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The Discrete elastic rod method (Bergou et al., 2008)
is a numerical method for simulating slender elastic
bodies. It works by representing the center-line
as a polygonal chain, attaching two perpendicular
directors to each segment, and defining discrete
stretching, bending and twisting deformation measures
and a discrete strain energy. Here, we investigate
an alternative formulation of this model based on
a simpler definition of the discrete deformation
measures. Both formulations are equally consistent
with the continuous rod model. Simple formulas
for the first and second gradients of the discrete
deformation measures are derived, making it easy to
calculate the Hessian of the discrete strain energy. A
few numerical illustrations are given. The approach
is also extended to inextensible ribbons described by
the Wunderlich model, and both the developability
constraint and the dependence of the energy of the
strain gradients are handled naturally.

1. Introduction
The geometric non-linearity of thin elastic rods gives rise
to a rich range of phenomena even when the strains
are small, see e.g. [1,2] for recent examples. So, the
non-linear theory of rods has traditionally combined
geometrically non-linearity with linear constitutive
laws [3,4]. However, recent interest has expanded beyond
the linearly elastic regime, including viscous threads
[5,6], plastic and visco-plastic bars [7–9], visco-elastic
rods [10], capillary elastic beams made of very soft
materials [11]. Thin elastic ribbons may also be viewed in
this class with a non-linear constitutive law that captures
the complex deformation of the cross-sections [12–17].
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The study of instabilities, especially in the presence of complex constitutive relations, requires
an accurate but efficient numerical method. Here, we build on the work of Bergou et al. [18]
to propose a numerical method applicable to slender elastic structures in general. To keep the
presentation focused, we limit our presentation to elastic rods: both linearly elastic and non-
linear elastic constitutive laws are covered. Our main contribution consists in providing a discrete
geometric description of slender rods. This kinematic building block is independent of the elastic
constitutive law in our formulation, making the extension to inelastic constitutive laws relatively
straightforward, as discussed in Section 4.

We follow the classical kinematic approach, and use the arc-length s in the undeformed
configuration as a Lagrangian coordinate. We denote the center-line of the rod in the current
configuration as x(s) (boldface symbols denote vectors). We introduce an orthonormal set of
vectors (dI(s))16I63, called the directors, to describe the orientation of the cross-section. We
impose the adaptation condition that the director d3 matches the unit tangent t to the center-line:

d3(s) = t(s), where t(s) =
x′(s)
|x′(s)| . (1.1)

Here x′(s) = ∂x/∂s denotes the derivative of x with respect to the arc-length s. Note that the
adaptation condition does not impose any restriction on the actual deformation of the rod at the
microscopic scale; specifically, it does not require the deformed cross-section to be spanned by
d1 and d2. Instead, it expresses the fact that the only role of the directors is to track the twisting
motion of the cross-sections about the tangent. Equation (1.1) does not impose inextensibility
either.

The rotation gradient κ(s), also known as the Darboux vector, is defined by

d′I(s) =κ(s)× dI(s), I = 1, 2, 3. (1.2)

It exists and is unique since the directors are orthonormal. The deformation measures are

κ(I)(s) =κ(s) · dI(s) (1.3)

A fourth deformation measure is introduced to characterize how the center-line stretches, such as
ε(s) = 1

2

(
x′

2
(s)− 1

)
(Green-Lagrange strain).

This kinematic description is common to all variants of the rod model. It is complemented
by constitutive equations specifying either the stored energy density (in the case of a hyperelastic
theory) or the reaction forces and moments as functions of the four deformation measures or their
histories. The formulation is completed by imposing either equilibrium or balance of momenta.
The resulting equations for linear elastic constitutive relations are known as the Kirchhoff
equations for rods, and they can be derived variationally, see [4,19]; we will not discuss them
further.

