4.6773(−05) −1.0771(−03) −1.984 2(−03)
4A (1s1/2 → σ∗SS) 2427.833 49 2.6746(−03) 2.4290(−05) 2.2665(−05) 4.6761(−05) 1.0754(−03) 1.982 3(−03)

ac 1.0430(−02) 1.0462(−02) −5.6000(−09) −1.1871(−08) −1.6290(−06) −1.821 6(−06)

J. Chem. Phys. 156, 054113 (2022); doi: 10.1063/5.0077502 156, 054113-7

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0077502/16769850/054113_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

σ∗CS/Rydberg character. Not surprisingly, the L1- and K-edge spec-
tra bear strong resemblance [Figs. 1(c) and 1(d)]: They display
two pre-edge features, separated by ∼1.5 eV, which originate from
pairs of near-degenerate excitations from the bonding and antibond-
ing combinations of sulfur s-orbitals into the σ∗SS and σ∗CS orbitals,
respectively.87,95,96

A non-vanishing ECD response in these minimal disulfides
results from axial chirality caused by trapping the disulfide bridge
in a non-planar (i.e., C2) conformation. As described above, the two
lowest-energy transitions in each spectral domain are dominated by
an excitation from the bonding or antibonding combinations of the
relevant atomic orbitals on the sulfurs into the σ∗SS orbital. This pair-
ing of transitions manifests as bisignate features in the low-energy
region of the ECD spectra. On the basis of the simple Bergson model
for the low-energy transitions in the disulfide chromophore,97,98

Linderberg and Michl89 formulated a quadrant rule for the opti-
cal activity of the two low-energy valence transitions (dominated
by excitations from the symmetric and antisymmetric combinations
of non-bonding 3p orbitals on sulfurs to the σ∗SS orbital) in organic
disulfides. This rule relates the sign of the long-wavelength Cotton
effect across the four dihedral quadrants and is a specific case of
the C2-rule for general chromophores of effective C2 symmetry.99

Woody extended the theoretical analysis to also include the abso-
lute sign of the lowest ECD band within each quadrant,100 providing

predictions in agreement with experimental results across different
dihedral angles.101–104

For the M-helical form considered here, we find a negative-
first Cotton effect, consistent with the quadrant rule.100 The intensity
asymmetry of the lowest-energy valence couplet is attributed to dif-
ferent intrafragment (i.e., CH3S–) contributions to the ECD signal of
each transition. At higher energies, the electronic coupling between
the (core) orbitals on different fragments decreases, reducing both
the energetic splitting between symmetric and antisymmetric com-
binations as well as the intrafragment ECD contribution itself, since
the environment is increasingly achiral on each fragment. As a
consequence, the paired core transitions become near-degenerate
(energy splitting of a few meV or less) with weak rotational strengths
of almost equal magnitudes but opposite signs (see Table I).
After additionally accounting for sources of broadening, including
finite core-hole lifetimes (∼0.1 and ∼0.5 eV at the sulfur L- and
K-edges,105,106 respectively), the bisignate feature may coalesce into
a single signal with the absolute sign given by the most intense of the
pair of transitions (this will be seen in Fig. S2). In sum, the effective
signals are reduced by orders of magnitude in the x-ray region (see
the accumulated values in Table I).

The linear absorption profiles with the full interaction and
the electric-dipole approximation essentially coincide across the
four spectral regions. However, as shown by the underlying

FIG. 2. Comparison of full and truncated differential oscillator strength Δ f(θ, ϕ) across the spectral regions (valence, L3-edge, L1-edge, and K-edge). Transitions of [(a)–(d)]
A and [(e)–(h)] B symmetry in H2S2. The black arrow points along the direction of the wave vector for the anisotropic ECD intensity given in Table I. The truncated ECD is
represented by the smooth surface, whereas the full ECD is shown as individual points generated with a 5810-point Lebedev grid (Lmax = 131). Blue: negative and red:
positive ECD signal. Note that different scaling factors (upper right corner) have been applied. The corresponding isotropic differential oscillator strengths are indicated in
each inset.

