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Abstract Identification of asymptomatic patients at higher risk for suffer-
ing cardiac events remains controversial and challenging in Brugada syndrome
(BS). In this work, we proposed an ECG-based classifier to predict BS-related
symptoms, by merging the most predictive electrophysiological features de-
rived from the ventricular depolarization and repolarization periods, along
with autonomic-related markers. The initial feature space included local and
dynamic ECG markers, assessed during a physical exercise test performed in
110 BS patients (25 symptomatic). Morphological, temporal and spatial prop-
erties quantifying the ECG dynamic response to exercise and recovery were
considered. Our model was obtained by proposing a two-stage feature selec-
tion process, that combined a resampled-based regularization approach with a
wrapper model assessment for balancing, simplicity and performance. For the
classification step, an ensemble was constructed by several logistic regression
base classifiers, whose outputs were fused using a performance-based weighted
average. The most relevant predictors corresponded to the repolarization inter-
val, followed by two autonomic markers and two other makers of depolarization
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dynamics. Our classifier allowed for the identification of novel symptom-related
markers from autonomic and dynamic ECG responses during exercise testing,
suggesting the need for multifactorial risk stratification approaches in order to
predict future cardiac events in asymptomatic BS patients.

Keywords Brugada syndrome · depolarization disorders · ensemble classifier ·
heart-rate recovery · sudden cardiac death

Authors biography

Daniel Romero, PhD, is a postdoctoral researcher at the Institute for Bio-
engineering of Catalonia, former post-doctoral researcher at University of
Rennes 1, with expertise on biomedical signal processing, data analysis and
modeling, applied to the study of cardio-respiratory diseases.

Mireia Calvo, PhD, is a postdoctoral researcher at the Institute for
Bioengineering of Catalonia, former post-doctoral researcher at University of
Rennes 1, with expertise on biomedical signal processing and modeling, applied
to the study of cardiac diseases.

Virginie Le Rolle, PhD, is an associate professor at the University of
Rennes 1, with expertise on biomedical signal processing and cardiovascualr
modeling, applied to the study of cardiac diseases.

Nathalie Behar, MD, PhD, is a cardiology specialist at CHU-Rennes with
expertise in cardiac electrophysiology and implantable devices for therapies
related to cardiac diseases.

Philippe Mabo, MD, PhD, is a cardiology specialist and full professor
at CHU-Rennes, with expertise in cardiac electrophysiology and implantable
devices for therapies related to cardiac diseases.

Alfredo Hernández, PhD, is a Research Director at INSERM, with
expertise on biomedical data processing and computational modeling applied
to the study of cardiorespiratory diseases.

Author contributions

Conceptualization: Daniel Romero, Alfredo Hernández; Methodology: Daniel
Romero, Alfredo Hernández; Formal analysis and investigation: Daniel
Romero, Mireia Calvo, Virginie Le Rolle, Nathalie Behar, Philippe Mabo, Al-
fredo Hernández; Software and visualization: Daniel Romero; Writing -
original draft preparation: Daniel Romero; Writing - review and edit-
ing: Daniel Romero, Mireia Calvo, Virginie Le Rolle, Nathalie Behar, Philippe
Mabo, Alfredo Hernández; Funding acquisition: Daniel Romero, Alfredo
Hernández, Philippe Mabo; Resources: Nathalie Behar, Philippe Mabo, Al-
fredo Hernández; Supervision: Philippe Mabo, Alfredo Hernández.

Accepted manuscript



Title Suppressed Due to Excessive Length 3

1 Introduction

Brugada syndrome (BS) is a genetic pathology associated with a high risk for
sudden cardiac death (SCD) in patients with structurally normal hearts. It
is diagnosed when a coved type-1 electrocardiogram (ECG) morphology (ST-
segment elevation ≥ 2mm) is observed in at least one right precordial lead (V1
and/or V2), placed in the 2nd, 3rd or 4th intercostal space. This pattern can
be observed either spontaneously or after a provocative drug challenge test
using intravenous Na+ channel blockers [22,23].

Implantable cardioverter defibrillator (ICD) therapy is recommended (class
I) in BS patients who survived an aborted cardiac arrest and/or have suffered
spontaneous sustained ventricular tachycardias (VT). It should also be con-
sidered (class IIa) in those patients with a spontaneous type-1 ECG pattern
and history of syncope. The decision of implanting an ICD is far more com-
plex in those individuals who remain asymptomatic after BS diagnosis, which
represent around 60% of the BS population. Indeed, although these patients
show a lower risk of arrhythmic events, as reported in the FINGER study [24],
this risk is not insignificant and the consequences of not implanting an ICD
in these cases is extreme [28]. Therefore, one of the challenges regarding the
treatment of this pathology is the identification of useful quantitative markers
to identify asymptomatic patients that may have a higher risk of SCD and
that may properly benefit from the implantation of an ICD.

Several clinical and experimental electrophysiological studies have sug-
gested that both depolarization and repolarization disorders may significantly
contribute to the underlying pathophysiology of BS [15]. The presence of QRS
late potentials (LP), fragmented QRS complexes [17], the prolongation of both
the PR and QRS durations [19], as well as the appearance of wider S waves
in inferolateral leads and a rightward deviation of the QRS loop axis in its
terminal quarter [16], are some depolarization disorders that have been as-
sociated with BS, mainly related to a slowing conduction within the right
ventricular outflow tract (RVOT). Regarding repolarization, most alterations
observed from experimental studies have been related to an imbalance of the
ionic currents contributing to phase 1 of the action potential (AP) of cardiac
cells.

