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1 Plot of function ψ

The function ψ(t) from equation (*2.15) is plotted in figure 1.

2 Detailed derivation of the strain gradients

In this appendix, we provide a detailed derivation of the first and second gradients of the strain appearing
in section *2.

To derive the first gradient, we continue to use the conventions of section *2: we use a perturbation δX
of the degrees of freedom, and we denote by δy = f ′(x) ·δx the first variation of a generic quantity y = f(x)
entering in the reconstruction of the discrete strain, where x depends indirectly on the degrees of freedom
X.

For the second variation, however, we work here in a slightly more general setting than in the main text,
as we consider two independent perturbations δ1X and δ2X of the degrees of freedom. We denote by δ1x
and δ2x the corresponding perturbations to the variable x, and by δ1y and δ2y the first-order variations
of the functions: δ1y = f ′(x) · δ1x and δ2y = f ′(x) · δ2x are simply obtained by replacing the generic
increment δx appearing in the first order variation δy with δ1x and δ2x, respectively. To obtain the second
variation, we perturb the argument x appearing in δ1y = f ′(x) · δ1x as x + δ2x, leaving δ1x untouched,
and we expand the result to first order in δ2x. This yields a quantity denoted as δ12y, which we can write
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Figure 1: Function ψ(t) from equation (*2.15) used to adjust the norm of the strain κi with t = |κi|, see
equation (*2.16).
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formally as δ12y = f ′′(x) : (δ1x⊗ δ2x), where f ′′(x) is the Hessian. By a classical result in the calculus of
variations, the quantity δ12y is bilinear and symmetric with respect to δ1x and δ2x. The second variation
δ2y given in the main text is the quadratic form obtained by ultimately condensing the variations δ1x and
δ2x appearing in δ12y into a single perturbation δx = δ1x = δ2x.

2.1 Infinitesimal rotation vectors

As an important preliminary result, we show that the first variation of a rotation represented by a unit
quaternion s can be characterized by means of first-order vector-valued increment δŝ ∈ R3, and that the
second variation of s can be represented by means of a second-order vector-valued increment δ12ŝ ∈ R3.
These vectors will be referred as the infinitesimal rotation vectors. They are connected to the variations δs
and δ12s of the quaternion by

δs = 1
2 δŝ s

δ12s =
(

1
2 δ12ŝ−

1
4 δ1ŝ · δ2ŝ

)
s.

(1)

The increment δŝ is linear with respect to the variation δX of the degrees of freedom, and the increment
δ12ŝ is bilinear with respect to the independent variations δ1X and δ2X of the degrees of freedom. As
usual in our notation, δ1ŝ and δ2ŝ denote the first-order variation δŝ, evaluated on the increment δ1X and
δ2X, respectively. This representation of the first and second variations of a parameterized quaternion is
equivalent to that proposed by [1].

The proof is as follows. By taking the first variation of the condition 2 (s s− 1) = 0 that s is a unit
quaternion, we have 0 = 2 δs s + 2 s δs = 2 δs s + 2 δs s. This shows that the quaternion 2 δs s is a pure
vector: this the vector δŝ introduced in equation (1) above. Now, by inserting the increment δ1X in the
relation just derived, we have 2 δ1s s ∈ R3; perturbing this expression as s ← s + δ2s, one shows that the
following quaternion is a pure vector: 2 δ12s s+ 2 δ1s δ2s = 2 δ12s s+ 1

2 (δ1ŝ s) (δ2ŝ s) = 2 δ12s s− 1
2 δ1ŝ δ2ŝ =

2 δ12s s + 1
2 δ1ŝ · δ2ŝ −

1
2 δ1ŝ × δ2ŝ; here, the quaternion product δ1ŝ δ2ŝ has been evaluated using the

definition (*2.1). Adding the vector quantity 1
2 δ1ŝ × δ2ŝ, the quantity 2 δ12s s + 1

2 δ1ŝ · δ2ŝ appears to
be another pure vector: this is the vector δ12ŝ introduced in equation (1).

The second-order infinitesimal rotation vector δ12ŝ can be calculated directly from the first-order one δŝ
as

δ12ŝ =
δ1(δ2ŝ) + δ2(δ1ŝ)

2
. (2)

Here, δ1(δ2ŝ) denotes the first-order variation of δ2ŝ when s is perturbed into s + δ1s; this quantity is not
symmetric with respect to the perturbations δ1s and δ2s. Similarly, δ2(δ1ŝ) denotes the first-order variation
of δ1ŝ when s is perturbed into s+ δ2s.

