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Abstract

Sensitivity indices are commonly used to quantify the relative influence of any specific group of
input variables on the output of a computer code. One crucial question is then to decide whether
a given set of variables has a significant impact on the output. Sobol indices are often used to
measure this impact but their estimation can be difficult as they usually require a particular design
of experiment. In this work, we take advantage of the monotonicity of Sobol indices with respect
to set inclusion to test the influence of some of the input variables. The method does not rely on a
direct estimation of the Sobol indices and can be performed under classical iid sampling designs.
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1 Introduction
The use of complex computer models for the analysis of applications from sciences, engineering and

other fields is by now routine. For instance, in the area of marine submersion, complex computer codes
have been developed to simulate submersion events (see e.g. [1, 10]) while sensitivity analysis and meta-
modelling are intensively used to optimize the airplanes designs [16]. Meta-models usually depend on
many input variables and are computationally expensive. Thus, it is crucial to understand which of
the input parameters have an influence on the output. One classical approach to deal with this kind of
problem is to consider the inputs as random elements, a point of view generally called (global) sensitivity
analysis. We refer to [2, 17, 18] for an overview of the practical aspects.

Sobol indices, based on the Hoeffding decomposition [9] of the output’s variance, are one of the most
used tools to perform global sensitivity analysis. They were first introduced in [15] and later revisited in
[19]. In the general framework, a square integrable output variable Y is assumed to obey a non-parametric
relation of the form

Y = f(Z1, . . . , Zq) (1)
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where the Zj ’s are input variables and f is an unknown function. In practice, an analytical expression
for f is usually not available and the only access we have to f is through experimentation or computer
code. The Sobol index of Y with respect to a subset u ⊂ {1, . . . , p} of input variables is then defined by

S(u) :=
var (E[Y |Zj , j ∈ u])

var(Y )
.

One of the main tasks the practitioner has to deal with is to decide whether a group of variables has any
influence on the output Y . This objective can be pursued by noticing that the equality of Sobol indices
for nested sets u ⊂ v reduces to the (almost sure) equality of the conditional expectations:

∀u, v , u ⊂ v : S(u) = S(v) ⇐⇒ E[Y |Zj , j ∈ u]
a.s.
= E[Y |Zj , j ∈ v].

Thus, a non-parametric notion of significance can be established by comparing Sobol indices over
nested sets of input variables.

Many different estimation procedures of the Sobol indices have been proposed in the literature. Some
are based on Monte-Carlo or quasi Monte-Carlo designs of experiment, see [12, 14]. More recently, a
method based on nested Monte-Carlo [8] has been developed. Other estimation procedures are based on
different designs of experiment using for example polynomial chaos expansions [20]. An efficient estima-
tion of the Sobol indices can be performed through the so-called “Pick-Freeze” method, whose theoretical
properties (consistency, central limit theorem, concentration inequalities and Berry-Esseen bounds) have
been studied in [6, 11]. In particular, the joint central limit theorem enables to build asymptotic com-
parison tests on Sobol indices. However, the Pick-Freeze method requires a specific design of experiment
which makes it inapplicable in the classical iid framework and computationally expensive (for instance,
the p order one Sobol indices estimators need n(p+ 1) computations of the function f). This drawback
was recently partially solved in [5], where the order one Sobol indices are estimated from rank statistics in
the classical iid sample scheme. Nevertheless, the absence of a joint CLT in this case makes it impossible
to test hypotheses involving more than one Sobol index at a time.

In this work, we present an alternative way to build non-parametric significance tests, used for the
detection of non-influent variables. A main motivation of the proposed procedure is to perform non-
parametric variable selection, in order for instance to reduce the cost of a computational code or simplify a
meta-model. The originality of our approach stems from a reformulation of the null hypothesis in terms of
the empirical process, thus bypassing the difficulty of having to estimate the Sobol indices. This allows to
perform multiple significance tests using a single sample, thus potentially reducing the computational cost
compared to alternative methods that rely on specific sampling designs. The framework and theoretical
setting are presented in Section 2. Section 3 is dedicated to the construction of level α statistical tests.
In Section 4, we carry out a numerical study to compare the new statistical test procedure to the classical
one introduced in [6, 11].

