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Highlights

• Micro-surgical anastomosis data set containing video, kinematic and work-

flow annotation.

• Challenge of surgical workflow recognition at different granularity levels

• Comparison of multiple deep learning based recognition methods
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Abstract

Background and Objective: Automatic surgical workflow recognition is an

essential step in developing context-aware computer-assisted surgical systems.

Video recordings of surgeries are becoming widely accessible, as the operational

field view is captured during laparoscopic surgeries. Head and ceiling mounted

cameras are also increasingly being used to record videos in open surgeries. This

makes videos a common choice in surgical workflow recognition. Additional

modalities, such as kinematic data captured during robot-assisted surgeries, could

also improve workflow recognition. This paper presents the design and results

of the “MIcro-Surgical Anastomose Workflow recognition on training sessions”

(MISAW) challenge whose objective was to develop workflow recognition models

based on kinematic data and/or videos.

Methods: The MISAW challenge provided a data set of 27 sequences
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of micro-surgical anastomosis on artificial blood vessels. This data set was

composed of videos, kinematics, and workflow annotations. The latter described

the sequences at three different granularity levels: phase, step, and activity.

Four tasks were proposed to the participants: three of them were related to the

recognition of surgical workflow at three different granularity levels, while the

last one addressed the recognition of all granularity levels in the same model.

We used the average application-dependent balanced accuracy (AD-Accuracy)

as the evaluation metric. This takes unbalanced classes into account and it is

more clinically relevant than a frame-by-frame score.

Results: Six teams participated in at least one task. All models employed

deep learning models, such as convolutional neural networks (CNN), recurrent

neural networks (RNN), or a combination of both. The best models achieved

accuracy above 95%, 80%, 60%, and 75% respectively for recognition of phases,

steps, activities, and multi-granularity. The RNN-based models outperformed

the CNN-based ones as well as the dedicated modality models compared to the

multi-granularity except for activity recognition.

Conclusion: For high levels of granularity, the best models had a recognition

rate that may be sufficient for applications such as prediction of remaining surgical

time. However, for activities, the recognition rate was still low for applications

that can be employed clinically. The MISAW data set is publicly available

at www.synapse.org/MISAW to encourage further research in surgical workflow

recognition.

Keywords: Surgical Process Model, Workflow recognition, Multi-modality, OR

of the future

1. Introduction1

Computer-assisted surgical (CAS) systems should ideally make use of a2

complete and explicit understanding of surgical procedures. To achieve this, a3

surgical process model (SPM) can be used. A SPM is defined as a "simplified4

pattern of a surgical process that reflects a predefined subset of interest of5
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the surgical process in a formal or semi-formal representation” [1]. The SPM6

methodology is used for various applications, such as operating room optimization7

and management [2, 3], learning and expertise assessment [4, 5], robotic assistance8

[6], decision support [7], and quality supervision [8].9

According to Lalys et al. [9], a surgical procedure can be decomposed on10

several levels of granularity ,e.g., phases, steps, and activities. Phases are the11

decomposition of a surgical procedure into the main periods of intervention (e.g.,12

resection). Each phase is broken down into multiple steps corresponding to a13

surgical objective (e.g., to resect the pouch of Douglas). A step is composed of14

several activities that describe the physical actions (namely action verbs,e.g., cut)15

performed on specific targets (e.g., the pouch of Douglas) by specific surgical16

instruments (e.g., a scalpel). This initial definition was improved at a lower17

granularity level to take into account information closed to kinematic data [10]:18

surgemes and dexemes. A surgeme represents a surgical motion with explicit19

semantic meaning (e.g., grab), and a dexeme is a numerical representation of20

the sub-gestures necessary to perform a surgeme.21

In early publications [2, 3, 4, 5, 6, 7, 8, 10], SPMs were manually acquired22

by human observers. However, this solution has several drawbacks: It is costly23

concerning human resources, time-consuming, observer-dependent, and errors24

could be made. In [11], the authors noted that for the annotation of a peg25

transfer task, the mean duration to manually annotate one minute of video was26

around 13 minutes, and 65 annotation errors were counted for 60 annotations27

although the task was less susceptible to subjective interpretation than a surgical28

operation. To overcome these issues, [11] proposed an automatic annotation29

method based on the information extracted from a virtual reality simulator.30

Even though this is a promising solution to limit human annotation, it requires31

information that could be complicated to obtain in surgical practice, such as32

the interactions between the instruments and anatomical structures. Other33

solutions are currently being studied to reduce the amount of manual annotation34

as transfer learning from simulated data to real data [12] or from a limited35

amount of annotated data [13].36
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Despite these innovative methods, automatic and online recognition of surgical37

workflows is mandatory to bring context-awareness CAS applications inside the38

operating room. Various machine learning and deep learning methods have been39

proposed to recognize different granularity levels such as phases [3, 14, 15] ,40

steps [16, 17] ,and activities [6, 18]. According to the type of surgery, different41

modalities could be used for workflow recognition. For manual surgery, unless it42

is possible to add multiple sensors, workflow recognition is generally restricted43

to video-only modalities [3, 16, 18]. In the case of robot-assisted surgery (RAS),44

kinematic information is easily available. It is expected that multi-modal data will45

lead to easier automatic recognition methods, as is the case for the combination46

of video and eye gaze information [17] or the combination of video and kinematic47

information based on RAS data [19]. However, some methods based on RAS48

data sets propose video-only methods [20, 21] or kinematic-only methods [10, 13].49