The proof of equation (2) is as follows. Take the second variation of δ1s = 1
2 δ1ŝ s from equation (1) as

δ12s = 1
2 δ2(δ1ŝ) s + 1

4 δ1ŝ δ2ŝ s =
(
1
2 δ2(δ1ŝ)− 1

4 δ1ŝ · δ2ŝ+ 1
4 δ1ŝ× δ2ŝ

)
s. The left-hand side is symmetric

with respect to the perturbations δ1s and δ2s, by definition of the second variation. Symmetrizing the right-

hand side, we obtain δ12s =
(
δ1(δ2ŝ)+δ2(δ1ŝ)

4 − δ1ŝ·δ2ŝ
4

)
s. The infinitesimal rotation vector δ12ŝ can then be

identified from equation (1), which yields the result stated in equation (2).
In the following sections, the first and second variations of the rotations that enter into the Discrete elastic

rod model, such as the parallel transport pi and the director rotation di, will be systematically represented

using the corresponding infinitesimal rotation vectors, such as δp̂i, δ12p̂
i, δd̂

i
and δ12d̂

i
.

2.2 Variation of parallel transport

We start by deriving the variations of the parallel transport pba from the unit vector a to the unit vector
b defined in equation (*2.3), assuming b 6= −a. As a represents the fixed unit tangent T i in reference
configuration, it remains unperturbed,

δa = 0 δ12a = 0.
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Since b remains a unit vector during the perturbation, we have 1
2 (|b|2 − 1) = 0. Taking the first and second

variation of this constraint, we have

b · δb = 0 b · δ12b+ δ1b · δ2b = 0.

2.2.1 First variation of parallel transport

As a preliminary step, we consider the case of parallel transport from b to its perturbation b + δb. Using
b · δb = 0, we find from equation (*2.3),

pb+δbb = 1 +
b× δb

2
+O(|δb|2).

We now return to the calculation of pb+δba . Following the work of [2], as well as equations [3.7] and [A.2]
from [3], one can use a holonomy reasoning to shows that, to first order in δb,

pb+δba = pb+δbb pba ra

(
− a× b

1 + a · b
· δb
)

+O(|δb|2).

We rewrite this as
pb+δba = pb+δbb pba ra(δθ) +O(|δb|2), (3)

where δθ = −k2 · δb and k is the scaled binormal that characterizes the holonomy (see [2]),

k =
2a× b
1 + a · b

. (4)

The infinitesimal rotation ra(δθ) from equation (3) can be found from equation (*2.2) as

ra(δθ) = 1 + a δθ
2 +O(δθ2)

= 1− k·δb
4 a+O(δθ2)

= 1− a⊗k
4 · δb+O(δθ2).

(5)

Equation (3) is then rewritten with the help of the operator b× from equation (*3.3) as

pb+δba =
(

1 + b×
2 · δb

)
pba
(
1− a⊗k

4 · δb
)

+O(|δb|2)

=
(

1 + b×
2 · δb−

(pba∗a)⊗k
4 · δb

)
pba +O(|δb|2)

=
(

1 + 2 b×−b⊗k
4 · δb

)
pba +O(|δb|2).

In view of this, the first order variation of parallel transport writes as

δpba =
1

2

((
b× −

b⊗ k
2

)
· δb
)
pba.

Identifying with equation (1), we find that it is captured by the infinitesimal rotation vector

δp̂ba =

(
b× −

b⊗ k
2

)
· δb. (6)

2.2.2 Second variation of parallel transport

From equation (6), we have

δ2(δ1p̂
b
a) =

(
(δ2b)× − δ2b⊗k+b⊗δ2k

2

)
· δ1b+

(
b× − b⊗k

2

)
· δ12b

= δ2b× δ1b− 1
2δ2b (k · δ1b)− b

2 δ2k · δ1b+
(
b× − b⊗k

2

)
· δ12b

(7)
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Using equation (4), the variation of the binormal is found as

δ2k = 2a×δ2b
1+a·b −

2a×b
(1+a·b)2 a · δ2b

= 2
1+a·b

(
a× δ2b− k

2 (a · δ2b)
)

= 2
1+a·b

(
a× − k⊗a

2

)
· δ2b

Inserting into equation (7) and reordering the terms, we find

δ2(δ1p̂
b
a) = δ2b× δ1b+

(
b× −

b⊗ k
2

)
· δ12b−

b

(1 + a · b)

(
δ1b ·

(
a× −

k ⊗ a
2

)
· δ2b

)
− δ2b⊗ δ1b

2
· k

In view of equation (2), we can obtain the second-order infinitesimal rotation vector by symmetrizing
this with respect to the increments δ1b and δ2b:

δ12p̂
b
a =

δ2(δ1p̂
b
a)+δ1(δ2p̂

b
a)