2 Theoretical framework
We consider the model

Y
a.s.
= f(Z1, . . . , Zq) (2)

and for any subsets u and v of {1, . . . , q} such that u ⊂ v we are interested in constructing a non-
parametric significance test for either
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• H0 ; S(u) = 0 against H1 : S(u) > 0 or

• H0 ; S(u) = S(v) against H1 : S(u) < S(v).

Now if v = {j1, j2, . . . , jp} then setting Xk = Zjk , the model (2) can always be rewritten as follows

Y
a.s.
= f(X,W ). (3)

with X = (X1, . . . , Xp) and W = (Zj)j /∈v.

We assume that Y is square-integrable, in which case the conditional expectation E[Y |X] can be
defined as an orthogonal projection of Y in L2 onto the linear space of square integrable mesurable
functions of X. In particular, the Hoeffding decomposition

var(Y ) = var
(
E[Y |X]

)
+ var

(
Y − E[Y |X]

)
follows from the Pythagorean theorem. The Sobol index of Y associated to X is defined by

S =
var
(
E[Y |X]

)
var(Y )

∈ [0; 1].

For any subset u of {1, ..., p} and x = (x1, ..., xp) ∈ Rp, we denote x(u) = (xj)j∈u with the convention
x(u) = 0 if u = ∅, and by S(u) the Sobol index associated to X(u):

S(u) =
var
(
E[Y |X(u)]

)
var(Y )

∈ [0, 1]. (4)

Remark that, in view of the characterization of the conditional expectation as an orthogonal projection,
Sobol indices are non-decreasing with respect to set inclusion: u ⊆ v =⇒ S(u) ≤ S(v). Letting
u = {1, ..., p} \ u, we say that the variables X(u) are not significant to explain Y in the presence of X(u)

if
E[Y |X(u)] = E[Y |X]

or equivalently, if S(u) = S. Remark that since the conditional expectation is only defined in an almost
sure sense, the equality here, and throughout, is meant almost surely. The aim of this paper is to construct
a non-parametric significance test based on the hypotheses

H0 : S(u) = S against H1 : S(u) < S.

The global Sobol index S is allowed to be smaller than one so that any nested non-parametric signif-
icance test can be performed using an appropriate choice for X and u, leaving the remaining unused
variables as part of W . For instance, the significance of a single variable X1 via the null hypothesis
H0 : E[Y |X1] = E[Y ] is achieved by setting X = X1 and u = ∅.

Paragraph de justification avec computer code When rewriting the model (2) in the framework of
Equation (3) the variable W can be interpreted in two ways

1. You discard in W all the variables you are not interested in (which is the approach we use in this
work)
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2. OrW is seen has an extra hidden random input which is naturally present for classical modelization
of stochastic codes, we refer to [13, 4] for more details. Hence all our methodology applies when
working with stochatic codes. Nevertheless, we decide to focuss our work on the classical framework
of deterministic black box.

A natural test for H0 exists whenever one can construct estimators of the Sobol indices with known
(or estimable) joint limit distribution. However, typical estimation methods such as Pick-Freeze usually
requires a specific design of experiment. The test procedure proposed in this paper does not rely on a
direct estimation of the Sobol indices and applies in the typical iid sampling design. The method makes
use of an equivalent formulation of H0 described in Lemma 2.1 below.

For two vectors a = (a1, ..., ak), b = (b1, ..., bk), a∧b := (a1∧b1, ..., ak∧bk) denotes the component-wise
minimum, while the inequality a ≤ b is meant as a ∧ b = a. The indicator function is denoted by 1{.}.