The “MIcro-Surgical Anastomose Workflow recognition on training sessions”50

(MISAW) challenge provided a unique data set for online automatic recogni-51

tion of multi-granularity surgical workflows using kinematic and stereoscopic52

video information on a micro-anastomosis training task. The participants were53

challenged to develop uni-granularity (with phases, steps, or activities) and/ or54

multi-granularity workflow recognition models.55

2. Methods: Reporting of Challenge Design56

This section describes the challenge design through an explanation of the57

organization, the mission, the data set, and the assessment method of the58

challenge.59

2.1. Challenge organization60

The MISAW challenge was a one-time event organized as part of EndoVis61

for MICCAI2020 online. It was organized by five people from three different62

institutions: Arnaud Huaulmé, Kévin Le Mut, and Pierre Jannin from the63

University of Rennes (France), Duygu Sarikaya from Gazi University (Turkey),64
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and Kanako Harada from the University of Tokyo (Japan). The challenge65

was partially funded by the ImPACT Program of the Council for Science,66

Technology and Innovation, Cabinet Office, Government of Japan. All challenge67

information was made available to the participants through the Synapse platform:68

www.synapse.org/MISAW .69

Participation in the challenge was subject to the following policies: Partici-70

pants had to submit a fully automatic method using kinematic and/or video data.71

The data that could be used for the training were restricted to the data provided72

by the organizers and publicly available data sets, including pre-trained networks.73

The publicly available data sets only covered data that were available to everyone74

when the MISAW data set was released. The results of all participating teams75

were announced publicly on the challenge day. Challenge organizers and people76

from the organizing institutions could participate but were not eligible for the77

competition.78

The participating teams had to provide the following elements: the method’s79

outputs, a write-up, and a Docker image allowing the organizers to verify the80

outputs provided. Due to the COVID-19 crisis, a pre-recorded talk was also81

mandatory to limit technical issues during the challenge day (online event). All82

technical information (how to create a Docker image, the output format, etc.)83

was provided to the participants during the challenge on the challenge platform.84

The participants could submit multiple results and Docker images. However, only85

the last submission was officially counted to compute the challenge results. No86

leader-board or evaluation results were provided before the end of the challenge.87

The challenge schedule was as follows: The training and the test data sets88

were released on June 1st and August 24th 2020 respectively. Submissions were89

accepted until September 23rd (23:59 PST). The results were announced October90

4th during the online MICCAI2020. The complete data set was released with91

this paper at: www.synapse.org/MISAW92

The organizers’ evaluation scripts were publicly available on the challenge93

platform. Participating teams were encouraged (but not required) to provide94

their code as open access.95
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2.2. Mission of the challenge96

The objective of the challenge was to automatically recognize the workflow97

of an anastomose performed during training sessions using video and kinematic98

data. The challenge was composed of four different tasks according to the99

granularity level recognized. Three of these tasks were uni-granularity surgical100

workflow recognition, i.e., the model had to recognize one of the three available101

granularity levels. They were noted task 1 for phase recognition, task 2 for step102

recognition, and task 3 for activities recognition. The last task, noted task 4,103

was a multi-granularity surgical workflow recognition, i.e., recognition of the104

three granularities with the same model. Each task offers a different difficulty,105

from the easiest (task 1) to the most complex (task 4). Due to the hierarchical106

decomposition of SPM, phases are more distinct between them than activities.107

For example, an activity could have the same action verb and surgical tool but108

only differ by the target, whereas two phases represent two distinct main periods109

of the operation. Task 4 brings together the difficulty of the three other ones.110

However, due to the hierarchical structure of the workflow description, it could111

help the recognition of the lower granularity. For example, some activities can112

only be present in specific phases or steps.113

The challenge data were provided by a robotic system used to realize micro-114

surgical anastomosis on artificial blood vessels through a stereoscopic microscope.115

Such micro-surgical anastomosis is performed in neurosurgery and plastic surgery.116