Various strategies have been proposed to simulate the equations for thin rods numerically.
In approaches based on the finite-element methods, it is challenging to represent the kinematic
constraint of adaptation (1.1) between the unknown center-line x(s) and the unknown rotation
representing the orthonormal directors dI(s). Another approach is based on super-helices or
super-clothoids: in these high-order approaches, the bending and twisting strain measures κ(I)(s)
are discretized into constant or piecewise linear functions. The result is a highly accurate method
which has been successfully applied to several challenging problems [20–22]. The price to pay is
that the reconstruction of the center-line in terms of the degrees of freedom is non-trivial and non-
local. Additionally, some common boundary conditions, such as clamped-clamped conditions,
must be treated using non-linear constraints.

A new approach called the Discrete elastic rods method was introduced by Bergou et al. [18];
see [23] for a recent primer. The Discrete elastic rod method is a low-order method, which starts
out by discretizing the center-line into a polygonal chain with nodes (x0, . . . ,xN ). The tangents
and material frames diI are defined on the segments, see Figure 1.1. The adaptation condition (1.1)
is used to parameterize the material frames (diI)16i63 in terms of the positions (xi−1,xi) of the



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

s

a)
𝒅I(s)I = 1
3

2
𝒅I

i−1

I = 1

2

3
𝒅I

i

𝒙0

b)

𝒙i−1

𝒙i
𝒙i+1

𝒙N

𝒙1

𝒙N−1

Figure 1.1. (a) A continuous elastic rod and (b) a discrete elastic rod. The adaptation condition from equations (1.1)

and (2.6) is satisfied in both cases.

adjacent nodes and of a single twisting angle ϕi, as described in Section 2(d). A discrete rotation
gradient is obtained by comparing the orthonormal directors from adjacent segments: this yields
a differential rotation at a vertex between the segments. This must now be projected onto a
material frame to yield the bending and twisting strain measures according to equation (1.3). The
material frame, however, lives on segments. The original Discrete elastic rod formulation worked
around this difficulty by introducing an additional director frame living on the nodes, obtained by
averaging the director frames from the adjacent segments [18,23]. In the present work, a different
definition of the discrete bending and twisting strain measures is used, see Equations (2.11)
and (2.13). This small change simplifies the formulation of model considerably. We note that a
similar measure was introduced independently in a recent work on shearable rod models [24].

Overall, the proposed formulation offers the following advantages:

• As in the original Discrete rod model, the proposed formulation eliminates two out of
the three degrees of freedom associated with the directors at each node using of the
adaptation condition (1.1); this leads to a constraint-free formulation that uses degrees
of freedom sparingly.
• The formulation of the model is concise: in particular the gradient and Hessian of the

discrete elastic energy are given by the simple, closed form formulas listed in Section 3.
• The proposed deformation measures have a clear geometric interpretation: in the context

of inextensible ribbons, for example, a discrete developability condition can easily be
formulated in terms of the new set of discrete strains, see Section 2(b).
• The kinematic description can easily be combined with various constitutive models to

produce discrete models for elastic rods, inextensible ribbons, viscous or visco-elastic
rods, etc., as discussed in Section 4.

2. Discrete bending and twisting deformation measures

(a) A compendium on quaternions
Rod models make use of rotations in the three-dimensional space. These rotations are
conveniently represented using quaternions. Here, we provide a brief summary of quaternions
and their main properties. A complete and elementary introduction to quaternions can be found
in [25].

A quaternion q ∈Q can be seen as a pair made up of a scalar s∈R and a vector v ∈R3, q=

(s,v). Identifying the scalar s and the vector v with the quaternions (s,0) and (0,v) respectively,
one has the quaternion decomposition

q= s+ v.