Furthermore, the role of the autonomic nervous system (ANS) seems to
have a significant impact in unmasking symptoms in this pathology, partic-
ularly during exercise testing. Tan et al. [29] reported that exercise resulted
in an increase of the J-point amplitude in BS patients. Makimoto et al. [13]
evaluated the relationship between the post-stress parasympathetic activation
and ST-segment changes. They reported that parasympathetic reactivation
during early recovery after exercise, assessed through the heart rate recovery
(HRR) index [4], tends to be higher in BS patients with prior VF episodes.
Furthermore, recent works from our group showed that symptomatic BS pa-
tients exhibit greater fluctuations in sinus node response to ANS in 24-h Holter
recordings [2] and an increased parasympathetic modulation during incremen-
tal exercise and early recovery [3].
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Multivariate approaches that involve several electrophysiological markers
have demonstrated their usefulness for assessing VF risk in BS patients [7],
increasing prognosis accuracy. Since both repolarization and depolarization
disorders mentioned above are manifested as a consequence of this genetic
disease, studies considering both scenarios simultaneously may provide more
meaningful insights than if considered separately. Moreover, the assessment of
cardiac electrophysiological markers from both ventricular repolarization and
depolarization periods, in addition to other autonomic-related parameters dur-
ing controlled autonomic maneuvers, such as physical exercise testing, could
have a great impact in the prognosis of BS patients.

In this study we aimed at designing a specific machine learning (ML)
pipeline to: 1) identify potentially predictive risk markers in BS patients based
on their symptomatology that may offer new insight; 2) propose a multivari-
ate classifier to discriminate between symptomatic and asymptomatic BS pa-
tients, with a good enough trade-off between performance and generalization.
To achieve these goals, depolarization and repolarization ECG-derived features
were obtained from 12-lead ECG recordings acquired during a standardized
exercise stress test. The HRR marker was also considered as an autonomic-
related parameter. The parameters with the greatest predictive potential were
identified through a resampled-based regularization approach to obtain sparse
and interpretable models, with high generalization capability. Then, the final
model was validated after further model assessment of an ensemble classifier
proposed herein, using a wrapper-based strategy for balancing simplicity and
performance.

2 Materials and methods

2.1 Study population

The study population comprises 110 consecutive patients (mean age = 44.6
± 13.7 years) suffering from Brugada syndrome, enrolled in a prospective,
multicentric study led by the cardiology department of the Rennes University
Hospital (CHU de Rennes), in collaboration with other french hospitals. The
study protocol was approved by the respective local ethics committees: Comité
d’Éthique du CHU de Rennes (ID RCB 2007-A00887-46), Comité d’Éthique du
CHU Saint-Pierre, Comité d’Éthique du CHU de Nantes, Comité d’Éthique du
CHU de Bordeaux, Comité d’Éthique du CHU de Brest and Comité d’Éthique
du Centre Hospitalier de La Rochelle; in accordance with the ICH E6 recom-
mendations, and the ethical principles of the Helsinki Declaration (1996 and
2000). All patients provided their written informed consent to participate in
the study.

From the total population, 25 patients presented clinical symptoms includ-
ing syncope or aborted SCD related to VF (symptomatic group) based on their
medical history. The remaining patients (asymptomatic group) had not pre-
sented BS-related symptoms when the study was conducted. As indicated on
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active guidelines, all patients on the symptomatic group have received an ICD.
On the asymptomatic group, 19 of 85 (22%) have received an ICD, based on
a positive EPS (Electrophysiological Study) test. Age of participants ranged
from 19 to 74 years old (mean: 44.6 ± 13.7) and 74.5% were males. Struc-
tural heart disease was discarded by physical examination, patient’s clinical
history, and resting and exercise electrocardiogram. Moreover, no significant
left ventricular hypertrophy was observed on any patient during echocardio-
graphic screening. More details of this clinical study, including information on
the genetic background, can be found on [2]. Table 1 summarizes the baseline
characteristics of this population.

During a physical exercise test performed on a cycle ergometer (Ergoline
900 Egamed, Piestany, Slovakia), standard 12-lead ECG recordings sampled at
1000 Hz were acquired for all patients. The protocol used for this standardized
test is defined as follows:

– Exercise phase (EX): 2 minutes of initial workload by pedaling at 50 W
(30 W for women) followed by successive increments of 30 W (20 W for
women) every 2 minutes until the patient reached at least the 80% of
his/her maximal theoretical heart rate, defined by HRmax = 220− age.

– Recovery phase (RE): two successive 3-minute periods, consisting of an
active recovery (pedaling at a workload of 50 W), followed by a passive
recovery at rest.

2.2 Preprocessing

ECG signals were preprocessed before the automatic extraction of the ana-
lyzed features. This preprocessing included automatic QRS complex detection
and subsequent visual inspection to guarantee normal beat annotations, cubic
spline interpolation for baseline drift attenuation, 4th order Butterworth low-
pass filtering at 45 Hz to remove muscular noise and wave delineation using
an evolutionary optimization approach [5].

2.3 ECG-derived measures

2.3.1 Depolarization parameters

Classical and unconventional QRS parameters were evaluated at relevant stages
of the exercise test for each individual lead. The classical group of parameters
included the amplitudes of the R and S waves (Ra and Sa), the duration of
the QRS complex (QRSd) and the maximum vector magnitude (VM) within
the spatial QRS loop. The latter was evaluated from the orthogonal leads X,
Y and Z, generated by applying the Dower inverse matrix on the standard
leads V1-V6, I and II [6].

The unconventional group of parameters included the main slopes (RU ,
RD , SU ) and angles (φR and φS) identified on a QRS complex. RU and RD
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refer to the up- and down-strokes of the R wave, respectively, while SU is the
final up-stroke of the S wave. Details on how to compute these parameters can
be found in [26]. The angles φR and φS can be calculated from the measured
QRS slopes, using (1) and (2), where constants represent the conversion factors
needed to standardize angular measures in order to match conventional ECG
printouts used in clinical practice [27].