The surgical robotic technologies developed for micro-surgical anastomosis can117

be applied to other robotic surgeries requiring dexterous manipulation on small118

targets. Automatic recognition of this task is an essential step to help the119

realization of this task or to increase robotic autonomy from manual to shared120

control or full automation [22].121

The final biomedical application was robotic micro-surgical suturing of the122

dura mater during endonasal brain tumor surgery. Both applications were similar123

in the use of a robotic system, the microscopic dimension of the targets, and the124

surgical gestures. Furthermore, the automatic workflow recognition associated125

with analysis methods could help the surgical skill training by providing online126
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feedbacks. For example, on a subset of the MISAW dataset, Huaulmé et al. [4]127

have identified sequences of activities, called surgical signatures, specific to the128

expertise or to common mistakes.129

2.3. Challenge data set130

The challenge data set was composed of 27 sequences of micro-surgical131

anastomosis on artificial blood vessels performed by 3 surgeons and 3 engineering132

students. It was divided into a training data set composed of 17 cases and a test133

data set composed of 10 cases. The splitting of the data set was done to have a134

similar ratio of expertise in each data set (Tableau 1). A case was composed of135

kinematic data, a video, and workflow annotation. The latter was not provided136

to participants for the test cases.137

Training cases Test cases

Participant Surgeon 2 Surgeon 3 Student 1 Student 2 Surgeon 1 Student 3

nb case 3 4 6 4 4 6

Table 1: Training and test case splitting

2.3.1. Data acquisition138

The video and kinematic data were synchronously acquired at 30 Hz by a139

high-definition stereo-microscope (960x540 pixels) and a master-slave robotic140

platform [23], respectively, by the Department of Mechanical Engineering of the141

University of Tokyo. The kinematic data were recorded by encoders mounted142

on the two robotic arms. The kinematic data consisted of x, y, z, α, β, γ. The143

homogeneous transformation matrices for each robotic instrument were calculated144

as in equations 1 and 2. The kinematic files also contained information about145

the grip and the output grip voltage.146

Hright = Tx(x)Ty(y)Tz(z)Rx(
1

18
π)Ry(α)Rx(β − 5

9
π)Ry(γ)) (1)

147

Hleft = Tx(x)Ty(y)Tz(z)Rx(−
1

18
π)Ry(α)Rx(β +

1

18
π)Ry(γ)) (2)
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Phases Steps
Activities

Verb Target Instrument

Suturing Needle holding Catch Needle Needle holder

Knot Tying Suture making Give slack Wire

Suture handling Hold Both artificial vessel

1◦ knot Insert Left artificial vessel

2◦ knot Loosen completely Right artificial vessel

3◦ knot Loosen partially Long wire strand

Make a loop Short wire strand

Pass through Wire loop

Position Knot

Pull

Table 2: MISAW vocabulary.

The workflow annotation was acquired manually by two non-medical observers148

from the MediCis team of the LTSI Laboratory from the University of Rennes.149

The observers used the software “Surgery Workflow Toolbox [annotate]” provided150

by the IRT b<>com [24] to annotate the phases, steps, and activities (action151

verb, target, and instrument) of each robotic arm according to an annotation152

protocol. The vocabulary contained 2 phases, 6 steps, 10 action verbs, 9 targets,153

and 1 surgical instrument (Table 2). The protocol described how to recognize154

each phase, step, and activity of each robotic arm by giving a definition, start155

and end point, and graphical illustration. For example, the step "suture making"156

was defined by "insert and pull the needle into artificial vessels." The start point157

was the "beginning of the needle insertion on one vessel," the stop point was158

"the needle completely pass through both vessels." This is illustrated in Figure159

1. The complete annotation protocol is available in Supplementary Material C.160
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Figure 1: Representation of the beginning (left) and the end (right) of the "suture making"

step.

Each case was annotated by both observers independently and harmonized161

by the following protocol (Figure 2). An automatic merging was performed when162

the transition difference between both observers was less than one second (b in163

Figure 2). Here, the transition between red and blue components was inferior to164

the threshold, so the automatic merging took the mean. The transition between165

the blue and the green components took longer than one second, so no decision166

was made. The merging sequence came back to each observer separately to167

refine uncertain transitions (c). A second automatic annotation was performed168

with a threshold of 0.5 seconds (d). Finally, all remaining uncertainties were169

harmonized by a consensus between both observers.170

Figure 2: Harmonization protocol used to merge the annotations made by two observers.

2.3.2. Data pre-processing171

We pre-processed the videos and initial workflow annotations to have consis-172

tent and synchronized data for each case. In the videos, the boundary between173
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the left image and the right image was not consistent (Figure 3, i.e., the position174

of the centerline was a little different within and between the trials. We removed175

40 pixels from the center of the stereoscopic image to have two images of 460x540176

pixels. The final video resolution was 920x540 pixels.177

(a) (b)

Figure 3: Comparison between the initial video (3a) and pre-processed video (3b)

.