The product of two quaternions q1 = (s1,v1) and q2 = (s2,v2) is defined as

q1 q2 = (s1 s2 − v1 · v2) + (s1v2 + s2v1 + v1 × v2). (2.1)

The product is non-commutative.
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A unit quaternion r= s+ v is a quaternion such that s2 + |v|2 = 1. Unit quaternions represent
rotations in the three-dimensional Euclidean space, in the following sense. Define r̄= s− v as the
quaternion conjugate to r. Define the action of the unit quaternion r on an arbitrary vectorw as

r ∗w= rw r̄,

where the left-hand side defines a linear map on the set of vectors w, and the right-hand side is
a double product of quaternions. It can be shown that (i) the quaternion r ∗w is a pure vector,
(ii) the mapping w→ r ∗w is a rotation in Euclidean space, (iii) the quaternion r can be written
as r=±rn(θ) where

rn(θ) = cos
θ

2
+ n sin

θ

2
= exp

n θ

2
, (2.2)

θ is the angle of the rotation, and n is a unit vector subtending the axis of the rotation. Note that
both unit quaternions +rn(θ) and −rn(θ) represent the same rotation.

Given two unit quaternions r1 and r2, consider the product r2 r1: for any vector w, the
equality (r2 r1) ∗w= r2 r1w r2 r1 = r2 r1w r1 r2 = r2 ∗ (r1 ∗w) shows that the unit quaternion
r2 r1 represents the composition of the rotations associated with r1 applied first, and r2 applied last.
The multiplication of unit quaternions is therefore equivalent to the composition of rotations. In
view of this, we will identify rotations with unit quaternions. The inverse of the rotation r will
accordingly be identified with the conjugate r.

(b) Parallel transport
Parallel transport plays a key role in the Discrete elastic rods model, by allowing one to define
twistless configurations of the material frame in an intrinsic way. For two unit vectors a and b
such that b 6=−a, the parallel transport from a to b is the rotation mapping a to b, whose axis
is along the binormal a× b. Parallel transport can be interpreted geometrically as the rotation
mapping a to b and tracing out the shortest path on the unit sphere [18].

An explicit expression of the parallel transport from a to b in terms of unit quaternions is [26]

pba =

√
1 + a · b

2
+

1

2

a× b√
1+a·b

2

. (2.3)

The proof is as follows. First it can be verified that pba is a unit quaternion, as can be shown by

using the identity |a×b|
2

1+a·b =
1−(a·b)2
1+a·b = 1− a · b. Second, the rotation pba indeed maps a to

pba ∗ a= pba a p
b
a = b, (2.4)

as can be checked by explicit calculation. Finally, the axis of pba is indeed about the binormal a× b:
equation (2.2) shows that the vector part of the unit quaternion is aligned with the rotation axis
and equation (2.3) shows that the vector part of pba is aligned with a× b.

For two units vectors a and b such that a=−b, the parallel transport pba is ill-defined.

(c) Reference and current configurations
A configuration of the discrete rod is defined by a set of nodes xi indexed by an integer i, 0 6
i6N . We consider an open rod having unconstrained endpoints x0 and xN for the moment;
alternate boundary conditions such as periodic or clamped boundary conditions are discussed
later. For simplicity, we limit attention to the case where the nodes are equally spaced in the
undeformed configuration, i.e., the undeformed length `j is independent of the segment index j:
it is denoted as

`j = `.

In addition to the undeformed configuration, the simulation deals with two configurations shown
in Figure 2.1:
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Figure 2.1. A node xi, its adjacent segments, and the adjacent nodes xi±1 in reference (gray background) and current

(white background) configurations. Director frames, shown in purple, are represented by a unit quaternion, whose action

on the Cartesian frame eI yields the director frame.

• Reference configuration (shown with a gray background in the figure). The only role of
the reference configuration is to allow a parameterization of the current configuration.
It does not bear any physical meaning and its choice does not affect the results of the
simulations. It is chosen for convenience.
In the reference configuration, the position of node i is denoted by x?i . The orthonormal
frame of directors on segment i connecting nodes x?i and x?i+1 is denoted as
(di?I )I∈{1,2,3}. The adaptation condition from equation (1.1) requires that the third

director dj?3 coincides with the unit tangent T j to the segment in reference configuration,

dj?3 = T j , where T j =
x?j+1 − x

?
j

|x?j+1 − x
?
j |
. (2.5)

