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Analysis of Least square estimator for simple Linear Regression with a uniform distribution error

We study the least square estimator, in the framework of simple linear regression, when the deviance term with respect to the linear model is modeled by a uniform distribution. In particular, we give the law of this estimator, and prove some convergence properties.

Introduction

we consider the standard linear regression problem Y = β 0 + β 1 X + where X is a random or deterministic variable in R, β ∈ R the vector of model coefficients, and a scalar centered random vector, E( ) = 0, modeling a random perturbation term.

Given a n-sample of data points we adopt the following matrix notation :

Y = [1, x]β +
where :

• x is the data vector in R n . Furthermore we suppose that the vector x is not co-linear with [1, 1..., 1] T ∈ R n . We note X the matrix [1, x].

• β = [β 0 , β 1 ] T ∈ R 2 are the coefficients vector of the regression model.

• = ( i ) i ∈ R n is the vector for the disturbance samples. We suppose that the n identically distributed realisations are non-correlated, or eventually independent.

The Gauss-Markov theorem apply in our setting and the least square estimator (LSE) βn = (X T X) -1 X T Y = β + (X T X) -1 X T = M is the Best Linear Unbiased Estimator (BLUE) for β. The least square estimator βn can be also written as :

βn = XP Y = XP (Xβ + ) βn = β + XP with • P = X(X T X) -1 X T is the projection in R n on Im(X). • X : Im(X) ⊂ R n → R d is the inverse of X restricted to Im(X).
Hence, computing the distribution law of βn , boils down to the computation of the distribution law of P . When the disturbance term has a centred Gaussian distribution N (0, σ 2 ), of known variance σ 2 , with independent realisations making ( i ) i a Gaussian vector, the computation of this law is straightforward once the invert (X T X) -1 is computed : βn ∼ N (β, (X T X) -1 σ 2 ).

We have :

X =    1 x 1 . . . . . . 1 x n    , X T X = n x i x i x 2 i det(X T X) = n( x 2 i ) -( x i ) 2 = i =j (x j -x i ) 2 (X T X) -1 = 1 det(X T X) x 2 i -x i -x i n . P i,j = 1 det(X T X) x 2 k + n x i x j -(x j + x i ) x k X = 1 det(X T X) k =1 x 2 k -x 1 k =1 x k ... k =j x 2 k -x j k =j x k ... k =n x 2 k -x n k =n x k n x 1 -x k ... n x j -x k ... n x n -x k β = β + M with M = (X T X) -1 X T = 1 det(X T X) k =1 x 2 k -x 1 k =1 x k ... k =j x 2 k -x j k =j x k ... k =n x 2 k -x n k =n x k n x 1 -x k ... n x j -x k ... n x n -x k = 1 det(X T X) k =1 x 2 k -x 1 k =1 x k ... k =j x 2 k -x j k =j x k ... k =n x 2 k -x n k =n x k n x 1 -x k ... n x j -x k ... n x n -x k We note that j M 1,j = 1 det(X T X) (n -1) i x 2 i - i =j x i x j = 1 det(X T X) i =j (x i -x j ) 2 = 1 j M 2,j = 0
When σ is unknown, from the maximum likelihood estimator one can construct the unbiased estimator for σ 2 is given by

σ2 = 1 n -2 ||Y -Ŷ || 2 with Ŷ = X β .
We summarize here in the results for the Gaussian case :

• Law for β : N β, (X T X) -1 σ 2 . In our case (simple linear regression, d = 1.5) we have:

-β0 ∼ N β 0 , S 2 nS 2 -S 2 1 σ 2 where S 1 = x i and S 2 = x 2 i -β1 ∼ N β 1 , n nS 2 -S 2 1 σ 2 -cov( β0 , β1 ) = -S 1 nS 2 -S 2 1 σ 2
-Hence, if we suppose σ 2 to be known, confidence intervals can be built using the normal laws:

(β 0 -β 0 ) nS 2 -S 2 1 σ √ S 2 ∼ N (0, 1) (β 1 -β 1 ) nS 2 -S 2 1 σ √ n ∼ N (0, 1)
-The (symetric) confidence intervals at level 1 -α for β 0 and β 1 are respectively :

β0 -q 1-α 2 σ √ S 2 nS 2 -S 2 1 , β0 + q 1-α 2 σ √ S 2 nS 2 -S 2 1 β1 -q 1-α 2 σ √ n nS 2 -S 2 1 , β1 + q 1-α 2 σ √ n nS 2 -S 2 1
where q 1-α 2 is the quantile at level 1 -α 2 for the normal law N (0, 1). -The statistical tests at significance level α for the hypothesis H 0 : β 0 = 0 and H 0 : β 1 = 0 have respectively the critical regions defined as :

| β1 | > q 1-α 2 σ √ n nS 2 -S 2 1 | β0 | > q 1-α 2 σ √ S 2 nS 2 -S 2 1
When the perturbation is not Gaussian, the above properties are still verified asymptotically (large sample size n).

we are interested in the case where the error is uniform, ∼ U (-θ, θ), and when the sample is small. This may arise in many cases related to physical and experimental measures, where the sensibility of measurement equipment may be better modeled by random perturbations with a uniform law.