The software “Surgery Workflow Toolbox [annotated]” produced a description178

of sequences where each element was characterized by the beginning and the179

end in milliseconds. We modified it to provide a discrete sequence synchronized180

at 30Hz with the kinematic data. When no phase, step, or activity occurred,181

the term "Idle" was added. For each timestamp, we provided the following in-182

formation: timestamp_number, phase_value, step_value, verb_Left_Hand, tar-183

get_Left_Hand, instrument_Left_Hand, verb_Right_Hand, target_Right_Hand,184

and instrument_Right_Hand.185

2.3.3. Sources of errors186

The main source of errors was the manual workflow annotation, which was187

observer-dependent. We limited these errors through the double annotations188

and the harmonization.189

The second possible source of errors came from an acquisition issue. During190

acquisition, some timesteps were not acquired in either the video and kinematic191

information. This did not affect the synchronization of the data but could create192

activities not present in the procedural description. The impacted cases were193
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2-3, 4-2, 4-4, and 5-3.194

Finally, due to some system problems during acquisition, the grip data were195

doubtful. If the system worked correctly, 0 meant "open" and -6 meant "close,"196

but maybe values were under -6 in some trials.197

These sources of errors were communicated to the participants with the198

training data set. The participants did not report any other issues.199

2.4. Assessment method200

2.4.1. Metrics201

To assess the methods proposed by participants, we used a balanced version202

of the application-dependent scores [25] of the classic metric used in the workflow203

recognition: accuracy, precision, recall, and F1.204

Our data sets had a high class unbalance, for example, the phase "Idle"205

represented around 2% of the frames in both data sets (Figure 4). To give the206

same importance to each class, we decided to use balanced scores.207

unbalanced.png unbalanced.png

Figure 4: Phase distribution in training and testing data sets

Generally, frame-by-frame scores were used. This type of score assumes that208

the ground truth is frame perfect. However, this is not possible with manual209

annotation. Moreover, a clinical application does not need to be 100% accurate210

at a frame resolution. Application-dependent scores re-estimate classic scores211

using acceptable delay thresholds for a transitional window (Figure 5). When212

the transition on the predicted sequence occurs with a transition delay TD213
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inferior to an acceptable delay d centered into the real transition, all frames are214

considered correct. Here, this was the case for the transition between the blue215

and green components. If the transition was different (case between red and216

green components in the prediction sequence) or outside this transition delay,217

no modification was done. We fixed the acceptable delay d at 500 ms, which218

corresponded to half of the duration used for the first automatic merge (Figure219

2).220

Figure 5: Definition of acceptable and transitional delay used to compute the average-dependent

scores

2.4.2. Ranking method221

We used a metric-based aggregation on the balanced application-dependent222

accuracy (AD-Accuracy) for the ranking. For each participant, we aggregated223

the metric values over all test cases and aggregated overall metrics to obtain a224

final score. We used a metric-based aggregation according to the conclusion of225

[26], who reported this type of aggregation as one of the most robust.226

For the phase and step recognition (Tasks 1 and 2), the ranking score for227

algorithm ai was computed as follows:228

suni(ai) =

∑T
t=0 balance_accuracy_case_t

T
(3)

Activity recognition (Task 3) consisted of recognizing the action verb, target,229

and instrument of each robotic arm. The ranking metric was computed as follows,230
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with each component (i.e., sverb_Left(ai)) computed with Equation 3:231

sactivity(ai) =
1

6
∗ (sverb_Left(ai) + sTarget_Left(ai) + sInstrument_Left(ai)+

sverb_Right(ai) + sTarget_Right(ai) + sInstrument_Right(ai))

(4)

For the multi-granularity recognition (Task 4) the ranking score was the232

mean of each uni-granularity score:233

smulti(ai) =
sphase(ai) + sstep(ai) + sactivity(ai)

3
(5)

All multi-granularity recognition models were also ranked in each uni-granularity234

task to highlight the differences between the models.235

In the case of missing results, we considered results as good as a total random236

recognition. For example, for 3-class problem, the missing result would be set to237

1/3, and for a 12-class problem, it would set to 1/12.238

The ranking stability was assessed by testing different ranking methods. If,239

the ranking was not stable according to the method chosen, a tie between the240

different teams was pronounced.241

The ranking computation and analysis were performed with the ChallengeR242

package provided by [27].243

3. Results: Reporting of the Challenge Outcomes244

3.1. Challenge submission245

At the end of September 2020, we counted 24 individual participants registered246

to the MISAW challenge and 325 downloads of the 9 files available (the Synapse247

platform did not give statistics by file). Five competing teams and one non-248

competing team completed their submissions for the challenge.249

3.2. Information on participating teams and corresponding methods250

In this section, we will present information on each team, the methods251

they used, and which tasks they participated in. The presentation is made in252

alphabetical order of the competing teams and not in consideration of their253

ranking. Table 3 provides a summary of participants methods.254
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3.2.1. MedAIR255

The MedAIR team was composed of Yonghao Long and Qi Dou from the256

Department of Computer Science and Engineering at the Chinese University of257

Hong Kong. They participated in the phase and step recognition tasks.258

The MedAIR team used both the video frames and the kinematic data of259

the left and right robotic arms, treating them separately because different arms260

may conduct different actions to jointly complete a task.261

They extracted high-level features from video frames using an 18-layer residual262

convolutional network [28] followed by a fully connected layer and a ReLU non-263

linearity layer applied at the end, yielding a 128-dimension spatial feature vector.264

To learn the temporal information of the video data, they adopted a temporal265

convolution network (TCN) [29],i.e., an encoder-decoder module, to further266

capture the information across frames, generating the representative spatial-267

temporal visual features. For the kinematic data, they first normalized the268

variables into [-1, +1], and then they used the TCN and long short-term memory269

