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Abstract
Sensitivity indices are commonly used to quantify the relative influence of any specific group of

input variables on the output of a computer code. One crucial question is then to decide whether
a given set of variables has a significant impact on the output. Sobol indices are often used to
measure this impact but their estimation can be difficult as they usually require a particular design
of experiment. In this work, we take advantage of the monotonicity of Sobol indices with respect
to set inclusion to test the influence of some of the input variables. The method does not rely on a
direct estimation of the Sobol indices and can be performed under classical iid sampling designs.
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1 Introduction
The use of complex computer models for the analysis of applications from sciences, engineering and

other fields is by now routine. For instance, in the area of marine submersion, complex computer codes
have been developed to simulate submersion events (see e.g. [1, 9]) while sensitivity analysis and meta-
modelling are intensively used to optimize the airplanes designs [14]. Meta-models usually depend on
many input variables and are computationally expensive. Thus, it is crucial to understand which of
the input parameters have an influence on the output. One classical approach to deal with this kind of
problem is to consider the inputs as random elements, a point of view generally called (global) sensitivity
analysis. We refer to [2, 15, 16] for an overview of the practical aspects.

Sobol indices, based on the Hoeffding decomposition [8] of the output’s variance, are one of the most
used tool to perform global sensitivity analysis. They were first introduced in [13] and later revisited in
[17]. In the general framework, a square integrable output variable Y is assumed to obey a non-parametric
relation of the form

Y = f(X1, . . . , Xp,W ) (1)

where the Xj ’s are the observed input variables, W is an extra unobserved random input (for instance,
W appears naturally in the context of stochastic computer codes) and f is an unknown function. In
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practice, an analytical expression for f is usually not available and the only access we have to f is
through experimentation or computer code. The Sobol index of Y with respect to a subset u ⊂ {1, . . . , p}
of input variables is then defined by

S(u) :=
var (E[Y |Xi, i ∈ u])

var(Y )
.

One of the main tasks the practitioner has to deal with is to decide whether a group of variables has any
influence on the output Y . This objective can be pursued by noticing that the equality of Sobol indices
for nested sets u ⊂ v reduces to the (almost sure) equality of the conditional expectations:

∀u, v , u ⊂ v : S(u) = S(v) ⇐⇒ E[Y |Xi, i ∈ u]
a.s.
= E[Y |Xi, i ∈ v].

Thus, a non-parametric notion of significance can be established by comparing Sobol indices over nested
sets of input variables.

Many different estimation procedures of the Sobol indices have been proposed in the literature. Some
are based on Monte-Carlo or quasi Monte-Carlo designs of experiment, see [11, 12]. More recently, a
method based on nested Monte-Carlo [7] has been developed. Other estimation procedures are based on
different designs of experiment using for example polynomial chaos expansions [18]. An efficient estima-
tion of the Sobol indices can be performed through the so-called “Pick-Freeze” method, whose theoretical
properties (consistency, central limit theorem, concentration inequalities and Berry-Esseen bounds) have
been studied in [4, 10]. In particular, the joint central limit theorem enables to build asymptotic com-
parison tests on Sobol indices. However, the Pick-Freeze method requires a specific design of experiment
which makes it inapplicable in the classical iid framework and computationally expensive (for instance,
the p order one Sobol indices estimators need n(p+ 1) computations of the function f). This drawback
was recently partially solved in [5], where the order one Sobol indices are estimated from rank statistics
in a classical iid sample scheme. Nevertheless, the absence of a joint CLT in this case makes it impossible
to test hypotheses involving more than one Sobol index at a time.

The main goal of this work is to present an alternative way to build non-parametric significance
tests. The originality of our approach stems from a reformulation of the null hypothesis in terms of the
empirical process, thus bypassing the difficulty of having to estimate the Sobol indices. We introduce the
framework and derive the theoretical tools that will be used to build the test in Section 2, while Section
3 is dedicated to the theoretical construction of level α statistical tests. In Section 4, we carry out a
numerical study to compare the new statistical test procedure to the classical one introduced in [4, 10].