• Current configuration (shown with a white background). The current configuration is the
physical configuration of the rod and is the unknown in a simulation. It is parameterized
by the degrees of freedoms (see Section 2(g)).
In the current configuration, the center-line of the rod is defined by the node positions
xi. On segment i connecting the nodes xi and xi+1, the directors are denoted as
(diI)I∈{1,2,3}. The adaptation condition from equation (1.1) requires

dj3 = tj , where tj =
xj+1 − xj
|xj+1 − xj |

. (2.6)

As shown in the figure, the orthonormal director frames (dj?I )16I63 and (djI)16I63 are
represented by unit quaternions Dj and dj , respectively, that yield the directors when applied
to the Cartesian basis eI :

Dj ∗ eI = dj?I dj ∗ eI = djI for I = 1, 2, 3. (2.7)

The quaternions dj? and dj therefore represent the rotations
∑3
I=1 d

j?
I ⊗ eI and

∑3
I=1 d

j
I ⊗ eI ,

respectively. They fully describe their respective frames.
The reference and current configurations are not assumed to be close to one another. However,

our parameterization introduces a weak restriction: the reference configuration must be chosen

such that the angle of the rotation
(
dj D

j
)

mapping dj?I to djI does not come close to π, in any
of the segments j. This condition is fulfilled by resetting periodically the reference configuration
to the current configuration:

• in dynamic simulations, this reset is typically done at the end of any time step;
• in equilibrium problems, it is typically done whenever an equilibrium has been found

and the load is incremented.

In principle, it is even possible to reset the reference configuration in the middle of the Newton-
Raphson iteration used to update a time step (in the dynamic case) or the non-linear equilibrium
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(in the static case), but special care is required as this amounts to changing the parameterization
of the unknown during iteration.

All the applications shown at the end of this paper deal with the static case, i.e., they involve
the calculation of equilibria for a series of load values: our simulations are initialized with the
reference configuration x?i , dj?I representing a simple starting point which is typically a straight
or circular equilibrium configuration without any load (see the example description for further
details). The reference configuration is reset each time an equilibrium is found.

(d) Centerline-twist representation
In this section, we introduce a parameterization that provides a concise representation of the
current configuration that is at the heart of the Discrete elastic rod method. All quantities from
the reference configuration, such as the node positions x?i , unit tangents T j , material frames
dj?3 and associated rotations Dj , are known. We proceed to analyze the current configuration.
A key observation is that equation (2.6) yields the tangent director dj3 as a function of the node
positions xi: if the nodes are prescribed, the full frame of directors djI can only twist about this
tangent. The three directors (djI)16I63 on segment j, as well as the associated unit quaternion dj

by equation (2.7), can therefore be parameterized in terms of

• the adjacent nodes positions xj and xj+1,
• a scalar twist angle ϕj .

The parameterization used by the Discrete elastic rod method may be written as [18,27,28]

dj(xj , ϕ
j ,xj+1) = pj(xj ,xj+1) rT j (ϕj)Dj , (2.8)

where xj and xj+1 are the positions of the adjacent nodes, ϕj is the twisting angle,

pj(xj ,xj+1) = p
ti(xj ,xj+1)

T i (2.9)

is the parallel transport from the reference unit tangent T i to the current unit tangent ti(xj ,xj+1)

given as a function of the node positions by equation (2.6), rT j (ϕj) = cos ϕ
j

2 + T j sin ϕj

2 is the
rotation about T j with angle ϕj (see equation (2.2)), and Dj is the unit quaternion associated
with the reference configuration of the directors (see equation (2.7)).

Using equations (2.7), (2.5) and (2.4), we have dj3 = dj(xj , ϕ
j ,xj+1) ∗ e3 = pj(xj ,xj+1) ∗

(rT (ϕj ,T j) ∗ (Dj ∗ e3)) = pt
i

T i ∗ (rT j (ϕj) ∗ T j) = pt
i

T i ∗ T j = tj : the parameterization (2.8) of
the directors satisfies the adaptation constraint in (2.6) automatically.