φR = arctan

(∣∣∣∣ RU −RD

0.4(6.25 +RURD)

∣∣∣∣) . (1)

φS = arctan

(∣∣∣∣ RD − SU

0.4(6.25 +RDSU)

∣∣∣∣) . (2)

2.3.2 Repolarization parameters

The spatial dispersion observed in the T wave morphology can be quanti-
fied by certain parameters computed from the principal components analysis
(PCA) applied on the available ECG leads. The equations below define such
parameters:

T-wave residuum: TRi
=

L∑
l=4

δi,l/
L∑
l=1

δi,l (3)

T-wave uniformity: TUi
= δi,1/

L∑
l=1

δi,l (4)

T-wave complexity: TCi =

L∑
l=2

δi,l/

L∑
j=1

δi,l (5)

T-wave non-planarity: TNi
= δi,3/δi,1 (6)

where i is the i-th beat and δi contains the eigenvalues of the interlead re-
polarization correlation matrix, R̂ei , sorted in descending order. The matrix

R̂ei
can be generated as R̂ei

=
∑N−1
n=0 ei(n)eTi (n), with ei(n) being the vector

for the multilead ECG signal, corresponding to the T-wave interval of the the
i-th beat. Note that for each beat, the N × L matrix Ei = [ei,1, ei,2, . . . , ei,L]
is obtained, where each column representing the lead l can be seen as an
observation of a random process e with zero empirical mean [11].

The parameter TRi
represents the relative energy of the non-dipolar com-

ponents of the ECG model described in [1], with respect to the total energy
(sum of all the eigenvalues). In that model, the sum of the first three com-
ponents are considered as to represent the energy of the dipolar components
in normal conditions. If local heterogeneities are present in the repolarization,
larger eigenvalues associated with the non-dipolar components are expected
to increase TRi

measures.
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TUi and TCi are designed to characterize the ST-T loop morphology. TU
values closer to 1 are indicative of narrower ST-T loops that typically lie in the
direction of the first eigenvector δ1. Likewise, TC quantifies the roundness of the
loop, so that values close to 1 indicate an ST-T loop that is mainly contained
in a plane. Finally, TNPi

accounts for the non-planarity of the ventricular
repolarization.

Spatial dispersion of the repolarization can also be assessed through the
analysis of the following ECG intervals: the corrected QT interval (QTc) using
the Bazett’s formula, the T wave width, (Tw), the T-wave peak to T-wave end
interval (Tpe) and the ratio between Tpe and QT , (Tpe/QT ). All these features
were calculated in leads V5 and II, usually used for QT related measures in
most clinical studies. In order to quantify T-wave symmetry, the following
shape-based parameters were also assessed: the ratio of the left- (TLA) and
right-side (TRA) areas with respect to T-wave peak, Tarea = TLA

TRA
, and the

ratio of the time intervals lasted between the T-wave peak and the onset (Top)

and end of the T-wave (Tpe), respectively, Ttime =
Tp−To

Te−Tp
=

Top

Tpe
[12].

2.4 Heart rate recovery

To characterize recovery dynamics, strongly related to vagal response during
this period, the heart rate recovery (HRR) curve was assessed by means of the
following bi-exponential decay model previously used in [25]:

θHRR(t) = A exp (−τ1t) +B exp (−τ2t) (7)

where τ1 and τ2 are the decay rates of two exponential processes, associated
with the active and passive periods of recovery in the defined protocol. Pa-
rameters A and B account for the amount of change in HR decay caused by
the two exponential processes controlled by τ1 and τ2.

The HRR curve was fitted after resampling the instantaneous heart rate
series (expressed in beats/min) at 4 Hz to have evenly sampled values. Then,
the difference between the actual value θHRR(t) and the initial value θHRR(t0)
was computed for t = {60, 120, 180} seconds, to obtain the HRR values at
minutes 1, 2, and 3 after the peak effort (HRR1, HRR2, and HRR3), respec-
tively. Figure 1 shows an example of the HR evolution for a particular patient
and the resulting HRR curve.

2.5 Feature extraction

Mean values (Ȳ ls) of the ECG markers were computed using beat-to-beat mea-
sures from 15-s windows in each lead l, and at three relevant stages (s) includ-
ing exercise onset (T1), the peak effort (T2) and the end of recovery (T3). For
T2 and T3 stages, the 15-s windows were taken just before the maximum heart
rate and minute 6th of recovery, respectively. The changes observed between
T1 and T2 (exercise period), and between T2 and T3 (recovery period) were
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then determined and defined by ∆Y lEX = Ȳ lT2 − Ȳ lT1 and ∆Y lRE = Ȳ lT3 − Ȳ lT2,
respectively, where Y represents the actual marker. Finally, the initial feature
database, F , was created including the mean values of all parameters at each
stage s, Ȳ ls, and their dynamics during exercise (∆Y lEX) and recovery (∆Y lRE),
together with the HRR at the first, second and third minute after the peak
effort. Thus, a total of 198 features were initially included in F : 80 concerning
cardiac depolarization, 115 from ventricular repolarization and 3 related to
the autonomic control.

2.6 Pipeline used for designing the proposed classifier

The proposed BS classifier was designed based on two separate phases (see Fig.
2). Phase 1 is applied to obtain a subset of features with high predictive power
for symptoms and is based on the elastic net regularization algorithm using
repeated k-fold cross-validation. Phase 2 further exploits this reduced subset of
features using a wrapper approach, where the final subset (model) is selected
by repeated holdout cross-validation applied on non-regularized models. These
two phases are explained in more detail in the following sections.

2.6.1 Phase 1: Selection of high predictive features using elastic net

Since F is composed of nearly 200 features, some of them probably highly
correlated, the first step is to identify the most predictive set of features.
In this work, the dimension of the original feature space is greater than the
number of patients available. We have thus chosen to apply the elastic net
method for feature selection.