Lemma 2.1. If X1, ..., Xp,W are independent, then for all u ⊆ {1, ..., p}, the following assertions are
equivalent:

i) S(u) = S.

ii) E[Y |X(u)] = E[Y |X].

iii) For all x ∈ Rp such that P(X ≤ x) > 0, E[Y |X(u) ≤ x(u)] = E[Y |X ≤ x].

iv) For all x ∈ Rp, E[Y 1{X ≤ x}] = E[Y 1{X(u) ≤ x(u)}]P(X(u) ≤ x(u)).

Proof. Let Z = E[Y |X] and remark that E[Y |X(u)] = E[Z|X(u)]. The equivalence between i) and ii)
follows from the well known decomposition

var(Z) = var
(
E
[
Z|X(u)

])
+ E

[
var
(
Z|X(u)

)]
,

where the non-negative term E
[

var
(
Z|X(u)

)]
is zero if, and only if, E[Z|X(u)] = Z. By definition of the

conditional expectation

E[Y |X] = E[Y |X(u)] ⇐⇒ ∀x ∈ Rp , E
[
Y 1{X ≤ x}

]
= E

[
E[Y |X(u)]1{X ≤ x}

]
.

The independence of the Xj ’s and the fact that 1{X ≤ x} = 1{X(u) ≤ x(u)}1{X(u) ≤ x(u)} give

E
[
E(Y |X(u))1{X ≤ x}

]
= E

[
Y 1{X(u) ≤ x(u)}

]
P
(
X(u) ≤ x(u)

)
which shows ii) ⇐⇒ iv). The equivalence iii) ⇐⇒ iv) follows by dividing both sides of the equality
iii) by P(X ≤ x).

Assume we observe an iid sample (Y1, X1), ..., (Yn, Xn) drawn from the same distribution as (Y,X).
For all k ∈ {0, 1, 2} and u ⊆ {1, ..., p}, let m(u)

k : x 7→ E[Y k1{X(u) ≤ x(u)}] and denote by m̂(u)
k (.) its

empirical counterpart:

m̂
(u)
k (x) =

1

n

n∑
i=1

Y ki 1{X
(u)
i ≤ x(u)} , x ∈ Rp.

For ease of notation, we shall simply write mk and m̂k for the case u = {1, ..., p}. By Lemma 2.1, we
know that the null hypothesis H0 : S(u) = S can be stated as ξ := m1 −m(u)

1 m
(u)
0 being identically zero.
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In this logic, we use the empirical version ξ̂ to build a test statistics for H0.

For the next proposition, we denote by η = (m1,m
(u)
1 ,m

(u)
0 )> and η̂ := (m̂1, m̂

(u)
1 , m̂

(u)
0 )> its empirical

counterpart. Moreover, let us write x(u) ⊕ x′(u) for the vector of Rp with components xi if i ∈ u and x′i
if i /∈ u.

Proposition 2.2. The normalized process
√
n(η̂−η) converges in finite-dimensional distribution towards

a 3-dimensional centered Gaussian field indexed by Rp with auto-covariance function

Ω(x, x′) :=

 m2(x ∧ x′) m2

(
(x ∧ x′)(u) ⊕ x(u)

)
m1

(
x(u) ⊕ (x ∧ x′)(u)

)
m2

(
(x ∧ x′)(u) ⊕ x′(u)

)
m

(u)
2 (x ∧ x′) m1

(
x(u) ⊕ x′(u)

)
m1

(
x′

(u) ⊕ (x ∧ x′)(u)
)

m1

(
x′

(u) ⊕ x(u)
)

m
(u)
0 (x ∧ x′)

− η(x)η(x′)>

for all x, x′ ∈ Rp.

The proof is a straightforward consequence of the central-limit theorem. The convergence in distri-
bution can be shown without any particular obstacle using Vapnik-Chervonenkis’ theory although this
result is not needed for the theoretical validity of the test.