In the case where is uniform in [-θ, θ], with independent realisations, the Gauss Markov theorem still apply in this case and the LSE is the BLUE. We are interested by studying other properties of the LSE estimator in this case (law, confidence intervals, regression tests). In the case where the error law parameters θ is known, a closed formula for the estimator distribution law can be derived by slightly generalising the Irwin-Hall distribution such in Sadooghi, Nematollahi and Habibi (2007), or Bradley and Gupta (2002).

In section 2 we give this closed formula for the estimator law, in the case where the uniform law parameter are known ∼ U(-θ, θ) with known θ. In section ?? we show a numerical test for illustration.

Least Square estimator

We start by introducing a generalisation of the Erwin-Hall density function as follows :

Theorem 2.1. Assume that U 1 , U 2 ,...,U n are independents variables wih U k uniformly distributed on [0, p k ] where p k > 0, and let U = n k=1 U k . The probability density function for U is given by

f U (x; n) = 1 P n (n -1)! n k=0 (-1) k n k l=1 (x -S nkl ) n-1 + for x ∈ [0, n k=1 p k ]. where n k = n k is the number of k-combinations, l ∈ [0, n k ]
is the index over the n k combinations, (S nkl ) l are the sums over each k-combination of (p 1 , . . . , p n ), and P n = n k=1 p k and x + = max(0, x).

Proof. See Sadooghi, Nematollahi and Habibi (2007).

The Erwin-Hall distribution corresponds to the special case p k = 1, so S nkl = k and

f (x; n) = 1 (n -1)! n k=0 (-1) k n k (x -k) n-1 + Generalisation: let V = n k=1 V k , where V 1 , V 2 ...,V n are independents variables and V k ∼ U(-p k , p k ) and independents. Let U k = V k +p k 2 and U = n k=1 U k .
Clearly U k satisfies the Theorem 2.1 conditions. We have V = n k=1 (2U k -p k ) = 2U -n k=1 p k so the probability density function for V is given by:

f V (x; n) = 1 2 f U ( x + n k=1 p k 2 ; n) = 1 2P n (n -1)! n k=0 (-1) k n k l=1 x 2 + ( n i=1 p i ) 2 -S nkl n-1 + Generalisation: let W = P = n k=1 p k k , k ∼ U(-θ, θ). In this case W = n k=1 W k , W k = p k k ∼ U(-p k θ, p k θ), and 
f W (x; n) = 1 2P n θ n (n -1)! n k=0 (-1) k n k l=1 x 2 + θ. ( n i=1 p i ) 2 -θ.S nkl n-1 +
In our case, as θ is known, we know that:

β = β + (X T X) -1 X T .
Hence, with :

d = det(X T X) = nS 2 -S 2 1 , p k = S 2 -x k S 1 , p k = x k n -S 1 , we have β0 = β 0 + 1 d n k=1 p k k = β 0 + 1 d W β1 = β 1 + 1 d n k=1 p k k = β 1 + 1 d W f β0 (x; n) = d.f W (d(x -β 0 ); n) f β1 (x; n) = d.f W (d(x -β 1 ); n) f β0 (x; n) = d. 1 P n θ n (n -1)! n k=0 (-1) k n k l=1 (d(x -β 0 ) + θ.d -θ.S nkl ) n-1 + f β1 (x; n) = d. 1 P n θ n (n -1)! n k=0 (-1) k n k l=1 d(x -β 1 ) + -θ.S nkl n-1 + Theorem 2.2. If max 1≤i≤n (|p i |) √ d S 2
→ 0 when n → +∞, we have :

d S 2 ( β0 -β 0 ) converges in law to the normal distribution N (0, θ 2 3 ). If max 1≤i≤n |p i | √ dn → 0 when n → +∞, we have d n ( β1 -β 1 ) that converges in law to the normal distribution N (0, θ 2 3 ) Proof. We have β0 -β 0 = 1 d n k=1 p k k . Hence d S 2 ( β0 -β 0 ) = 1 √ dS 2 n k=1 p k k . The characteristic function for d S 2 ( β0 -β 0 ) is : φ n (t) = sin( p i θt √ dS 2 ) p i θt √ dS 2
Let t be a real number, as n → +∞ and given that p i θt √ dS 2 → 0 we have