Elastic net is a regularized regression method combining LASSO (L1-norm)
and ridge regression (L2-norm) penalties for the regularization of the model co-
efficients [31]. This approach solves the limitations of the LASSO method when
dealing with highly correlated variables, which tends to select one variable and
ignore the others. Elastic net makes it possible to obtain sparse models and
thus to better interpret final outcomes. Two parameters are involved in the
elastic net regularization: α defines the weight of L1 versus L2 optimization,
while λ defines the regularization strength used in the optimization process.
For 0 < α < 1 and a non-negative λ, elastic net solves the problem:

min
β0β

(
1

2N

N∑
i=1

yi · (β0 − xTi β)− log(1 + eβ0−xT
i β) + λPα(β)), (8)

where N is the number of observations in the dataset, yi is the response at
observation xi, a vector containing the input features, and Pα(β) represents the
penalty term that interpolates between the L1 and L2 norms of β coefficients,
defined as:

Pα(β) =
(1− α)

2
||β||22 + α||β||1 =

p∑
j=1

(
(1− α)

2
β2
j + α|βj |) (9)
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Parameter α must be defined between 0 and 1. Values of α=1 and α=0
represent the LASSO and ridge regressions, respectively. Other values of α
represent elastic net optimization. We have chosen an α value closer to LASSO
regression in order to select relevant variables.

Parameter λ can take different values, so that several models with distinct
sets of predictive variables can be obtained. An optimal λ value generates a
model that seamlessly generalizes new, previously unseen data, while achieving
the right balance between simplicity and adjustment of the training data. If
λ is too high, the model will be sparse, but with the risk of underfitting the
data. Conversely, if λ is too low, the model will be more complex and thus
there will be a risk of overfitting the data. Therefore, the best predictive model
(with the optimal λ) can be found by selecting the lowest cross-validated error,
estimated as the expected deviance of the model applied to new data not seen
during training, among all the evaluated λ values.

To find this optimal λ value (hyperparameter optimization), stratified
k-fold cross-validation (CV) procedure is often applied [31]. We have im-
plemented a repeated (N=100) K-fold cross-validation approach (K = 10)
through each λi value, with i = 1, ..., I (number of λ values), as follows:

1. For n from 1 to N
– Split pseudo-randomly the dataset F in K folds
– For k from 1 to K

– Define Lk (without the k-th fold) and Tk (the k-th fold) as the
training and test subsets.

– For i from 1 to I
• Build a regularized, CV model Mi

cv(Lk) = f(Lk, λi).
• Evaluate Mi

cv(Lk) on Tk and store prediction errors.

– Calculate the CV error for iteration n in each λi, εn(λi).
2. For each λi calculate the average error over the N realizations, ε̂(λi).
3. Define λopt as the optimal value with the minimal average error.
4. Fit the regularized modelsMi

ncv = f(F , λi) without CV (ncv) in order to
get the variables (with non-zero coefficients) selected for each λi, including
all models from λopt to λmin (the simplest model).

The implementation of regularized logistic regression using elastic net, as
presented above, requires the application of a feature scaling method, because
features’ coefficients with large variance are less penalized. As a result, the
update speed for the coefficient estimates during the optimization approach
depends on their feature scales, and when converged, some coefficients are
closer to the optimum than the others. Feature scaling helps with this issue,
because coefficients are at the same scale and update roughly with the same
speed. Therefore, all variables entering in the regularized features selection
process were scaled using the following expression:

f̂q =
fq −min(f)

max(f)−min(f)
(10)
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where f = (f1, ..., fQ) with Q being the total number of patients and f̂q the
normalized data for patient q.

During the above normalization step, no criteria were applied for outliers
removal, since their presence in different features and for different patients can
lead to a significant reduction of the already small dataset. Nevertheless, after
performing the Phase 1, the preselected feature subset was carefully inspected
to individually validate features’ inclusion in the final evaluation step.

The final objective of this phase is to define optimal feature subsets for
further processing. Once λopt is determined, the features selected on step 4
are thus retained, and defined by the subset F1 . Nevertheless, there may be
λ values close to λopt that produce even simpler models and with very similar
CV errors. Variables selected for these other interesting values of λ can also be
studied. Therefore, the models corresponding to those λ values between λopt,
denoted as MPr

ncv, and λmin producing the simplest model Mmin
ncv , represent

the candidate models to be evaluated in Phase 2. Note that Mmin
ncv can have

one or more features, while Pr represents the model holding all preselected
features obtained with λopt.

2.6.2 Phase 2: Building the classifier using a wrapper-based approach

In order to get a more robust final prediction, the final model used in the
proposed BS classifier is determined in a wrapper fashion [9] (see Fig. 3),
through an ensemble classification system combining a set of classical, unreg-
ularized logistic regression models C, based on the preselected sparse models,
Mmin

ncv , ...,MPr
ncv, C = {Mmin

Unreg, ...,MPr
Unreg}.

Models C were trained using the stacked generalization (SG) approach
[10]. SG is a way for combining different models or lower-level sub-models
that have been trained for a particular classification task, allowing to derive
higher-level models that minimize the generalization error rate, and thus the
accuracy of the ensemble. In summary, the entire training set FL including
only the P features of each model in C, is divided into j = 1, ..., J blocks, and
each base classifier cjb is first trained on j-1 blocks of the training subset Ljb,

and internally evaluated on the hold out block T jb . Then, each trained fold

classifier cjb(L
j
b) is applied to the test set FT (it can be either the training

set or an external test set) yielding the output ojb. Figure 3 illustrates this
stacking procedure using 3 folds, although we set J=10 in our final design.

The final classification decision (right part of Fig. 3) is generated by com-
bining the output of all base classifiers, by means of a fixed rule. In brief, the
outputs of each individual base classifier ojb (soft outputs or posterior prob-
abilities) were concatenated into the matrix Ob, where Ob = [o1b ,o

2
b , ...,o

J
b ],

and serves as inputs for a fixed combiner. The proposed combiner is called the
trimmed-weighted mean, which discards the worst and best among the low-
level base classifiers, and calculates the weighted average with the remaining
eight base classifiers [18]. The weight of each classifier, wj , is defined as its per-
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formance obtained on fold j not seen during training. Thus, a well-balanced
average posterior probability vector is obtained as:

µg(x) =
1

J

J−2∑
j=1

wjo
j
b,g(x) (11)

where x represents the actual observation of the input database. This com-
biner calculates the support for a particular patient group, g= {symptomatic,
asymptomatic}, by fusing all individual supports given by the retained base
classifiers.