3 The test procedure

Consider the process ξ̂ = m̂1−m̂(u)
1 m̂

(u)
0 , whose asymptotic distribution can be derived from the delta

method applied to the smooth function φ : (s, t, u) 7→ s− tu from R3 to R, using Proposition 2.2. Given
a fixed collection x = (x1, ..., xK) of points in Rp chosen independently from the sample, the random
vector ξ̂(x) =

(
ξ̂(x1), ..., ξ̂(xK)

)> is asymptotically Gaussian

√
n
(
ξ̂(x)− ξ(x)

) d−−−−→
n→∞

N
(
0,Σ(x)

)
with covariance matrix

Σ(x) :=
(
∇φ(xk)>Ω(xk, xk′)∇φ(xk′)

)
k,k′=1,...,K

.

The empirical version Σ̂(x) obtained by replacing the functions m(u)
k by their empirical counterparts

m̂
(u)
k , is clearly a consistent estimator of Σ(x) in virtue of the law of large numbers. Since the hypothesis

H0 : S(u) = S can be stated equivalently as H0 : ξ = 0, a test can be performed by comparing the
observed value of ‖ξ̂(x)‖ (for a well chosen norm ‖.‖ on RK) to the appropriate quantile of the asymptotic
distribution under H0. Two natural approaches are then possible:

1. If ‖.‖ is the natural Euclidean norm on RK , then under H0,

T := n‖ξ̂(x)‖2 = n

K∑
k=1

ξ̂(xk)2 (5)

converges in distribution towards a weighted χ2 distribution with weights given by the eigenvalues
λ1, ..., λK ≥ 0 of Σ(x). In other words, n‖ξ̂(x)‖2 has the same distribution asymptotically (under
H0) as ε>Σ(x)ε where ε is a standard Gaussian vector in RK . This distribution can be approximated
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by Monte-Carlo using the empirical version Σ̂(x) instead of the unknown Σ(x), in order to determine
the threshold τα over which the hypothesis is rejected, at any given significance level α ∈ (0, 1).
The Monte-Carlo part can be time consuming as a large number of replications may be needed to
approximate the asymptotic distribution and corresponding quantile sufficiently well.

2. A different approach consists in normalizing the vector ξ̂(x) in order to achieve a true (non-weighted)
χ2 asymptotic distribution under H0. If Σ(x) is invertible, with inverse Γ(x), a test statistics

T := nξ̂(x)>Γ̂(x)ξ̂(x) (6)

for Γ̂(x) a consistent estimator of Γ(x), has the asymptotic distribution χ2(K) under H0, as n→∞.
In practice, the naive estimator

Γ̂(x) = Σ̂(x)−1

is rarely a good choice, especially if Σ̂(x) is close to singular. In this case, a regularized version of
the inverse leads to a better approximation of the asymptotic distribution. Typically, Γ̂(x) can be
obtained by truncated singular value decomposition where the eigenvalues of Σ̂(x) below a certain
threshold t are ignored (see for instance [3] for further details on inverse matrix regularization). The
observed value of the test statistics is then compared to the quantile of the χ2 distribution with
r = rank(Γ̂(x)) degrees of freedom. In the numerical study, we use the regularization threshold
t = 0.1n−1/3ρ(Σ̂(x))λ1 where λ1 is the largest eigenvalue of Σ̂(x), which ensures in particular that
r ≥ 1. Further details are discussed in Section 4.

For both these approaches, the number K of points over which the empirical process ξ̂ is evaluated
is only constrained by the computation time. A larger experimental design x may improve the power of
the test with no negative impact on the significance level, as we discuss in Section 4.

In practice, the xk’s may be drawn uniformly on the domain of X if it is bounded, or from an
arbitrary distribution µ on Rp. In this case, the normalized test statistics can be viewed as a Monte-
Carlo approximation of the integral

∫
nξ̂2dµ. Although possible in practice, we do not recommend using

the available sample (X1, ..., Xn) as the design due to the poor resulting performance of the test. If
the distribution of the Xi’s is known to the practitioner, we may use the same distribution to draw the
xk’s. Under the alternative H1, the power of the test highly depends on the design x (or the underlying
distribution µ) which should ideally favor regions of the space for which ξ is far from zero, enabling the
test statistics to grow more rapidly to infinity.