J. Chem. Phys. 156, 054113 (2022); doi: 10.1063/5.0077502 156, 054113-8

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0077502/16769850/054113_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

oscillator strengths in Table I, non-dipolar effects at the K-edge lead
to intensity redistribution among the underlying near-degenerate
transitions (i.e., unrelated to the arbitrary mixing allowed for degen-
erate states). Nonetheless, the overall spectral profiles within and
beyond the electric-dipole approximation are essentially identical
because of the nearly overlapping transitions. This is consistent
with our previous findings for Cl K-edge absorption in TiCl4.28 In
contrast, the beyond-first-order effects become evident in the differ-
ential K-edge absorption profile because of the signed nature of the
underlying quantities. This leads to a factor-of-two overestimation
of the ECD within the conventional first-order treatment. Introduc-
ing third-order contributions largely corrects this discrepancy at the
sulfur K-edge, but going to higher orders in the expansion is not a
general remedy, as will be discussed below.

To better understand the nature of the chiral response across
spectral regions, we computed the underlying anisotropic differen-
tial oscillator strength distributions, considering now the smaller
H2S2. Figure 2 shows the full ECD distributions (points), com-
pared with the first-order truncated counterparts (surfaces). The
solid angle represents the propagation direction, the distance from
the origin (COM) indicates the magnitude of the associated sig-
nal, and the color indicates its sign. Note that different scaling
factors have been applied across the transitions (see the upper
right corner of each inset). The C2-rotation axis coincides with the
z-axis, whereas the disulfide bond is along the x-axis. The shapes
of the anisotropic distributions can be understood by decompos-
ing the first-order signals into isotropic and d-orbital contributions
[Eq. (26)]. The resulting orbital weights of the excitations plotted in
Fig. 2 are reported in Table II.

From symmetry considerations detailed in the supplementary
material, we find that contributions from dxz and dyz vanish for exci-
tations of both A and B symmetries. In A symmetry, R[1]zz is also
zero by symmetry, such that the s- and dz2 -contributions come in
a fixed ratio, giving a toroid in the xy-plane. For valence and L3-edge
excitations of A symmetry, this shape is modulated by the dx2−y2 -
contribution, giving the shape of a biconcave disk elongated along
the y- and x-axis, respectively, depending on its relative sign. For the
L1- and K-edge excitations, the dxy-contribution completely domi-
nates. This is also the case for the corresponding excitations in the

TABLE II. Weights of contributions from solid harmonics [(24)] to the differential cross
section Δ f(θ, ϕ) of selected transitions in H2S2. The weights have been scaled by
the absolute value of the s-contribution. The numbers in parentheses are exponents
of 10.

Irrep Excitation Δ f [1]iso s dz2 dx2−y2 dxy

A

Valence 5.176(−05) 1.000 −0.447 0.300 −0.056
L3-edge −9.118(−05) −1.000 0.447 0.414 −0.031
L2-edge −2.824(−04) −1.000 0.447 0.408 −0.024
L1-edge 7.316(−05) 1.000 −0.447 −0.862 8.817
K-edge 1.657(−04) 1.000 −0.447 −0.772 9.108

B

Valence −7.624(−05) −1.000 −0.328 −0.090 0.314
L3-edge 9.186(−05) 1.000 −0.132 −0.592 −0.005
L2-edge 2.883(−04) 1.000 −0.128 −0.591 −0.008
L1-edge −7.312(−05) −1.000 2.503 −0.347 −8.262
K-edge −1.657(−04) −1.000 0.377 0.813 −9.125

B symmetry. It may be noted that in the A symmetry, the E1–M1
contribution to the dxy term is zero by symmetry, whereas in the
B symmetry, the E1–E2 and E1–M1 contributions are of similar
magnitude and the same sign. Continuing to the L3 excitation of
the B symmetry, the angular plot resembles that of its counterpart
in the A symmetry, albeit with opposite overall sign and rotated
π/2 about the molecular axes. The latter can be understood from
the relative weights of the dz2 - and dx2−y2 -contributions, as seen in
Table II. Finally, the angular plot of the valence excitation in the
B symmetry is a biconcave disk elongated along the z-axis, arising
from the positive interference between s- and dz2 -contributions con-
trary to the negative interference observed for its counterpart of the
A symmetry.