2.6.3 Model performance assessment

To assess the overall performance of the candidate predictive models, C,
a repeated stratified holdout cross-validation strategy was used. The whole
database was randomly splitted into training (L) and testing (T ) subsets us-
ing the ratio 70/30. L was used to train the ensemble classifiers as described
in the previous section, resulting in E(L). Predictive performance was assessed
by testing E(L) on T through the sensitivity (Se), specificity (Sp), and the
area under the ROC curve (AUC) metrics. Since the population size is rela-
tively small, the entire process was repeated N = 100 times in order to get an
average estimate of the model performance and variance.

As mentioned before, the final model was determined in a wrapper fashion
among those candidate subsets shortlisted during the regularization procedure.
Therefore, the model producing the best metrics during the performance as-
sessment was then used as our final BS classifier.

3 Results

The initial features dataset F of 198 features was first reduced by applying
the elastic net procedure, thereby discarding the most irrelevant parameters
and retaining a few potential candidate models.

3.1 Feature selection

Results obtained from the elastic net-based feature subsets selection and pa-
rameter tuning process are illustrated in Figure 4. The model hyperparameters
were set as follows: α = 0.75 and λ varying between 0.001 and 0.1, logarith-
mically spaced in 40 steps. The darkest region observed in the heat map (see
Fig. 4-a) corresponds to those λ values where CV errors are lower. By aver-
aging such errors, the optimal λ value, λopt, that produces the smallest mean
error, is determined as indicated in Fig. 4-b (vertical dashed line in black).
However, an alternative λ can be chosen if the error does not exceed a certain
limit referring to that calculated for λopt. A common practice is to apply the
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1 standard error (SE) rule when CV is performed once [31]. Since this rule
is no longer valid when using repeated CV because it reduces SE values as a
result of averaging, we selected the most predictive model through a wrapper-
based approach. In the proposed method, all λ values between λopt and that
one producing the simplest model (just one feature) were tested. The latter is
represented in Fig. 4-b by the vertical dashed line in red.

In addition to CV errors, Fig. 4-b shows the number of features selected for
each λ. Depending on λ, models with 1 and up to 30 features can be obtained
with λmin ≥ λ ≥ λopt (Mmin

ncv , ...,MPr
ncv), representing a significant reduction

(85%) from the initial number of variables in the dataset (P = 198).
The variables selected in each predictive model can be extracted from the

coefficients’ pathway generated as a function of λ during the regularization
procedure. Table 2 lists the model (feature subsets) obtained for λopt (P=30),
with features ordered by importance. It shows that features related to ven-
tricular depolarization were slightly higher in number (15 features) than those
associated with repolarization (13 features). HRR-related indices deserve spe-
cial attention as well, particularly when evaluated at later intervals of recovery
such as at minutes 2 and 3. Of note, the importance of each feature within
the model is given by its order of appearance in the list, derived from the
coefficient’s pathway.

On the other hand, features evaluated at specific phases (T1, T2, T3) of
the test protocol were predominant (about two-thirds) as compared to those
related to dynamic behaviors either during exercise or recovery. T1 (baseline
phase) was the most important among the three studied phases for relevant
repolarization features, while T2 and T3 for depolarization. Furthermore, re-
covery prevailed over exercise in terms of dynamic-related variables retained
(9 features for recovery including HRR2 and HRR3 and 2 features for exer-
cise). The overall performance achieved with this model, called Model 1 is
included in Table 3, for both the training and testing sets.

3.2 Ensemble classifier performance

Fig. 5-a shows the average performance metrics obtained for all predictive
models C = {Mmin

Unreg, ...,MPr
Unreg}, where MPr

Unreg matches Model 1. As
observed in Fig. 5-b, the model containing only 7 features, Model 2, was the
most predictive among all wrapped candidate models, since it presented the
smallest Euclidean distance (dist) between one unit and the average Se and
Sp values.

The features retained for this simpler Model 2 correspond to the first
seven features listed in Table 2, which are delimited by the horizontal dashed
line. It is worth noting that these variables also appeared in Model 1, but
in that case accompanied by other, less relevant features. Specifically, three
local features related to repolarization period were preserved and only two
from depolarization. HRR2 and HRR3 were also retained, confirming their
relevance when predicting symptoms in BS. In addition, the first three features
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in Table 2 correspond to stage T1, highlighting the importance for the inclusion
of basal measures. The average performance metrics of Model 2 and that of
the model based on the first 3 features, Model 3, were also included in Table
3 for the training and testing subsets.

For Model 1, the results presented in Table 3 show a perfect predictive
accuracy when tested with the training subset. However, when the test subset
is used, Model 3 and in particular Model 2, achieved similar or even better
results than Model 1 indicating that this simpler model is more generalizable
and robust when applied to new, unseen patients.

4 Discussion

In this study, a robust predictive classifier has been implemented to discrim-
inate between Brugada syndrome patients according to their symptomathol-
ogy. To do this, ECG-derived markers that capture dynamic variations from
ventricular repolarization and depolarization during physical exercise were as-
sessed. These markers aimed at quantifying the temporal, spatial and mor-
phological properties of the QRS complex and STT interval, since they might
be affected by the electrophysiological disorders associated with this disease.
Additionally, autonomic-related markers such as the HRR, estimated imme-
diately after the maximum effort, was also considered.

First, a feature selection approach was implemented to efficiently reduce
the initial feature dataset. It was achieved by a regularized optimization ap-
proach (elastic net). Then, a wrapper-based approach was used for final model
evaluation. The first stage allowed to obtain sparse, predictive models while
discarding irrelevant predictors [31]. Then, the unregularized version of these
models underwent a second-round test to evaluate their predictive performance
using a designed ensemble classifier. The model that presented the best balance
between its overall performance and the number of predictors was selected to
implement the final classifier.