(LSTM) [30] in parallel to learn and model the complex information of the left270

and right arms separately, yielding spatial-temporal motion features.271

After acquiring the encoded high-level features from the video stream and272

kinematic data of the left and right arms, they used a graph convolutional network273

to further learn the joint knowledge among the multi-modal data. Considering274

that the visual information and left/right kinematic information contained fruitful275

interactions and relationships, they designed a graph convolutional network276

(GCN) with three node entities corresponding to the video, left kinematics, and277

right kinematics, with all three nodes connected to each other. Initialized with278

these three modalities, the node features of the GCN were updated by receiving279

the message from neighbor connected node features and then encoding stronger280

information in the newly generated node features. Then, the authors max pooled281

the features from the three nodes and forwarded them into a fully connected282

layer to get the prediction results of the workflow recognition. For more details,283

you can refer to [31].284
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Two different approaches were employed to further enhance the temporal285

consistency of the workflow recognition. The authors filtered out the frames with286

low prediction probabilities using a median filter and leveraged the information287

of the preceding 600 frames with 30 fps. They also employed an online post-288

processing strategy (PKI) [32] that leveraged the workflow of the phases and289

steps. For example, the steps followed a specific order: "Needle holding", "Suture290

making", "Suture handling", "1 knot", "2 knot", and "3 knot", and it were not291

likely to be reversed or shuffled.292

3.2.2. NUSControl Lab293

The NUSControl Lab team was composed of Chin Boon Chng1, Wenjun294

Lin1,2, Jiaqi Zhang1, Yaxin Hu1, Yan Hu1, Liu Jiang Jimmy2, and Chee Kong295

Chui 1. The participants noted with "1" were from the National University of296

Singapore (NUS), Singapore, Singapore; the participants noted with "2" were297

from the Southern University of Science and Technology, Shenzhen, China. This298

team participated in the multi-granularity task. As described in the subsection299

"Ranking method" (2.4.2), the model was also ranked in each uni-granularity300

task.301

The NUSControl Lab team used both the video and kinematic data. They302

first extracted the features of the video frames using EfficientNet [33]. Then, they303

employed an LSTM module to model the sequential dependencies of the video304

data. The authors hypothesized that the kinematic data were specifically related305

to the verbs and steps. With this motivation, they employed another LSTM306

module to model the sequential features of the left and right arm kinematic data,307

which was then concatenated and fed into a fully connected layer to predict the308

verbs (left and right) and the steps. Their network model was based upon the309

work of Jin et al. [34].310

The authors also employed a post-processing step that made used of the311

workflow observations to further improve the predictions. For example, if a knot312

is to be tied, a loop must first be made, followed by pulling the wire. Thus, the313

verb “make a loop” could be used to indicate when a new knot is being tied.314
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Similarly, the verb “pull” could be used to indicate when the new knot has been315

completed. The authors proposed to mark the verb “make a loop” as a transition316

signal to the next knot and “pull” as a completion signal of this knot. If the317

model classified the current task to be “making a loop” and the phase turned to318

knot tying, the knot step was incremented. This knot step was identified to start319

from the previous “pull” prediction and continue until the next “pull” prediction.320

3.2.3. SK321

The SK team was composed of Satoshi Kondo from Konica Minolta, Inc. This322

team participated in the multi-granularity task. As described in the subsection323

"Ranking method" (2.4.2), the model was also ranked in each uni-granularity324

task.325

The SK team used the video data, kinematic data, and time information326

as the input for the model. The video frame features were extracted using a327

50-layer ResNet [28] pre-trained with the ImageNet data set, which led to a328

2,048-dimension feature vector. While the team used only the left stereo video329

frame, the kinematic data features: x, y, z, α, β, γ, and grip collected from the330

left and right arms were used, leaving the output voltage for the grip feature331

out. The kinematic data were normalized with the mean and standard deviation332

values for each dimension and then fed to two fully connected layers.333

The team also employed the frame number as a means of time information.334

The frame number was divided by 10,000. The feature vector of the input335

image, the feature vector of the kinematic data, and the frame number were336

concatenated, which led to a 2,063-dimension feature vector for a single frame.337

Then, the author performed multi-granularity recognition wherein the network338

learned the tasks,i.e., phase, step, and activity. For each activity, the verb, the339

target, and the tool for the left and right arms were learned, which resulted in340

a total of eight classes. The loss function was the summation of softmax cross-341

entropy for these eight classes, and the team employed a Lookahead optimizer342

[35].343
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3.2.4. UniandesBCV344