Next, we compare these conventional first-order truncated
ECD distributions with their full counterparts. For the valence,
L3-edge, and L1-edge transitions, the anisotropic distributions vir-
tually coincide, thereby confirming the validity of the first-order
truncated description also for the anisotropic signal in these energy
regimes. On the other hand, the full and truncated ECD distribution
for the K-edge transitions is seen to have the same overall shape,
but markedly different size, such that the factor-of-two overestima-
tion at first order of the isotropic response (Tables I and S1) arises
largely from an overall scaling. Closer inspection of the angular dis-
tribution of the full ECD distribution reveals that the lobes are not
strictly perpendicular as in a dxy-orbital, hence indicating the con-
tributions from solid harmonics of higher even angular momentum.
To investigate this further, we provide the order-by-order contribu-
tions together with the full anisotropic ECD distribution in Fig. 3.
Although Δ f [3]

(ℓ = 0, 2, 4) resembles Δ f [1], the inclusion of higher-
order solid harmonics in the former leads to non-orthogonal lobes.
Furthermore, the two distributions differ by an overall sign, such

FIG. 3. Convergence of the truncated anisotropic ECD distributions, i.e.,
Δ f [2n+1]

(θ, ϕ), for the K-edge transitions of (a) A and (b) B symmetry in H2S2.
The superscript notation Δ f (→m) indicates accumulated contributions up through
mth order. The black arrows point along the direction of the wave vector for the
anisotropic ECD intensity given in Table S1.
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that the inclusion of Δ f [3] decreases the ECD signal. A possible issue
is the rate of convergence of the truncated interaction toward the full
one. Our implementation of truncated interaction for linear absorp-
tion allows us to go to arbitrary order, a unique functionality of the
DIRAC code. In our previous work on the absorption of linearly
polarized light,28 we demonstrated that the truncated treatment
converges to the full interaction upon inclusion of higher-order
terms, but for higher-energy transitions (photon energies beyond
∼1000 eV), the convergence behavior was too slow for practical
applications. In the present case, we assessed the convergence of
the isotropic differential oscillator strength expansion at the sulfur
K-edge and found that the relative error is below the threshold of
1% at seventh order (Table III). Indeed, as shown in Fig. 3, the Δ f [5]

distribution (ℓ = 0, 2, 4, 6) is minute. A similar convergence rate is
found for the isotropic linear oscillator strength. From these data, it
follows that the rate of convergence is acceptable for the application
to the sulfur K-edge.

To assess whether the truncated formalism is applicable at
higher transition energies, we have performed an additional series
of calculations of the K- and L1-edge isotropic differential oscillator
strength for the heavier H2X2 analogs (X = Se and Te). As shown
in Sec. S2, we find that only the selenide L1-edge converges at a
sufficient rate, whereas it is too slow to practically converge for all
other edges. In both cases, the first-order treatment not only overes-
timates the rotatory strengths of individual transitions but also most

TABLE III. Contributions to the isotropic linear and differential oscillator strength

(Δ f [2n+1]
iso and f [2n]

iso ) at various orders for H2S2, n = 0, 1, 2, 3, compared to the
result of the full interaction for the two 1s1/2 → σ∗SS transitions of the A/B symmetry.

The superscript notation ◻(→m) indicates accumulated contributions up through mth
order. In particular, the “ac”-labeled row indicates the (differential) oscillator strengths
accumulated through 8th (9th) order. The errors upon truncation are defined as

%δΔ f (→2n+1)
iso = ∣(Δ f (→2n+1)

iso − Δ f full
iso)/Δ f full

iso∣ × 100%. The results were obtained
using the 4c-TD-PBE0 level of theory and the uncontracted aug-pcx-3/aug-pc3 basis
set. The numbers in parentheses are exponents of 10.