The above-mentioned approach allowed to obtain a model of only 7 pre-
dictive features (Model 2) from a total of 198. From those features, the most
important were related to the repolarization period, which characterized the
morphological shape (Ttime) and dispersion of the T wave (Tpe, Tpe/QT ), all of
them evaluated at baseline stages. Two other features associated with the re-
covery process of the heart rate, HRR2 and HRR3, were found to be relevant
when predicting symptoms in BS, highlighting the importance of autonomic
control in this pathology, specially the vagal modulation immediately after
exercise [3,25] or during sleep. The remaining predictors in the model were
related to ventricular depolarization dynamics (∆SU

V 2
RE , ∆Sa

V 2
RE) evaluated

during recovery. Thus, the results confirm the fact that Brugada syndrome is
a complex multifactorial pathology, that needs to be addressed by considering
factors related to the whole ventricular activity and the autonomic control, in
an effort to obtain better predictive results [8,21].
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The performance metrics achieved can be considered acceptable given the
challenge of distinguishing these two groups, whose electrophysiological prop-
erties might be quite similar. Of note, these metrics were estimated by repeated
cross-validation (hold out) 100 times, so as to obtain a realistic performance
estimate when tested on new data, not seen during training. Also noteworthy
is the novel configuration used in the design of the classifier, where through the
fusion of several base classifiers, trained in different data subsets, a more robust
prediction of the classes is obtained. Moreover, it should be noted that these
results were obtained exclusively from electrocardiographic markers, without
including any clinical parameters, as it is usually done in many clinical stud-
ies. Further work is directed towards the integration of such clinical data in a
similar multivariate classifier.

In general, the results obtained in this study have shown the usefulness of
the stress test to unmask the differences between symptomatic and asymp-
tomatic BS patients. For example, we can highlight from the parameters in-
cluded in the final model, Model 2, that the recovery of the heart rate is
more informative when evaluated in later stages of this period, and not in the
first minute as it is commonly reported [4]. In fact, in a previous study per-
formed on the same population, we have demonstrated that the best timing
for assessing significant differences among these patient groups through the
HRR, was found between the minute 2.5 and 3 of recovery [25]. Another find-
ing related to this period was that the two depolarization markers involved in
the model, were associated with the second half of the QRS complex, and the
dynamics of these markers. This suggests that both ventricular depolarization
dynamics and vagal activity reactivation during that period are closely related
to the symptomatology in this population. Finally and most importantly, the
markers linked to ventricular repolarization appeared to be the most relevant
to the model, which were tested separately in Model 3. The most remarkable
in this case is that these particular markers were assessed at the beginning of
the test, which gives them greater relevance because they could be measured
at rest, avoiding exercise testing.

Quantifying risk level in asymptomatic Brugada patients is still a major
clinical challenge. Better predictive markers are needed to improve prognosis
and to optimize the therapy for a given patient. The analysis of ventricular de-
polarization and repolarization combined with measures related to autonomic
control provides valuable information about the patients’ condition and prog-
nosis. In a study performed by Postema et al. [20], repolarization abnormalities
in Brugada syndrome were reported to be mostly induced by depolarization
disorders. This was thought to be a result of the heterogeneity in the action po-
tential duration with a ventricular endo-epi gradient. However, in Meijborg et
al. [14], repolarization abnormalities were thought to be related to an increased
interventricular and LV-intraventricular dispersion in repolarization time, af-
ter dofetilide infusion in an experimental model of dofetilide-induced long QT
syndrome type 2 (LQT2). Tokioka et al. [30] reported that the combination of
both repolarization and depolarization abnormalities enables potential identi-
fication of high- and low-risk Brugada patients. However, all these studies did
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not consider autonomic related markers in their analyses, which can provide
an added value in the final outcomes. To our knowledge, the present work
is the first in providing such quantitative comparison combining depolariza-
tion, repolarization and autonomic features for risk stratification in Brugada
syndrome.

Limitations

According to results, despite the proposed classifier may seem potentially help-
ful to differentiate among Brugada syndrome patients, the relatively small
sample population may have limited the impact of the results obtained. More-
over, the class imbalance existing between the two patient groups can also
affect the prediction of the minority class in favor of the other. Therefore, all
markers used in the model should be validated with larger clinical series to
confirm its predictive potential. Finally, although the lack of follow-up infor-
mation does not allow us to propose the use of these features as potential risk
markers of future cardiac events, they remain as promising candidates that
should be tested in other cohorts having such information.

Conclusions

The results obtained in this study confirm the significance of performing con-
trolled autonomic manoeuvres, such as a physical exercise test, to elucidate the
potential differences that may exist between patients with Brugada syndrome.
Symptomatic and asymptomatic patients can produce different responses to
this type of challenge, which can be detected by means of an exhaustive anal-
ysis of the electrophysiological properties and autonomic parameters that are
likely to be affected by this pathology. The main conclusion of the study con-
cerns the fact that both repolarization and depolarization characteristics mea-
sured at baseline and during exercise, are crucial in understanding the patho-
genesis of this disease, and that the analysis of heart rate recovery at longer
intervals may emerge as a sensitive risk marker.
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3. Calvo, M., Romero, D., Le Rolle, V., Béhar, N., Gomis, P., Mabo, P., Hernández, A.I.:
Multivariate classification of Brugada syndrome patients based on autonomic response
to exercise testing. PLoS ONE 13(5) (2018). DOI 10.1371/journal.pone.0197367

4. Cole, C.R., Blackstone, E.H., Pashkow, F.J., Snader, C.E., Lauer, M.S.: Heart-rate
recovery immediately after exercise as a predictor of mortality. New England Journal
of Medicine 341(18), 1351–1357 (1999). DOI 10.1056/NEJM199910283411804