2 Theoretical framework
Les (Y,X,W ) be random variables taking values in R×Rp ×Rq for some p ≥ 1 and some q ≥ 1. We

assume that there exists a square integrable function f such that

Y = f(X,W ). (2)

For any subset u of {1, ..., p} and x = (x1, ..., xp) ∈ Rp, we denote x(u) = (xi)i∈u with the convention
x(u) = 0 if u = ∅. We recall that the Sobol index of Y associated to X(u) is defined by

S(u) =
var
(
E[Y |X(u)]

)
var(Y )

∈ [0, 1]. (3)

2



Remark that Sobol indices are non-decreasing with respect to set inclusion: u ⊆ v =⇒ S(u) ≤ S(v).
The Sobol index associated to the whole set {1, ..., p} is denoted by S to simplify notations. Letting
u = {1, ..., p}\u, we say that the variables X(u) are not significant to explain Y in the presence of X(u) if
E[Y |X(u)] = E[Y |X], or equivalently, if S(u) = S. The aim of this paper is to construct a non-parametric
significance test based on the hypotheses

H0 : S(u) = S against H1 : S(u) < S.

Here, the Sobol index S over the whole collection X is not necessarily equal to one, due to the pres-
ence of the inaccessible input variable W . Therefore, any nested non-parametric significance test can be
performed using an appropriate choice for X and u, leaving the remaining unused variables as part of
W . For instance, the significance of a single variable X1 via the null hypothesis H0 : E[Y |X1] = E[Y ] is
achieved by setting X = X1 and u = ∅.

A natural test for H0 exists whenever one can construct estimators of the Sobol indices with known
(or estimable) joint limit distribution. However, typical estimation methods such as Pick-Freeze usually
requires a specific design of experiment. The test procedure proposed in this paper does not rely on a
direct estimation of the Sobol indices and applies in the typical iid sampling design. The method makes
use of an equivalent formulation of H0 described in Lemma 2.1 below.

For two vectors a = (a1, ..., ak), b = (b1, ..., bk), a∧b := (a1∧b1, ..., ak∧bk) denotes the component-wise
minimum, while the inequality a ≤ b is meant as a ∧ b = a. The indicator function is denoted by 1{.}.

Lemma 2.1. If the components of X are independent, then for all u ⊆ {1, ..., p} the following assertions
are equivalent,

i) S(u) = S.

ii) E[Y |X(u)] = E[Y |X].

iii) For all x ∈ Rp such that P(X ≤ x) > 0, E[Y |X(u) ≤ x(u)] = E[Y |X ≤ x].

iv) For all x ∈ Rp, E[Y 1{X ≤ x}] = E[Y 1{X(u) ≤ x(u)}]P(X(u) ≤ x(u)).

Proof. Let Z = E[Y |X] and remark that E[Y |X(u)] = E[Z|X(u)]. The equivalence between i) and ii)
follows from the well known decomposition

var(Z) = var
(
E
[
Z|X(u)

])
+ E

[
var
(
Z|X(u)

)]
,

where the non-negative term E
[

var
(
Z|X(u)

)]
is zero if, and only if, E[Z|X(u)] = Z. By definition of the

conditional expectation

E[Y |X] = E[Y |X(u)] ⇐⇒ ∀x ∈ Rp , E
[
Y 1{X ≤ x}

]
= E

[
E[Y |X(u)]1{X ≤ x}

]
.

By the independence of the Xj ’s and using that 1{X ≤ x} = 1{X(u) ≤ x(u)}1{X(u) ≤ x(u)},

E
[
E(Y |X(u))1{X ≤ x}

]
= E

[
Y 1{X(u) ≤ x(u)}

]
P
(
X(u) ≤ x(u)

)
which shows that ii) ⇐⇒ iv). Finally, the equivalence iii) ⇐⇒ iv) follows by dividing both sides of
the equality iii) by P(X ≤ x).
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Assume we observe an iid sample (Y1, X1), ..., (Yn, Xn) drawn from the same distribution as (Y,X).
For all k ∈ N and u ⊆ {1, ..., p}, let m(u)

k : x 7→ E[Y k1{X(u) ≤ x(u)}] and denote by m̂(u)
k (.) its empirical

counterpart:

m̂
(u)
k (x) =

1

n

n∑
i=1

Y ki 1{X
(u)
i ≤ x(u)} , x ∈ Rp.

For ease of notation, we shall simply write mk and m̂k for the case u = {1, ..., p}. By Lemma 2.1, we
know that the null hypothesis H0 : S(u) = S can be stated as ξ := m1 −m(u)

1 m
(u)
0 being identically zero.

In this logic, we use the empirical version ξ̂ to build a test statistics for H0.

In the next lemma, x(u) ⊕ x′(u) denotes the vector of Rp with components xi if i ∈ u and x′i if i /∈ u.