The UniandesBCV team was composed of Laura Bravo-Sánchez, Paola Ruiz345

Puentes, Natalia Valderrama, Isabela Hernández, Cristina González, and Pablo346

Arbeláez. All members were from the Center for Research and Formation347

in Artificial Intelligence and the Biomedical Computer Vision Group at the348

Universidad de los Andes, Colombia. This team participated in all proposed349

tasks.350

The UniandesBCV team only used the video data and proposed a model that351

leveraged the implicit hierarchical information in the surgical workflow. The352

model presented by the authors was based on SlowFast [36], a neural network353

that uses a slow and a fast pathway to model semantic and temporal information354

within videos. To accomplish this discrimination of information, each of the355

pathways analyzed the video at a different sampling rate. The slow pathway356

used a low frame rate with a large number of channels, while the fast pathway357

employed a high frame rate and only a fraction of the channels. To make a358

prediction based on the complete information (semantic and temporal), the fast359

pathway fused with the slow one using several lateral connections at different360

points of the network.361

The authors first extracted the features of the video frames using ResNet-50362

backbone [28] and fed the features of 64-frame windows into a SlowFast model363

adapted for multi-task training that was pre-trained on the Kinetics data set364

[37]. The authors explored different multi-task hierarchical groupings: The365

first model simultaneously predicted both phases and steps, the second model366

predicted activities, and the last model predicted all the components of the367

multi-granularity recognition. During training, the team also introduced an368

extra term to the loss function for optimizing the task added at each grouping369

and balanced the relevance of each task by associating each of the loss’s terms370

to a weight. The authors reported that merging all the components of the371

multi-granularity recognition tasks improved the learning ability of the model372

and obtained more accurate predictions.373
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3.2.5. Wr0112358374

Team wr0112358 was composed of Wolfgang Reiter from Wintegral GmbH.375

This team participated in all proposed tasks.376

Team wr0112358 only used the video data, reporting that the kinematic data377

did not significantly contribute to the performance of the model. The team378

also explored different architectures, including ResNet50 [28] and multi-stream379

Siamese networks with temporal pooling [38], but reported that due to the high380

imbalance and the relatively small size of the data set, the complex architectures381

resulted in overfitting. The author also ruled out using an LSTM approach for382

the same reason.383

The team decided to employ a multi-task convolutional neural network [15]384

and extracted the features of the video frames using a DenseNet121 CNN with385

data augmentation and regularization, which reduced overfitting. The author386

enhanced this architecture with task-wise early stopping [39] and also reported387

that using either of the stereo video frames resulted in a similar performance.388

3.2.6. IMPACT389

The IMPACT team was the non-competing team due to the presence of390

challenge organizers on it. This team was composed of Arnaud Huaulmé and391

Fabien Despinoy both from Rennes University, INSERM, LTSI - UMR 1099 and392

Duygu Sarikaya from Gazi University, Faculty of Engineering, Department of393

Computer Engineering. The team participated in all proposed tasks.394

The IMPACT team used both the right video frames and kinematic data395

and proposed a multi-modal architecture. The authors applied a pre-processing396

step to the input data. While the right video images were rescaled from 460x540397

to 224x224 and the pixel values were normalized by subtracting the mean of398

each channel over the training set and scale between [0,1], the authors applied399

a z-normalization to center the kinematic data to 0 with a standard deviation400

equal to 1. To make the training step faster, the data were downsampled to 5Hz.401

Then, each input modality was processed into a dedicated network branch402

to leverage the different types of data. While the video frames were passed to403
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a VGG19 network [40], the kinematic data were passed to an adapted ResNet404

network [41]. The last convolutional layer of each modality branch was finally405

concatenated into a common branch before being split again into separated406

workflow branches containing their own activation layers (1 for the phase and407

step recognition, 6 for the activity recognition, and 8 for the multi-granularity408

recognition).409

The VGG19 network was initialized with the weights of a pre-trained model410

on the ImageNet data set. Since the MISAW data set was acquired in phantom411

surgical settings, the IMPACT team retrained only the last two layers to refine412

the network for this task. Regarding the kinematic branch, the network was413

trained "from scratch" without any previous weight configuration. In the end,414

the training was achieved using an Adam optimizer and a starting learning rate415

of 0.0001.416

Team name Tasks Modalities Networks Post processing

MedAIR 1, 2 V + K CNN, TCN, RNN PKI

NUSControl Lab 4 V+K CNN, RNN Workflow

SK 4 V+K CNN

UniandesBCV All V SlowFast, CNN

Wr0112358 All V CNN

IMPACT All V+K CNN

Table 3: Participating teams and their methods summary. On modalities, V is for video, K for

Kinematic.

3.3. Workflow recognition results417

Even if the participants submitted the method outputs for each test case, all418

of the following results were computed on organizer hardware via the provided419

Docker images. We did not detected any fraud attempts in the results provided420

by the participants.421

This section only presents the results used for the ranking. Detailed results422
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by sequence and task of each participating team are available in Supplementary423

Material B.424

3.3.1. Task 1: Phase recognition425

Phase recognition is a three-class task. We received 4 uni-granularity and 5426

multi-granularity models for this task; the latter were identified with the addition427

of "_multi" at the end of the team name.428

Figure 6 presents the results of all algorithms for each test sequence. The429

average AD-Accuracy by sequence was between 77.7% and 84.7%, which demon-430

strated that the recognition difficulty was similar between the sequences, except431

for sequence 5_6. However, we noticed that for all the test cases, 2 models had432

an AD-Accuracy lower than 65%.433

Figure 6: Phase recognition AD-Accuracy for each sequence. Each dot represents the AD-

Accuracy for one model.