5. Dumont, J., Hernández, A.I., Carrault, G.: Improving ECG beats delineation with an
evolutionary optimization process. IEEE Transactions on Biomedical Engineering 57(3),
607–615 (2010). DOI 10.1109/TBME.2008.2002157

6. Edenbrandt, L., Pahlm, O.: Vectorcardiogram synthesized from a 12-lead ECG: Superi-
ority of the inverse Dower matrix. Journal of Electrocardiology 21(4), 361–367 (1988).
DOI 10.1016/0022-0736(88)90113-6

7. Kawazoe, H., Nakano, Y., Ochi, H., Takagi, M., Hayashi, Y., Uchimura, Y., Tokuyama,
T., Watanabe, Y., Matsumura, H., Tomomori, S., Sairaku, A., Suenari, K., Awazu,
A., Miwa, Y., Soejima, K., Chayama, K., Kihara, Y.: Risk stratification of ventricular
fibrillation in Brugada syndrome using noninvasive scoring methods. Heart Rhythm
13(10), 1947–1954 (2016). DOI 10.1016/j.hrthm.2016.07.009

8. Kawazoe, H., Nakano, Y., Ochi, H., Takagi, M., Hayashi, Y., Uchimura, Y., Tokuyama,
T., Watanabe, Y., Matsumura, H., Tomomori, S., Sairaku, A., Suenari, K., Awazu,
A., Miwa, Y., Soejima, K., Chayama, K., Kihara, Y.: Risk stratification of ventricular
fibrillation in Brugada syndrome using noninvasive scoring methods. Heart Rhythm
13(10), 1947–1954 (2016). DOI 10.1016/j.hrthm.2016.07.009

9. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97(1-2), 273–324 (1997). DOI 10.1016/s0004-3702(97)00043-x

10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms: Second Edi-
tion, vol. 9781118315231 (2014). DOI 10.1002/9781118914564

11. Laguna, P., Martinez Cortes, J.P., Pueyo, E.: Techniques for Ventricular Repolarization
Instability Assessment from the ECG (2016). DOI 10.1109/JPROC.2015.2500501

12. Langley, P., Di Bernardo, D., Murray, A.: Quantification of T wave shape changes
following exercise. PACE - Pacing and Clinical Electrophysiology 25(8), 1230–1234
(2002). DOI 10.1046/j.1460-9592.2002.01230.x

13. Makimoto, H., Nakagawa, E., Takaki, H., Yamada, Y., Okamura, H., Noda, T., Satomi,
K., Suyama, K., Aihara, N., Kurita, T., Kamakura, S., Shimizu, W.: Augmented ST-
segment elevation during recovery from exercise predicts cardiac events in patients with
brugada syndrome. Journal of the American College of Cardiology 56(19), 1576–1584
(2010). DOI 10.1016/j.jacc.2010.06.033

14. Meijborg, V.M., Chauveau, S., Janse, M.J., Anyukhovsky, E.P., Danilo, P.R., Rosen,
M.R., Opthof, T., Coronel, R.: Interventricular dispersion in repolarization causes bifid
T waves in dogs with dofetilide-induced long QT syndrome. Heart Rhythm 12(6),
1343–1351 (2015). DOI 10.1016/j.hrthm.2015.02.026

15. Meregalli, P.G., Wilde, A.A., Tan, H.L.: Pathophysiological mechanisms of Brugada
syndrome: Depolarization disorder, repolarization disorder, or more? (2005). DOI
10.1016/j.cardiores.2005.03.005

16. Morita, H., Fukushima-Kusano, K., Nagase, S., Miyaji, K., Hiramatsu, S., Banba, K.,
Nishii, N., Watanabe, A., Kakishita, M., Takenaka-Morita, S., Nakamura, K., Saito, H.,
Emori, T., Ohe, T.: Sinus node function in patients with Brugada-type ECG. Circulation
Journal 68(5), 473–476 (2004). DOI 10.1253/circj.68.473

17. Morita, H., Kusano, K.F., Miura, D., Nagase, S., Nakamura, K., Morita, S.T., Ohe, T.,
Zipes, D.P., Wu, J.: Fragmented QRS as a marker of conduction abnormality and a

Accepted manuscript



Title Suppressed Due to Excessive Length 17

predictor of prognosis of Brugada syndrome. Circulation 118(17), 1697–1704 (2008).
DOI 10.1161/CIRCULATIONAHA.108.770917

18. Polikar, R.: Ensemble based systems in decision making (2006). DOI 10.1109/MCAS.
2006.1688199

19. Postema, P.G., van Dessel, P.F., Kors, J.A., Linnenbank, A.C., van Herpen, G., Ritsema
van Eck, H.J., van Geloven, N., de Bakker, J.M., Wilde, A.A., Tan, H.L.: Local De-
polarization Abnormalities Are the Dominant Pathophysiologic Mechanism for Type 1
Electrocardiogram in Brugada Syndrome. A Study of Electrocardiograms, Vectorcardio-
grams, and Body Surface Potential Maps During Ajmaline Provocation. Journal of the
American College of Cardiology 55(8), 789–797 (2010). DOI 10.1016/j.jacc.2009.11.033

20. Postema, P.G., van Dessel, P.F., Kors, J.A., Linnenbank, A.C., van Herpen, G., Ritsema
van Eck, H.J., van Geloven, N., de Bakker, J.M., Wilde, A.A., Tan, H.L.: Local De-
polarization Abnormalities Are the Dominant Pathophysiologic Mechanism for Type 1
Electrocardiogram in Brugada Syndrome. A Study of Electrocardiograms, Vectorcardio-
grams, and Body Surface Potential Maps During Ajmaline Provocation. Journal of the
American College of Cardiology 55(8), 789–797 (2010). DOI 10.1016/j.jacc.2009.11.033

21. Postema, P.G., Wilde, A.A.: Risk stratification in Brugada syndrome: Where is the
finish line? (2016). DOI 10.1016/j.hrthm.2016.08.008