Proposition 2.2. Let η = (m1,m
(u)
1 ,m

(u)
0 )>, the process η̂ := (m̂1, m̂

(u)
1 , m̂

(u)
0 )> is asymptotically Gaus-

sian: √
n
(
η̂ − η

) d−−−−→
n→∞

G,

where G is a 3-dimensional centered Gaussian field indexed by Rp with auto-covariance function

Ω(x, x′) :=

 m2(x ∧ x′) m2

(
(x ∧ x′)(u) ⊕ x(u)

)
m1

(
x(u) ⊕ (x ∧ x′)(u)

)
m2

(
(x ∧ x′)(u) ⊕ x′(u)

)
m

(u)
2 (x ∧ x′) m1

(
x(u) ⊕ x′(u)

)
m1

(
x′

(u) ⊕ (x ∧ x′)(u)
)

m1

(
x′

(u) ⊕ x(u)
)

m
(u)
0 (x ∧ x′)

− η(x)η(x′)>

for all x, x′ ∈ Rp.

Proof. The convergence of the finite-dimensional distributions is a straightforward consequence of the
central-limit theorem. Moreover, for t ∈ Rp, let

ft(y, x) =
(
y1{x ≤ t}, y1{x(u) ≤ t(u)},1{x(u) ≤ t(u)}

)
, (y, x) ∈ R× Rp.

Since for two distinct x, x′ ∈ Rp such that x ≤ x′ and xi = x′i for some i = 1, ..., p, we have

∀t ∈ Rp , ft(y, x) = (y, y, 1) =⇒ ft(y, x
′) = (y, y, 1),

it follows easily that F := {ft : t ∈ Rp} is a Vapnik-Chervonenkis class of dimension 2. Moreover,
|ft(y, x)| is dominated by the square integrable function (y, x) 7→

(
|y|, |y|, 1) for all t ∈ Rp. By Theorem

2.5.2 in [19], F is a Donsker class and the result follows.

3 The test procedure

From Proposition 2.2, the asymptotic finite-dimensional distributions of ξ̂ = m̂1 − m̂(u)
1 m̂

(u)
0 follows

from the delta method applied to the smooth function φ : (s, t, u) 7→ s− tu from R3 to R. More precisely,
given a fixed collection x = (x1, ..., xK) of points in Rp chosen independently from the sample, we know
that the random vector ξ̂(x) =

(
ξ̂(x1), ..., ξ̂(xK)

)> is asymptotically Gaussian

√
n
(
ξ̂(x)− ξ(x)

) d−−−−→
n→∞

N
(
0,Σ(x)

)
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with covariance matrix
Σ(x) :=

(
∇φ(xk)>Ω(xk, xk′)∇φ(xk′)

)
k,k′=1,...,K

.

The empirical version Σ̂(x) obtained by replacing the functions m(u)
k by their empirical counterparts m̂(u)

k

is the expression of Σ(x), is clearly a consistent estimator of Σ(x) in virtue of the law of large numbers.
Since the hypothesis H0 : S(u) = S can be stated equivalently as H0 : ξ = 0, a test can be performed by
comparing the observed value of ‖ξ̂(x)‖ (for a well chosen norm ‖.‖ on RK) to the appropriate quantile
of the asymptotic distribution under H0. Two natural approaches are then possible:

1. If ‖.‖ is the natural Euclidean norm on RK , then under H0,

S := n‖ξ̂(x)‖2 = n

K∑
k=1

ξ̂(xk)2

converges in distribution towards a weighted χ2 distribution with weights given by the eigenvalues
λ1, ..., λK ≥ 0 of Σ(x). In other words, n‖ξ̂(x)‖2 has the same distribution asymptotically (under
H0) as ε>Σ(x)ε where ε is a standard Gaussian vector in RK . This distribution can be approximated
by Monte-Carlo using the empirical version Σ̂(x) instead of the unknown Σ(x), in order to determine
the threshold τα over which the hypothesis is rejected, at any given significance level α ∈ (0, 1).
The Monte-Carlo part can be time consuming as a large number of replications may be needed to
approximate the asymptotic distribution and corresponding quantile sufficiently well.

2. A different approach consists in normalizing the vector ξ̂(x) is order to achieve a true (non-weighted)
χ2 asymptotic distribution under H0. If Σ(x) is invertible, with inverse Γ(x), a test statistics

T := nξ̂(x)>Γ̂(x)ξ̂(x)

for Γ̂(x) a consistent estimator of Γ(x), has asymptotic distribution χ2(K) under H0, as n → ∞.
In practice, the naive estimator

Γ̂(x) = Σ̂(x)−1

is rarely a good choice, especially if Σ̂(x) is close to singular. In this case, a regularized version of
the inverse leads to a better approximation of the asymptotic distribution. Typically, Γ̂(x) can be
obtained by truncated singular value decomposition where the eigenvalues of Σ̂(x) below a certain
threshold t are ignored (see for instance [3] for further details on inverse matrix regularization). The
observed value of the test statistics is then compared to the quantile of the χ2 distribution with
r = rank(Γ̂(x)) degrees of freedom. In the numerical study, we use the regularization threshold
t = 0.1n−1/3ρ(Σ̂(x))λ1 where λ1 is the largest eigenvalue of Σ̂(x), which ensures in particular that
r ≥ 1. Further details are discussed in Section 4.