Figure 7 presents the average AD-Accuracy for each model.The MedAIR434

team got an average AD-Accuracy of 96.53%. The multi-granularity models of435

the UniandesBCV and SK teams presented results lower than 65%. Overall,436

only the uni-granularity model of IMPACT had an outlier lower than 70%, while437

the average AD-Accuracy was 80.66%. Is it also interesting to note that the438

multi-granularity model of this team was slightly better than the uni-granularity439

one.440
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Figure 7: Average phase recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

Figure 8 presents the different rankings according to the method chosen.441

For the phase recognition, the choice of method did not influence the ranking,442

except for the multi-granularity models of teams IMPACT and wr0112358, which443

swapped the fifth and sixth places.444

Figure 8: Phase recognition ranking stability through different ranking methods.
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3.3.2. Task 2: Step recognition445

Step recognition is a 7-class task. We received 4 uni-granularity and 5 multi-446

granularity models for this task; the latter were identified with the addition of447

"_multi" at the end of the team name.448

The average AD-Accuracy by sequence was between 51.2% and 64.4% (Figure449

9). Contrary to the phase recognition, there was no sequence with a significantly450

lower score. We noticed that for all sequences, at least one model outperformed451

the others.452

Figure 9: Step recognition AD-Accuracy for each sequence. Each dot represents the AD-

Accuracy for one model.

In figure 10, we could identify this team as MedAIR, which obtained an453

average AD-Accuracy of 84.02%. Three models had results lower than 50%: the454

uni-granularity model of the IMPACT team and the multi-granularity models455

of the UniandesBCV and SK teams. Only the multi-granularity model of456

NUSControl Lab had disparate results according to the sequences.457
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Figure 10: Average step recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

The ranking method chosen did not impact the final rank (Figure 11).458

Figure 11: Step recognition ranking stability through different ranking methods.
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3.3.3. Task 3: Activity recognition459

The activity recognition consisted of recognizing 6 components, i.e., the verb,460

target, and instrument for the left and right arms. Each component was an461

11-, 10-, and 2-class problem, respectively. We received 3 uni-granularity and 5462

multi-granularity models for this task; the latter were identified with the addition463

of "_multi" at the end of the team name.464

The average AD-Accuracy score by sequence was between 55.1% and 63.4%465

(Figure 12). As for the step recognition, all sequences had similar results.466

However, for session 4_4, one model had an AD-Accuracy lower than 40%.467

Figure 12: Activity recognition AD-Accuracy for each sequence. Each dot represents the

AD-Accuracy for one model.

The average AD-Accuracy by model was between 52.4% and 61.6% 13. Four468

models, three of which were multi-granularity ones, had results over 60%.469
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Figure 13: Average activity recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

According to the ranking method (Figure 14), the ranking was always different470

for the top four models. For this task, we defined a tie between the NUSControl471

Lab and UniandesBCV teams (IMPACT was a non-competitive team).472

Figure 14: Phase recognition ranking stability through different ranking methods.

26

                  



3.3.4. Task 4: Multi-granularity recognition473

Task 4 consisted of recognizing the phase (a 3-class problem), the steps (a474

7-class problem), and the verb, target, and instrument for the left and right arms475

(an 11-, 10-, and 2- class problem, respectively) on a unique model . Of the 6476

teams, 5 proposed a model for this task.477

The average AD-Accuracy score by sequences was between 59.6% and 66.4%478

(Figure 15). Surprisingly, these results were slightly better than those for the479

activity recognition although this task also demanded recognition of phases and480

steps.481

Figure 15: Multi-granularity recognition AD-Accuracy for each sequence. Each dot represents

the AD-Accuracy for one model.

The average AD-Accuracy by model was between 49.1% and 76.8% 16. The482

model of NUSControl Lab outperformed the models of the other teams, with a483

recognition rate 12 points higher than the second competing team (IMPACT484

had a better result than wr0112358 team but was not competing). The team485

ranking was not impacted by the ranking method (Figure 17).486
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Figure 16: Average multi-granularity recognition AD-Accuracy for each model. Each dot

represents the AD-Accuracy for one sequence.

Figure 17: Multi-granularity recognition ranking stability through different ranking methods.

Table 4 summarizes the results of each model on all tasks.487
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Team Model Task 1 Task 2 Task 3 Task 4

MedAIR uni 96.53 84.02

NUSControl Lab multi 94.10 74.64 61.69 76.81

SK multi 58.99 35.85 52.40 49.08

UniandesBCV
uni 89.45 60.21 61.31

multi 61.45 39.91 61.08 54.15

Wr0112358
uni 91.60 63.74 58.95

multi 84.49 51.41 56.71 64.21

IMPACT
uni 80.66 46.48 58.10

multi 82.70 57.08 61.06 66.95

Table 4: Average AD-Accuracy of each model for all tasks. On model, uni is for models

dedicated to uni-granularity recognition, multi for models able to recognize all modalities. Best

results are highlighted in bold for each task.