22. Priori, S.G., Blomström-Lundqvist, C., Mazzanti, A., Bloma, N., Borggrefe, M., Camm,
J., Elliott, P.M., Fitzsimons, D., Hatala, R., Hindricks, G., Kirchhof, P., Kjeldsen, K.,
Kuck, K.H., Hernandez-Madrid, A., Nikolaou, N., Norekv̊al, T.M., Spaulding, C., Van
Veldhuisen, D.J., Kolh, P., Lip, G.Y., Agewall, S., Barón-Esquivias, G., Boriani, G.,
Budts, W., Bueno, H., Capodanno, D., Carerj, S., Crespo-Leiro, M.G., Czerny, M.,
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Fig. 1 An example of the HRR curve fitted on HR values during the recovery period of the
exercise test. HRR1, HRR2, and HRR3 represent the heart rate recovery measures evaluated
at the first, second and third minute of recovery, respectively.
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Fig. 4 Results from the elastic net regression of Phase 1, to find the most predictive features
to be used in the ensemble classifier. (a) Deviance heat map obtained after 100 realizations
(repeated CV: 100 times, 10-fold) using different λ values. (b) Mean ± SD of the deviance
values displayed in a) (left axis), and the number of features selected for each λ value
(right axis). Vertical dashed line in black indicates the optimal λ producing the lowest mean
deviance.
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Fig. 5 a) Average performance metrics obtained for the testing in all models C =
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Pr
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the ROC curve.
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Table 1 Baseline clinical characteristics of the study population.

Clinical features Symptomatic Asymptomatic p-value

Sex males 21 (84%) 61 (72%) 0.22
Age (years) 46.8 ±15.5 44.0 ±13.1 0.63
Symptoms

Cardiac arrest 11 (44%)
Syncope 14 (56%)

Spontaneous Type-1 7 (28%) 27 (32%) 0.72
ICD implanted 25 (100%) 19 (22%) < 0.01
SNC5A mutation (N=79)

Positive 7 (28%) 22 (26%)
Negative 13 (52%) 37 (44%) 0.85

Max. HR (beats/min) 151.7 ±17.5 160.9 ±18.5 0.07
Max. workload (Watts) 171.2 ±57.8 170.1 ±57.9 0.66

p-value is obtained using the Mann-Whitney test for continuous features
and χ2 test for categorical features.
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Table 2 Ordered subset of the 30 features selected by choosing the optimal λ value, λopt.
The first seven features correspond to the smaller subset associated with the final selected
model (Model 2). The numbers in the first column indicate the models in which each
feature has been involved.

Model Features Description

1,2,3 Ttime
V5
T1 T-wave intervals ratio in lead V5 at baseline

1,2,3 Tpe/QT
V5
T1

Ratio T-peak-T-end/QT in lead V5 at baseline
1,2,3 TpeV5

T1
T-peak-T-end interval in lead V5 at baseline

1,2 HRR2 Heart rate recovery evaluated after 2 minutes
1,2 ∆SU

V2
RE S-wave upslope’s dynamic in lead V2 during recovery

1,2 HRR3 Heart rate recovery evaluated after 3 minutes
1,2 ∆Sa

V2
RE S-wave amplitude dynamic in lead V2 during recovery

1 SU
V3
T3 S-wave upslope in lead V3 when recovery ended

1 Ttime
V5
T3 T-wave time ratio in lead V5 when recovery ended

1 ∆SU
V3
RE S-wave upslope’s dynamic in lead V3 during recovery

1 TCT1 T-wave complexity evaluated at baseline
1 TUT1 T-wave uniformity evaluated at baseline
1 ∆SU

V5
RE S-wave upslope’s dynamic in lead V5 during recovery

1 SU
V3
T1 S-wave upslope in lead V3 at baseline

1 Sa
V2
T3 S-wave amplitude in lead V2 when recovery ended

1 Ra
V4
T2 R-wave amplitude in lead V4 at maximum effort

1 ∆QRSdRE QRS duration dynamic during recovery
1 Ra

V4
T3 R-wave amplitude in lead V4 when recovery ended

1 ∆Sa
V5
EX S-wave amplitude dynamic in lead V5 during exercise

1 TwII
T1 T-wave width in lead II at baseline

1 φR
V6
T2 R-wave angle in lead V6 during maximum effort

1 ∆Ttime
II
EX T-wave intervals ratio’s dynamic, lead II during exercise

1 TpeII
T1

T-peak-T-end interval in lead II at baseline
1 φR

V5
T1 R-wave angle in lead V5 during baseline

1 φR
V5
T2 R-wave angle in lead V6 when recovery ended

1 ∆Ttime
II
RE T-wave intervals ratio’s dynamic, lead II during recovery

1 ∆QTcV5
RE Corrected QT interval dynamic,lead V5 during recovery

1 Ttime
II
T2 T-wave intervals ratio in lead II during maximum effort

1 TareaII
T3 T-wave area’s ratio in lead II when recovery ended

1 φR
V6
T3 R-wave angle in lead V5 during maximum effort
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Table 3 Predictive model performance of the ensemble classifier when trained with the
models Model 1, Model 2 and Model 3. The symbols † and ? stand for the biased
(training set) and cross-validated performances (testing set), respectively.

Model Number of Se (%) Sp (%) AUC (%)
features Mean ± SD Mean ± SD Mean ± SD

Model 1 30

Training set 100±0.0 100±0.0 100±0.0(†)

Testing set 79.1±8.7 79.6±10.3 81.9±6.3(?)

Model 2 7

Training set 87.9±4.8 81.9±4.8 89.4±2.9(†)

Testing set 85.0±11.1 77.7±7.6 81.7±7.6(?)

Model 3 3

Training set 85.6±6.1 71.7±4.9 82.6±3.0(†)

Testing set 85.3±10.6 72.4±9.6 79.6±7.7(?)
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