2

=
(
b× − b⊗k

2

)
· δ12b+

(
δ1b · k⊗a+a⊗k4 (1+a·b) · δ2b

)
b− (δ1b⊗δ2b+δ2b⊗δ1b)

2 · k2 .
(8)

2.2.3 Application to a Discrete elastic rod

In a Discrete elastic rod, the transport is from the undeformed tangent a = T i to the deformed tangent b = ti,
see equation (*2.9). Equation (4) then yields the definition of the binormal ki announced in equation (*3.4),
and equation (6) yields the expression for δp̂i announced in equation (*3.2). In equation (8), condensing the
independent variations as δ1b = δ2b = δti and identifying δ12p̂

b
a = δ2p̂i and δ12b = δ2ti yields the expression

of δ2p̂i announced in equation (*3.2).

2.3 Variation of unit tangents

With Ei = xi+1 − xi as the segment vector, the variation of the unit tangent ti = Ei/|Ei| from equa-
tion (*2.6) writes

δti = δEi

|Ei| −E
i δ(|Ei|)
|Ei|2

= δEi

|Ei| −E
i (Ei·δEi)
|Ei|3

= I−ti⊗ti
|Ei| · δ1E

i

With δEi = δxi+1 − δxi, this is the expression of the first variation announced in equation (*3.1).
Next, the second variation is calculated as

δ12t
i =

(
−δ2t

i ⊗ ti + ti ⊗ δ2ti

|Ei|
− (I − ti ⊗ ti)

|Ei|2
Ei · δ2Ei

|Ei|

)
· δ1Ei.

Here, we have used δ12E
i = 0 since Ei = xi+1 − xi depends linearly on the degrees of freedom. Inserting

the expression of the first variations from equation (*3.1), the second variation δ12t
i can be rewritten as

δ12t
i =

(
− ((I−ti⊗ti)·δ2Ei)⊗ti+ti⊗((I−ti⊗ti)·δ2Ei)

|Ei|2 − (I−ti⊗ti)
|Ei|2 ti · δ2Ei

)
· δ1Ei

= − τ
i
IKJ+τ

i
JKI+τ

i
IJK

|Ei|2 (δ1E
i)J (δ2E

i)K eI

= − ((τ i)T (132)+(τ i)T (231)+τ i)IJK

|Ei|2 (δ1E
i)J (δ2E

i)K eI

= −τ
i+(τ i)T (132)+(τ i)T (231)

|Ei|2 : ((δ1xi+1 − δ1xi)⊗ (δ2xi+1 − δ2xi)),

where the third-order tensor τ i = (I − ti ⊗ ti) ⊗ ti and its generalized transpose are defined below equa-
tion (*3.1). The expression of δ2ti announced in equation (*3.1) is obtained by condensing δ1xi = δ2xi = δxi
and identifying δ2ti = δ12t

i.
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2.4 Variation of directors rotation

In view of equation (1), the infinitesimal rotation vector δd̂
i

associated with the directors rotation di is

δd̂
i

= 2 δdi d
i
.

Differentiating the expression of di from equation (*2.8), we have δdi = δ
(
pi rT i(ϕi)Di

)
= δpi rT i(ϕi)Di +

pi δ(rT i(ϕi))Di. Equation (*2.2) shows that, with a fixed unit vector T i, δ(rT i(ϕi)) = 1
2

[
δϕi T i

]
rT i(ϕi)—

here, the vector in square bracket is an infinitesimal rotation vector, see equation (1). This yields δdi =

δpi rT i(ϕi)Di + 1
2 p

i δϕi T i rT i(ϕi)Di. Inserting into the equation above, and using d
i

= D
i
rT i(−ϕi) pi

from equation (*2.8), we find

δd̂
i

= δϕi pi T i rT i(ϕi)Di d
i
+ 2 δpi rT i(ϕi)Di d

i

= δϕi pi T i pi + 2 δpi pi

= δϕi pi ∗ T i + δp̂i

= δϕi ti + δp̂i,

as announced in equation (*3.5).
The second-order infinitesimal rotation vector is then obtained from equation (2) as

δ12d̂
i

= 1
2

(
δ2

(
δ1ϕ

i ti + δ1p̂
i
)

+ δ1

(
δ2ϕ

i ti + δ2p̂
i
))

= δ1ϕ
i δ2t

i+δ2ϕ
i δ1t

i

2 + δ12p̂
i.

Here, we have used δ12ϕ
i = 0 as ϕi is a degree of freedom and the variations δ1ϕ

i and δ2ϕ
i are independent.