4 Numerical application
Let (Y1, X1), ...., (Yn, Xn) be an iid sample on R× R3 obeying the relation

Yi = f(Xi) , i = 1, ..., n

where
f(x) = (2 + x43) sin(x1) + 7 sin2(x2) , x = (x1, x2, x3) ∈ R3.

The Xi’s are assumed independent with the uniform distribution on [−π, π]3. This function is commonly
used in sensitivity analysis as a test case and is classically referred to as the Ishigami function.
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From the two possible approaches discussed in the previous section, we choose the second one due to
its faster computation time. Thus, the test statistics is given by

T = nξ̂(x)>Γ̂(x)ξ̂(x)

where Γ̂(x) is a regularized inverse of the empirical estimator Σ̂(x), whose precise construction will be
detailed below.

The experimental design x = (x1, ..., xK) is drawn from the same distribution as the original sample,
namely a uniform distribution on [−π, π]3. We draw K = 10 points to build the test. This seemingly
small value ended up providing satisfactory results while keeping the computation time reasonable. The
power of the test can be slightly improved by taking a larger experimental design x but the additional
time is too much amplified in our framework where numerous replications were made to evaluate the
performances of the test. For an actual application of the method where the algorithm is run only once,
the computation takes at most a few minutes and the size of x is not much of a limiting factor.

The matrix Γ̂(x) is obtained from a truncated singular value decomposition of Σ̂(x). Precisely, let
λ1 ≥ ... ≥ λK be the ordered eigenvalues of Σ̂(x) and consider the singular value decomposition

Σ̂(x) = P Diag(λ1, ..., λK)P>

where P is orthogonal (i.e. PP> = P>P = I). We define

Γ̂(x) = P Diag
(
gt(λ1), ..., gt(λK)

)
P>

where gt is the so-called truncated SVD filter function gt(x) = 1/x if x > t and gt(x) = 0 otherwise.
The test statistics T is then compared to the quantile of the χ2 distribution with r degrees of freedom,
where r = rank(Γ̂(x)) is the number of eigenvalues of Σ̂(x) larger than t. The hypothesis is rejected if
the observed value of T exceeds the (1− α)-quantile of the χ2(r) distribution. To ensure that r > 0, we
choose t equal to a vanishing proportion τn ∈ (0, 1) of the spectral radius λ1 of Σ̂(x):

t = τnλ1. (7)

The rule of thumb τn = 0.1n−1/3 is used in the simulations.

The test statistics and resulting p-values are calculated overN = 10000 replications of the experiments.
Four different hypotheses are considered:

1. H0 : S(3) = 0 ⇐⇒ E[Y |X3] = E[Y ]

2. H0 : S(2,3) = S(2) ⇐⇒ E[Y |X2, X3] = E[Y |X2]

3. H0 : S(1) = 0 ⇐⇒ E[Y |X1] = E[Y ]

4. H0 : S(1,3) = S(1) ⇐⇒ E[Y |X1, X3] = E[Y |X1]

As discussed previously, these hypotheses boil down to testing the non-parametric significance of some
input variables, e.g. the first one reduces to testing the influence of X3 on Y while the second one corre-
sponds to testing the influence of X3 in presence of X2. The null hypothesis is true in the first two cases
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where the simulations aim to evaluate the actual significance level as a function of the nominal value α
the test is supposed to achieve. For the last two cases, the null hypothesis is false with actual values of
the Sobiol indices being and S(1) ≈ 0.402 and S(1,3) ≈ 0.989. The simulations thus aim to evaluate the
power of the test in these last two cases.

The results are compared with the test built from the Pick-Freeze estimators of the Sobol indices pre-
sented in [7]. For each scenario, the expression in Equation (3) is used, and the p-value for the unilateral
test is calculated. To easily differentiate the results of the two methods in what follows, the Pick-Freeze
based test will be abbreviated to PF, while the method introduced in this paper will be referred to as
the Empirical Process (EP) test.