4A (1s1/2 → σ∗SS); ωA = 2427.883 49 (eV)

n f [2n]
iso Δ f [2n+1]

iso %δ f (→2n)
iso %δΔ f (→2n+1)

iso

0 5.5576(−05) 1.6569(−04) 97.99 109.10
1 3.4276(−03) −1.0818(−04) 26.07 27.42
2 −8.1305(−04) 2.4151(−05) 3.36 3.06
3 9.9900(−05) −2.2416(−06) 2.57(−1) 2.32(−1)
4 −7.5661(−06) 1.2938(−07) 1.69(−2) 3.96(−1)

ac 2.7625(−03) 7.9240(−05) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

full 2.7630(−03) 7.9240(−05) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

n 4B (1s1/2 → σ∗SS); ωB = 2427.833 34 (eV)

0 1.0512(−02) −1.6570(−04) 35.24 109.10
1 −3.4601(−03) 1.0818(−04) 9.27 27.42
2 8.1318(−04) −2.4153(−05) 1.19 3.06
3 −9.9897(−05) 2.2413(−06) 9.60(−2) 2.24(−1)
4 7.5513(−06) −1.2878(−07) 1.43(−3) 3.98(−1)

ac 7.7729(−03) −7.9433(−05) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

full 7.7728(−03) −7.9246(−05) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

critically incorrectly predicts the signs of (the intense) pairs of near-
degenerate transitions. It thereby appears that the breakdown of the
first-order description at the sulfur K-edge, and not at the sulfur
L-edges, is a consequence of its order-of-magnitude higher transi-
tion energy (∼215 and 2427 eV at the L1- and K-edges).

VI. CONCLUSION
We have reported the first implementation and application of

the anisotropic and isotropic ECD signal using the full semi-classical
light–matter interaction operator within a four-component rela-
tivistic framework. This simultaneous account of beyond-first-order
light–matter interactions and relativistic effects provides two addi-
tional sources of ECD, which become increasingly important at high
photon energies. The linear form of the light–matter interaction
operator in the relativistic domain further enabled straightforward
extension to a multipole-based scheme in the velocity representation
that allows for the traditional (albeit, in general, ambiguous) decom-
position into electric and magnetic contributions while retaining
order-by-order gauge-origin independence.

The presented approach was used to investigate the ECD
response of two prototypical disulfides, H2S2 and (CH3S)2, across
the electromagnetic spectrum, from valence to core transitions.
To quantify the implications of higher-order effects, we compared
the results of the full interaction to those obtained within the
traditional lowest-order non-vanishing (i.e., first-order) truncated
generalized velocity representation. Going beyond the electric-
dipole approximation at the sulfur K-edge leads to non-negligible
intensity redistribution among near-degenerate transitions but with
no visible implications on the linear absorption profile. On the other
hand, the differential absorption profile is affected by such redistri-
bution because of its signed nature. This leads to an overall factor-
of-two overestimation. By examining the shapes of the underlying
anisotropic ECD distributions, we find this discrepancy to largely
originate from an overall scaling that is corrected upon introduc-
ing third-order contributions. Critically, the first-order treatment
deteriorates at higher transition energies (beyond ∼1000 eV) where
it may even fail to predict the sign of individual differential oscil-
lator strengths. At such energies, going to higher orders is not a
practical remedy because of the slow convergence of the truncated
interaction—the full interaction is a must.

From a practical point of view, the full interaction operator
provides a compact and inherently gauge-origin invariant treat-
ment of light–matter interactions, which is both implementation-
and computation-wise competitive with traditional multipole-based
schemes for oriented and isotropic linear spectroscopies. For this
reason, we believe that the use of the full light–matter interaction
will become the new standard for theoretical x-ray spectroscopies.
The question of how to efficiently handle the rotational averaging for
nonlinear light–matter interactions will be explored in future work.

SUPPLEMENTARY MATERIAL

See supplementary material for linear and differential absorp-
tion spectra and corresponding tabulated oscillator strengths for
H2S2, The analysis of the L1- and K-edges of the H2X2, X = S, Se, and
Te series, and the analysis of the structure and origin dependence of
the rotational strength tensor.
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