Upon condensation of the two variations, the equation leads to the expression of δ2d̂
i

announced in
equation (*3.5).

2.5 Rotation gradient

In view of equation (1), the infinitesimal rotation vector δq̂i associated with the rotation gradient qi = di−1di

from equation (*2.11) writes
δq̂i = 2 δqi qi(

2 δdi−1 di + di−1 2 δdi
)
qi

= di−1 (−δd̂
i−1

+ δd̂
i
) di−1

as announced in equation (*3.6).
The following identity yields the variation of the vector s ∗ u obtained by applying the inverse s of a

rotation s to a vector u,
δ(s ∗ u) = δ (su s)

= δsu s+ su δs+ s δu s
= −s δŝ u s+su δŝ s

2 + s ∗ δu
= −(s∗δŝ) (s∗u)+(s∗u) (s∗δŝ)

2 + s ∗ δu
= −(s ∗ δŝ)× (s ∗ u) + s ∗ δu.

With δ = δ1, s = di−1 and u = δ2d̂
i
−δ2d̂

i−1
, we have s∗u = di−1∗(δ2d̂

i
−δ2d̂

i−1
) = δ2q̂i, see equation (*3.6),

and the identity above yields

δ1(δ2q̂i) = −(di−1 ∗ δ1d̂
i−1

)× δ2q̂i + di−1 ∗ (δ1(δ2d̂
i
)− δ1(δ2d̂

i−1
))

= di−1 ∗ (δ1(δ2d̂
i
)− δ1(δ2d̂

i−1
)) + δ2q̂i × (di−1 ∗ δ1d̂

i−1
)

.
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Symmetrizing with respect to the independent variations δ1 and δ2 and using equation (2), we obtain the
second infinitesimal vector as

δ12q̂i = di−1 ∗
(
δ12d̂

i
−δ12d̂

i−1)
+
δ1q̂i × (di−1 ∗ δ2d̂

i−1
) + δ2q̂i × (di−1 ∗ δ1d̂

i−1
)

2
.

Upon condensation of the two variations, the equation leads to the expression of δ2q̂i announced in equa-
tion (*3.6).

2.6 Strain vector

Equation (*2.13) can be rewritten as κi = 2 I(qi), where I(q) = q−q
2 denotes the vector part of a quaternion.

The operator I being linear, we have
δκi = 2 I(δqi)

= I (δq̂i qi)

as well as
δ12κi = 2 I(δ12qi)

= I
((
δ12q̂i −

δ1q̂i·δ2q̂i
2

)
qi

)
,

as announced in equation (*3.7). In the equation above, the second variation of the unit quaternion δ12qi
has been expressed using equation (1).

2.7 Numerical verification

We verify the gradient and Hessian of the elastic energy, by considering a Kirchhoff rod having 80 nodes.
Starting from a straight rod, we increment the magnitude of the natural curvature, magnitude of gravity, and
a point load applied at the ends over 100 iterations. At each iteration we compute the equilibrium, disabling
the update of the reference configuration discussed in Section *2(c). This allows us to verify the gradient in
the generic setting where the reference and current configurations differ significantly from each other. The
computed equilibrium solution is denoted by the vector X. We introduce a second configuration vector X̃
by adding a random perturbation to X where each perturbation is chosen randomly between (−0.1, 0.1).
This magnitude of perturbation ensures that the configuration X̃ is sufficienlty far from an equilibrium.
By starting with the different equilibrium solutions X, we ensure that the variations are taken at different
locations in the configuration space.

The gradient of the discrete strain energy E =
∑N−1
i=1 Ei is evaluated at the point X̃ either as ∇Ea

computed based on the analytical formula given in the main text, or as ∇Efd using finite differences as

(∇Efd)i = (E(X̃ + hei)− E(X̃ + hei))/2h where h = 10−7 and ei is a unit vector where the ith component
is 1.

We then calculate the relative gradient error as:

‖∇Eerr‖ =
‖∇Ea −∇Efd‖∞
‖∇Ea‖∞

Similarly for the Hessian, we calculate the hessian ∇2E of the strain energy gradient at the point X̃,
either analytically (∇2Ea) using the methods described in the manuscript or using finite differences (∇2Efd).
We calculate ∇2Efd using finite differences on the analytical form of the gradient. The relative hessian error
is calculated as:

‖∇2Eerr‖ =
‖∇2Ea −∇2Efd‖∞
‖∇2Ea‖∞

.

At every iteration, we calculate a different random perturbation and calculate the errors ‖∇Eerr‖ and
‖∇2Eerr‖ at that point. The results are shown in Figure (2).
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Figure 2: Errors between the analytical and numerical calculations for gradients and hessians.
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