We represent the probability of rejecting the null hypothesis for all α ∈ [0, 1] to give a global view of
the distribution of the p-value, although, only the discrepancies between the actual and nominal values
for α smaller than say 0.1 (the range of values typically used in practice) are relevant to measure the
reliability of the test procedure for practical purposes. The results are computed for three sample sizes n
which designate the number of calls to the function f . We emphasize that a specific sampling design is
needed for the Pick-Freeze method, which is not the case for the EP test. In particular, all four hypotheses
can be tested from a unique sample by the EP approach while individual samples need to be generated
for each hypothesis for the PF test. In this aspect, the EP test provides a clear advantage to reduce the
number of calls to f if multiple hypotheses are to be tested.

Probability of rejecting H0 : S(3) = 0

α

EP test    
PF test    
theoretical

n = 30

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0
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PF test    
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1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Estimated probability of rejecting the null hypothesis H0 : S(3) = 0 for the Empirical Process (EP)
and Pick-Freeze (PF) tests. The empirical cdf of the tests’ p-values are calculated on N = 10000 iterations and
return the (estimated) actual significance level of the test as a function of the nominal level α.
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Probability of rejecting H0 : S(2,3) = S(2)
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Figure 2: Estimated probability of rejecting the null hypothesis H0 : S(2,3) = S(2) for the EP and PF tests, as a
function of the nominal significance level α.

As seen in Figures 1, and 2, the EP method appears more reliable than the PF approach for the null
hypotheses H0 : S(3) = 0 and H0 : S(2,3) = S(2), as the (estimated) actual significance level is closer to
the nominal value. Here, the rule of thumb with τn = 0.1n−1/3 used for the TSVD regularization of Σ̂(x)
seems to yield a well calibrated test for a nominal significance level α below 10%. Unsurprisingly, the
discrepancy is more pronounced for small sample sizes. The PF test seems unreliable in these cases as
shown by the highly underestimated significance level for small values of α. This could be due to a too
slow convergence of the Sobol index estimator to a Gaussian distribution, on which the calculations of
the critical regions of the PF test are based on.
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Probability of rejecting H0 : S(1) = 0

α
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Figure 3: Estimated probability of rejecting the null hypothesisH0 : S(1) = 0 for the EP and PF tests. The orange
dashed line gives the asymptotic theoretical power of the PF test obtained under the limit Gaussian distribution
of the Pick-Freeze estimator of S(1). In this case where the null hypothesis is not verified (S(1) ≈ 0.402), the
empirical cdf of the tests’ p-values returns the estimated power of the test as a function of the nominal significance
level α.

Probability of rejecting H0 : S(1,3) = S(1)
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Figure 4: Power of the EP and PF tests for the null hypothesis H0 : S(1,3) = S(1) as a function of the significance
level α. The null hypothesis is false in this case where the true values of the Sobol indices actually differ from
S(1,3) − S(1) ≈ 0.587.

Figures 3 and 4 display the estimated probability of rightfully rejecting H0 : S(1) = 0 and H0 : S(1,3) =
S(1) respectively, as a function of the nominal significance level α for the EP and PF tests. The EP test
seems to perform better overall for the simple hypothesis H0 : S(1) = 0. The power rapidly converges
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towards 1 for both tests, which conveys the high (non-parametric) influence of X1 in this situation.
The Gaussian approximation used to calibrate the PF test is satisfactory in this case as shown by the
theoretical asymptotic power being close to its actual value. On the contrary, the PF test rightfully
rejects the null hypothesis H0 : S(1,3) = S(1) more often than the EP test. Despite the relatively high
difference S(1,3) − S(1) ≈ 0.587, the EP test is less powerful than for the previous simple hypothesis
H0 : S(1) = 0. Nevertheless, while the PF test is more powerful in this case, the convergence to the
Gaussian limit appears to be slow as indicated by the high difference between the theoretical asymptotic
power and its actual value.