For both these approaches, the number K of points over which the empirical process ξ̂ is evaluated
is only constrained by the computation time. A larger experimental design x may improve the power of
the test with no negative impact on the significance level, as we discuss in Section 4.

In practice, the xk’s may be drawn uniformly on the domain of X if it is bounded, or from an
arbitrary distribution µ on Rp. In this case, the normalized test statistics can be viewed as a Monte-
Carlo approximation

S

K
≈
∫
nξ̂2dµ.

5



Although possible in practice, we do not recommend using the available sample (X1, ..., Xn) as the
design due to the poor resulting performance of the test. If the distribution of the Xi’s is known to the
practitioner, we may use the same distribution to draw the xk’s. Under the alternative H1, the power
of the test highly depends on the design x (or the underlying distribution µ) which should ideally favor
regions of the space for which ξ is far from zero, enabling the test statistics to grow more rapidly to
infinity.

4 Numerical application
Let (Y1, X1), ...., (Yn, Xn) be an iid sample on R× R3 obeying the relation

Yi = f(Xi) , i = 1, ..., n

where
f(x) = (2 + x43) sin(x1) + 7 sin2(x2) , x = (x1, x2, x3) ∈ R3.

The Xi’s are assumed independent with uniform distribution on [−π, π]3. This function is commonly
used in sensitivity analysis as a test case and is classically referred to as the Ishigami function.

From the two possible approaches discussed in the previous section, we choose the second one due to
its faster computation time. Thus, the test statistics is given by

T = nξ̂(x)>Γ̂(x)ξ̂(x)

where Γ̂(x) is a regularized inverse of the empirical estimator Σ̂(x), whose precise construction will be
detailed below.

The experimental design x = (x1, ..., xK) is drawn from the same distribution as the original sample,
namely a uniform distribution on [−π, π]3. We draw K = 10 points to build the test. This seemingly
small value ended up providing satisfactory results while keeping the computation time reasonable. The
power of the test can be slightly improved by taking a larger experimental design x but the additional
time is too much amplified in our framework where numerous replications were made to evaluate the
performances of the test. For an actual application of the method where the algorithm is run only once,
the computation takes at most a few minutes and the size of x is not much of a limiting factor.

The matrix Γ̂(x) is obtained from a truncated singular value decomposition of Σ̂(x). Precisely, let
λ1 ≥ ... ≥ λK be the ordered eigenvalues of Σ̂(x) and consider the singular value decomposition

Σ̂(x) = P Diag(λ1, ..., λK)P>

where P is orthogonal (i.e. PP> = P>P = I). We define

Γ̂(x) = P Diag
(
gt(λ1), ..., gt(λK)

)
P>

where gt is the so-called truncated SVD filter function gt(x) = 1/x if x > t and gt(x) = 0 otherwise.
The test statistics T is then compared to the quantile of the χ2 distribution with r degrees of freedom,
were r = rank(Γ̂(x)) is the number of eigenvalues of Σ̂(x) larger than t. The hypothesis is rejected if
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the observed value of T exceeds the (1− α)-quantile of the χ2(r) distribution. To ensure that r > 0, we
choose t equal to a vanishing proportion τn ∈ (0, 1) of the spectral radius λ1 of Σ̂(x):

t = τnλ1. (4)

The rule of thumb τn = 0.1n−1/3 is used in the simulations.

The test statistics and resulting p-values are calculated overN = 10000 replications of the experiments.
Four different hypotheses are considered:

1. H0 : S(3) = 0 ⇐⇒ E[Y |X3] = E[Y ]

2. H0 : S(2,3) = S(2) ⇐⇒ E[Y |X2, X3] = E[Y |X2]

3. H0 : S(1) = 0 ⇐⇒ E[Y |X1] = E[Y ]

4. H0 : S(1,3) = S(1) ⇐⇒ E[Y |X1, X3] = E[Y |X1]

As discussed in the article, these hypotheses boil down to testing the non-parametric significance of
some of the input variables, e.g. the first one reduces to testing the significance of X3 to explain Y while
the second one corresponds to testing the significance of X3 in presence of X2. The null hypothesis is
true in the first two cases where the simulations aim to evaluate the actual significance level as function
of the nominal value α the test is supposed to achieve. For the last two cases, the null hypothesis is false
and the simulations aim to evaluate the power of the test.