φ n (t) = (1 - 1 6 ( p i θt √ dS 2 ) 2 + o(( p i θt √ dS 2 ) 2 ))
Hence

ln(φ n (t)) = ln(1 - 1 6 ( p i θt √ dS 2 ) 2 + o(( p i θt √ dS 2 ) 2 )) ln(φ n (t)) = (- 1 6 ( p i θt √ dS 2 ) 2 + o(( p i θt √ dS 2 ) 2 )) As p 2 i = dS 2 we have o(( p i θt √ dS 2 ) 2 ) → 0 and hence ln(φ n (t)) = - 1 6 (θt) 2 + o(1)
We proved then that φ n (t) → exp(-1 6 (θt) 2 ) when n → +∞ which gives the result for β 0 . The same can be done for β 1 using p 2 i = d n.

A similar result can be given for the limit law for the couple β.

Theorem 2.3.

If max 1≤i≤n (|p i |) √ dS 2 → 0 , max 1≤i≤n |p i | √ dn → 0 and S 1 nS 2 → 0 when n → +∞, then ( d S 2 ( β0 -β 0 ), d n ( β1 -β 1 )) converges in law to N 2 0, θ 2 3 I 2
Proof. The demonstration is similar to the previous theorem. It suffices to justify the convergence to 0 for (

p i p i d √ n S 2 ) = -S 1
n S 2 which is satisfied under the two conditions of the theorem. Let us now consider the question whether the conditions for the last theorems hold in practical situations.

If we consider the example where the x k are uniform over [a, b] :

x k = (b -a) k -1 n -1 + a.
We can see that the two conditions of the previous theorems are indeed satisfied.

If the x k are iid random variables, uniformely distributed over an intervalle [a, b], then using the strong law of large numbers we demontrate that the conditions for the two theorem are satisfied almost surely

p i √ dS 2 = 1 √ n • S 2 n -x k S 1 n S 2 n 2 -S 1 n 2 • S 2 n , and 
S 1 nS 2 = 1 n . S 1 n . 1 S 2 n .

Estimator for θ

We give an unbiased estimator for θ.

Theorem 2.4. When θ is unknown, an unbiased estimator for θ 2 is given by

θ2 = 3 n -2 ||Y -Ŷ || 2 with Ŷ = X β = P Y Proof. we have ||Y -Ŷ || 2 = (Y -Y ) T (Y -Y ) = (Y -P Y ) T (Y -P Y ) = Y T (I n -P ) Y E(||Y -Ŷ || 2 ) = E trace Y T (I n -P ) Y = E trace (I n -P ) Y Y T = trace (I n -P ) E Y Y T = trace (I n -P ) θ 2 3 I n + Xββ T X T = trace θ 2 3 (I n -P ) = θ 2 3 (n -2).
3 Numerical simulation ??

We consider n = 10 points x i uniformly and randomly sampled in [-10, 10]. We synthesize also Y data from a simple linear Regression :

Y = β 1 X + β 0 +
The values of the true parameters are β 0 = 7 and β 1 = 4 where we consider a random perturbation that we will take either Gaussian N (0, σ 2 = 3) or uniform on [-3, 3] (so θ = 3, var( ) = θ 2 3 = 3). The 95% symmetric confidence intervals for β0 are of the form [β 0 -h, β 0 + h]. We show below the confidence intervals depending on n in the case of the normal and uniform case, for β0 and β1 : We see that the even for n = 10, the distributions for the estimators are very close and that the confidence intervals are very close as well. However we note that we used the estimator from Theorem 2.4 to set σ 2 = 3. If we use the estimator assuming a Gaussian distribution, we get ≈ N (0, 1): We see here that the confidence intervals will differ a lot with respect to the uniform case, because the variance σ 2 is estimated assuming a Gaussian distribution with 1 n-2 ||Y -Ŷ || 2 .

Conclusion

We gave above the law for the least square estimator in the case of simple linear regression model with a uniform distribution on the perturbation term . The uniform distribution hypothesis can be important to estimate the variance of the residual term. Visually it can be hard to assess if the model residuals are following a normal or a uniform distribution, however the variance parameter estimators differs significantly which leads to different confidence intervals for the parameters.
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 3 Figure 3: β 0 , 95% confidence interval with normal error
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 7 Figure 7: β 1 distribution, assuming normal error σ 2 = 1.
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