Probability of rejecting H0
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Figure 5: Estimated significance level for H0 : S(2,3) = S(2) (left) and power for H0 : S(1,3) = S(1) (right) for a
TSVD threshold obtained with τn = 10−3, 10−2 and 10−1 (see Eq. (7)). The sample size is n = 60 and design
size K = 10.

Finally, the calibration of the regularization threshold used in the estimation of Γ(x) has a non
negligible impact on the quality of the test. In Figure 5, we show the difference in both power and
significance level for three different values of τn. In this case, the rule of thumb gives the somewhat
conservative τn = 0.1n−1/3 ≈ 0.026, which ensures a reliable test in term of significance level. Remark
that although both thresholds τn = 10−2 and τn = 10−1 lead to similar and somewhat accurate levels,
we observe a significant improvement in term of power. This suggests that the EP test procedure has
room for improvement, at least through optimizing the choice of the regularization threshold.

4.1 Fuel consumption for aeronautical missions (Nicolas)
the aeronautical and aerospace sector. uel consumption in aeronautics is
Description des données:

• Liste des variables d’entrée (inputs) X1, ..., Xp

• Variable de sortie (sur-consommation) Y

• D’où proviennent les données

11



• Motivation: comprendre et limiter la sur-consommation

The behavior of the excess fuel consumption Y with respect to each of the nine inputs is shown in
Figure 6. Since in this model, the input variables are real valued, we use the estimators based on rank
statistics (see [5] for the definition of this estimator and its theoretical properties) to estimate all the
order one Sobol indices using the unique sample we have at our disposal.
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Figure 6: Bi-variate representation of the excess fuel consumption with respect to each of the inputs
Xfl1, ..., Xfl7, Xcz, Xlod, with the associated estimated simple Sobol index.
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Xfl1 Xfl2 Xfl3 Xfl4 Xfl5 Xfl6 Xfl7 Xcz Xlod

p-value (Test 1) 0.5367 0 0 0 0.896 0.387 0.394 0.704 0.867

p-value (Test 2) 0.778 0 0 0 0.938 0.283 0.502 0.615 0.571

Table 1: p-values of the tests for the simple hypothesis H0 : SX = 0 calculated for the nine inputs X =
Xfl1, ..., Xfl7, Xcz, Xlod individually. Both approaches for the computation of the p-values, namely that of Eq.(5)
(Test 1) and the less time consuming Eq.(6) (Test 2), are considered.

As we can see, only the inputs Xfl2, Xfl3, Xfl4 are judged relevant individually to explain the excess
fuel consumption. Moreover, denoting by S the global Sobol index associated to all nine inputs, the tests
for the null hypothesis

H0 : SXfl2,Xfl3,Xfl4 = S

returns p-values of around 0.48 and 0.73 respectively. This indicates that the inputs Xfl2, Xfl3, Xfl4 are
sufficient to explain the excess fuel consumption, and no effect of possible interactions with other inputs
is detected. Based on these results, it is tempting to assume a non-parametric relation of the form

E(Y |Xfl1, ..., Xfl7, Xcz, Xlod) = f(Xfl2, Xfl3, Xfl4).

The test can then be used as a tool for non-parametric variable selection, where the influence of each input,
either added to or removed from the model, can be tested individually. For instance, the significance of
Xfl2 in the model in calculated by considering the null hypothesis

H0 : SXfl2,Xfl3,Xfl4 = SXfl3,Xfl4 .

The test returns a p-value of zero for all three inputs Xfl2, Xfl3, Xfl4 confirming their high individual
significance in this model. Conversely, the significance of an input excluded from the model, say Xfl1 for
instance, is assessed by considering the null hypothesis

H0 : SXfl2,Xfl3,Xfl4 = SXfl1,Xfl2,Xfl3,Xfl4 .

The results, summarized in the next table, conclude unambiguously that none of the input excluded from
the model carry any additional information on the excess fuel consumption.