4. Discussion488

Surgical workflow recognition is an important challenge in providing automatic489

context-aware computer-assisted surgical systems. However, as demonstrated by490

the different models proposed in this challenge, there remains a lot of room for491

improvement. For a high level of granularity (phases and steps), the best models492

have a recognition rate that may be sufficient for applications such as prediction493

of remaining surgical time or resource management. However, for activities, the494

recognition rates are still insufficient to propose clinical applications.495

For all tasks, the decrease between the sequence with the best recognition496

rate and the one with the lowest was linear. The difference between the best497

and the worst recognition rate was 7 points for phase recognition, 13.2 for step498

recognition, 8.3 for activity recognition, and 6.8 for multi-granularity recognition.499

Only sequence 5_6 for phase recognition presented a recognition gap of 3 points500

with the penultimate sequence (Figure 6). After a review of this sequence,501

the major difference was a high representation of the "idle" phase (7.13% for502

sequence 5_6 compared to 2.49± 1.22% for the other test cases) to the detriment503
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of the "suturing" phase (36.12% compared to 45.14±10.36%) for a similar total504

duration (79s vs. 99s ± 52s). However, this cannot be the only reason for this low505

recognition rate. In the future, it could be interesting to study the explainability506

of the different networks.507

For the image modality, all teams proposed a model based on convolutional508

neural networks (CNNs) such as ResNet, and VGG, two of them also combined509

a recurrent neural network (RNN) as LSTM. For the kinematic modality, two510

teams used CNN, one used RNN, and another used a combination of both. The511

teams wr0112358 and UniandesBCV did not use this modality. According to512

the results, the use of RNNs seemed to be more relevant than that of CNNs513

only. However, both teams that used them also performed post-processing to514

improve the recognition rate, so it was difficult to evaluate the role of the RNNs515

and post-processing.516

For the phases and step recognition tasks, the multi-granularity models had517

globally worse performances than the uni-granularity models, even for the teams518

who proposed both models on the same architecture. The only exception was519

for IMPACT, but the results were quite similar between the team’s models. For520

the activity recognition, it was the opposite: 3 of the 4 top models were multi-521

granularity ones. Two reasons could explain this fact. First, the activity and522

multi-granularity models had to recognize multiple components at the same time523

(6 and 8 components, respectively), whereas the other models only recognized 1524

component. Second, the majority of activities could only appear on a specific525

phase or step. For example, the activity consisting of inserting a needle on the526

right artificial vessel with a needle holder (noted <insert, right artificial vessel,527

needle holder>) could only appear on the phase "suturing" and, specifically, on528

the step "suture making". So, the multi-granularity models could learn these529

relations to improve their performances for activity recognition.530

One of the most surprising results of the challenge was the similar recognition531

rate between the video-based models and the multi-modality-based models (using532

both videos and kinematics). Team wr0112358 reported that the kinematic data533

did not significantly contribute to the performance of their model. This was534
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confirmed by the ranking of this team (top 3 for the phase and step recognition535

tasks with a dedicated model and top 3 for the multi-granularity task). The536

UniandesBCV team also used only the video modality, and also had good ranking,537

especially for activity recognition, with a tie for first place between both models538

proposed. However, it is impossible to know whether these results come from539

the models used by the participants or from the lack of information provided by540

the kinematic data. A more robust and systematic study would clarify this by541

the understanding of the models and the contribution of each modality.542

The first main limitation was the unbalanced distribution of cases by expertise543

level (11 performed by experts, 16 by engineering students) due to the different544

number of cases by participants (between 3 and 6 cases). We split the data set545

to have a similar distribution between the training and test data sets to limit546

the impact of this unbalanced distribution.547

The second main limitation was the release of the video and kinematic data548

of the test cases during the challenge. This choice was dictated by the organizers’549

lack of knowledge of Docker images and the lack of hardware available when the550

challenge was proposed to EndoVis and MICCAI. So, we wanted to be able to551

use the results provided by the participants if necessary. Finally, all results were552

computed on the organizers’ hardware via Docker images. With the test cases553

release, we first asked unnecessary works to teams; the time spent running the554

results could have been dedicated to the improvement of the methods. Moreover,555

this early release could have allowed the participants to make their own manual556

annotations and use them for the training. Even if these annotations were557

different than those by the organizer, it opened a breach for undetectable fraud.558

In addition to confirming the superiority of RNNs compared to CNNs with559

same post-processing method and studying the impact of each modality, future560

work could explore more complex networks such as hierarchical models. Indeed,561

the granularity description is hierarchic (a step belongs to a phase; some activities562

only appear on specific steps), so this type of model could improve the recognition.563

Enlarging the data set with more sessions, more modalities, and more sources of564

data (other systems, virtual reality simulators, real surgeries, etc.) is also being565
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considered for a second version of the MISAW challenge.566
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