The results are compared with the test built from the Pick-Freeze estimators of the Sobol indices pre-
sented in [6]. For each scenario, the expression in Equation (3) is used, and the p-value for the unilateral
test is calculated. To ease differentiate the results of the two methods in what follows, the Pick-Freeze
based test will be abbreviated to PF, while the method introduced in this paper will be referred to as
the Empirical Process (EP) test.

We represent the probability of rejecting the null hypothesis for all α ∈ [0, 1] to give a global view of
the distribution of the p-value, although, only the discrepancies between the actual and nominal values
for α smaller than say 0.1 (the range of values typically used in practice) are relevant to measure the
reliability of the test procedure for practical purposes. The results are computed for three sample sizes n
which designate the number of calls to the function f . We emphasize that a specific sampling design is
needed for the Pick-Freeze method, which is not the case for the EP test. In particular, all four hypotheses
can be tested from a unique sample by the EP approach while individual samples need to be generated
for each hypothesis for the PF test. In this aspect, the EP test provides a clear advantage to reduce the
number of calls to f if multiple hypotheses are to be tested.
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Probability of rejecting H0 : S(3) = 0
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Figure 1: Estimated probability of rejecting the null hypothesis H0 : S(3) = 0 for the Empirical Process (EP)
and Pick-Freeze (PF) tests. The empirical cdf of the tests’ p-values are calculated on N = 10000 iterations and
return the (estimated) actual significance level of the test as a function of the nominal level α.

Probability of rejecting H0 : S(2,3) = S(2)
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Figure 2: Estimated probability of rejecting the null hypothesis H0 : S(2,3) = S(2) for the EP and PF tests, as a
function of the nominal significance level α.

As seen in Figures 1, 2, the EP method appears more reliable than the PF approach for the null
hypotheses H0 : S(3) = 0 and H0 : S(2,3) = S(2), as the (estimated) actual significance level is closer
to the nominal value. Here, the rule of thumb with τn = 0.1n−1/3 used for the TSVD regularization of
Σ̂(x) seems to yield a well calibrated test for a nominal significance level α below 10%. Unsurprisingly,
the discrepancy is more pronounced for small sample sizes. The PF test is not well calibrated in these
cases which is probably caused by a too slow convergence of the Sobol index estimator to a Gaussian
distribution, on which the calculations of the critical regions of the PF test are based on.
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Probability of rejecting H0 : S(1) = 0
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Figure 3: Estimated probability of rejecting the null hypothesis H0 : S(1) = 0 for the EP and PF tests. In this
case where the null hypothesis is not verified, the empirical cdf of the tests’ p-values return the estimated power
of the test as a function of the nominal significance level α.

Probability of rejecting H0 : S(1,3) = S(1)
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Figure 4: Power of the EP and PF tests for the null hypothesis H0 : S(1,3) = S(1) as a function of the significance
level α.

Figures 3, 4 display the estimated probability of rightfully rejecting H0 : S(1) = 0 as a function of
the nominal significance level α for the EP and PF tests. The EP test performs better for the simple
hypothesis H0 : S(1) = 0. The power rapidly converges towards 1 for both tests, which conveys the high
(non-parametric) significance of X1 in this situation. On the contrary, the PF test rightfully rejects the
null hypothesis H0 : S(1,3) = S(1) more often than the EP test. However, the higher efficiency of the
PF test may be inflated by its propensity to underestimate its actual significance level, as pointed out in
Figures 1, 2.

9



Probability of rejecting H0
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Figure 5: Estimated significance level for H0 : S(2,3) = S(2) (left) and power for H0 : S(1,3) = S(1) (right) for a
TSVD threshold obtained with τn = 10−3, 10−2 and 10−1 (see Eq. (4)). The sample size is n = 60 and design
size K = 10.

Finally, the calibration of the regularization threshold used in the estimation of Γ(x) has a non
negligible impact on the quality of the test. In Figure 5, we show the difference in both power and
significance level for three different values of τn. In this case, the rule of thumb gives the somewhat
conservative τn = 0.1n−1/3 ≈ 0.026, which ensures a reliable test in term of significance level. Remark
that although both thresholds τn = 10−2 and τn = 10−1 lead to similar and somewhat accurate levels,
we observe a significant improvement in term of power. This suggests that the EP test procedure has
room for improvement, at least through optimizing the choice of the regularization threshold.
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