Xfl1 Xfl5 Xfl6 Xfl7 Xcz Xlod

p-value (Test 1) 0.776 0.229 0.822 0.365 0.734 0.998

p-value (Test 2) 0.715 0.294 0.375 0.422 0.413 0.815

Table 2: p-values of the EP test to assess the significance of the inputs Xfl1, Xfl5, Xfl6, Xfl7, Xcz, Xlod in presence
of Xfl2, Xfl3, Xfl4. Both test statistics described in Equations (5) and (6) are given for sake of completeness.

14



References
[1] J. Betancourt, F. Bachoc, T. Klein, D. Idier, R. Pedreros, and J. Rohmer. Gaussian process meta-

modeling of functional-input code for coastal flood hazard assessment. Reliability Engineering and
System Safety, 198, June 2020.

[2] E. De Rocquigny, N. Devictor, and S. Tarantola. Uncertainty in industrial practice. Wiley Online
Library, 2008.

[3] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375. Springer
Science & Business Media, 1996.

[4] J.C. Fort, T. Klein, and A. Lagnoux. Global sensitivity analysis and wasserstein spaces. SIAM/ASA
Journal on Uncertainty Quantification, 9(2):880–921, 2021.

[5] F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. Global sensitivity analysis: a new generation
of mighty estimators based on rank statistics. Forthcoming paper in Bernoulli, 2022.

[6] F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. Statistical inference for Sobol Pick-
Freeze Monte Carlo method. Statistics, 50(4):881–902, 2016.

[7] F. Gamboa, A. Janon, T. Klein, A Lagnoux, and C. Prieur. Statistical inference for sobol pick-freeze
monte carlo method. Statistics, 50(4):881–902, 2016.

[8] T. Goda. Computing the variance of a conditional expectation via non-nested Monte Carlo. Opera-
tions Research Letters, 45(1):63 – 67, 2017.

[9] W. Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Math. Statistics,
19:293–325, 1948.

[10] D. Idier, A.l Aurouet, F. Bachoc, A. Baills, J. Betancourt, J. Durand, R. Mouche, J. Rohmer,
F. Gamboa, T. Klein, J. Lambert, G. Le Cozannet, S. Leroy, J. Louisor, R. Pedreros, and A.L.
Véron. Toward a User-Based, Robust and Fast Running Method for Coastal Flooding Forecast,
Early Warning, and Risk Prevention. Journal of Coastal Research, Special Issue, 95:11–15, 2020.

[11] A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. Asymptotic normality and efficiency of
two Sobol index estimators. ESAIM: Probability and Statistics, 18:342–364, 1 2014.

[12] S. Kucherenko and S. Song. Different numerical estimators for main effect global sensitivity indices.
Reliability Engineering & System Safety, 165:222–238, 2017.

[13] Gildas Mazo. A trade-off between explorations and repetitions for estimators of two global sensitivity
indices in stochastic models induced by probability measures. SIAM/ASA Journal on Uncertainty
Quantification, 9(4):1673–1713, 2021.

[14] Art B. Owen. Better estimation of small sobol’ sensitivity indices. ACM Trans. Model. Comput.
Simul., 23(2):11:1–11:17, May 2013.

[15] K. Pearson. On the partial correlation ratio. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, 91(632):492–498, 1915.

15



[16] N. Peteilh, T. Klein, T. Druot, N. Bartoli, and R. P. Liem. Challenging Top Level Aircraft Require-
ments based on operations analysis and data-driven models, application to take-off performance
design requirements. In AIAA AVIATION 2020 FORUM, AIAA AVIATION 2020 FORUM, Reno,
NV, United States, June 2020. American Institute of Aeronautics and Astronautics, American In-
stitute of Aeronautics and Astronautics.

[17] A. Saltelli, K. Chan, and E.M. Scott. Sensitivity analysis. Wiley Series in Probability and Statistics.
John Wiley & Sons, Ltd., Chichester, 2000.

[18] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput.
Experiment, 1(4):407–414 (1995), 1993.

[19] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo
estimates. Mathematics and Computers in Simulation, 55(1-3):271–280, 2001.

[20] B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering &
System Safety, 93(7):964–979, 2008.

16