This yields a parameterization of the rod in terms of the degrees of freedom vector

X = (x0, ϕ
0,x1, ϕ

1,x2, · · · ,xn−1, ϕn−1,xn), (2.10)

where the nodes positions xi are read off directly from X and the directors are reconstructed
using equations (2.7) and (2.8). It is called the centerline-twist representation.

As observed in Section 2(b), the parallel transport in equation (2.9) is singular if ti(xj ,xj+1) =

−T i, i.e., if any one of the tangents flips by an angle π between the reference and current
configuration. The periodic reset of the reference configuration described earlier in Section 2(c)
prevents this from happening.

Note that in the original paper of [18], parallel transport was used to move the directors
from one segment to an adjacent segment (spatial parallel transport). This makes the directors
dependent on the degrees of freedom associated with all the nodes and segments located on
one side of the directors. Here, like in subsequent work by the same authors [27,28], we use
parallel transport ‘in time’: in equation (2.8), pj(xj ,xj+1) serves to parameterize the directors
in current configuration in terms of the same set of directors in reference configuration. With this
approach, the directors are a function of the local degrees of freedom, as implied by the notation
dj(xj , ϕ

j ,xj+1) in equation (2.8).
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(e) Lagrangian rotation gradient
The rotation mapping one director frame (di−1I )I=1,2,3 to the adjacent director frame (diI)I=1,2,3

is shown by the dashed arrow on top of Figure 2.1. It captures the variation of the frame along the
rod, and it is the discrete counterpart of the rotation gradient κ(s) introduced in equation (1.2).
Using equation (2.7), it can be written as the composition of the rotations di−1 and di:

di di−1 : di−1I 7→ diI .

This rotation is an Eulerian quantity: like its continuous counterpart κ(S), it is not invariant when
the rod rotates rigidly. The following, however, is a Lagrangian version qi of the rotation gradient
that is invariant by rigid-body rotations,

qi(xi−1, ϕ
i−1,xi, ϕ

i,xi+1) := di−1(xi−1, ϕ
i−1,xi) d

i(xi, ϕ
i,xi+1). (2.11)

Here, we depart from earlier work on Discrete elastic rods [18] who used qi := q
avg
i =

d̄†i (di di−1) d†i instead, where d†i is some average of the adjacent frames di−1 and di. A definition
of the rotation gradient similar to (2.11) has been used in the context of shearable rods [24] and in
a purely geometric analysis of discrete rods [26].

We now explain why this definition represents a Lagrangian rotation gradient. One way to
define a Lagrangian rotation gradient, is to pull back the Eulerian rotation gradient di di−1 to the
reference configuration. However, the discreteness of our representation raises a difficulty: the
frames are defined on the segment while the Eulerian rotation gradient di di−1 is defined on the
nodes. So, we could use the frame associated with the segment on the left of the node for the pull
back by defining qleft

i = di−1 (di di−1) di−1, but this biases the choice on the left. Or, we could
use the right counter-part, qright

i = di (di di−1) di, but this biases the choice to the right. However,
these biases are apparent only: elementary calculations shows that these are in fact identical

qleft
i = di−1 di

(
di−1 di−1

)
= di−1 di = qi, q

right
i =

(
di di

)
di−1 di = di−1 di = qi, (2.12)

thereby justifying our definition.
The unit quaternion qi introduced in equation (2.11) is the discrete analogue of the pull-

back (eI ⊗ dI(s)) · κ(s) of the rotation gradient κ(s) used in the continuous rod theory, whose
components κJ (s) = eJ · [(eI ⊗ dI(s)) · κ(s)] = dJ (s) · κ(s) define the bending and twisting
measures. In the following section, bending and twisting are similarly extracted from the unit
quaternion qi.

(f) Bending and twisting deformation measures
The discrete bending and twisting deformation measures are defined as the components of the
pure vector,

κi(xi−1, ϕ
i−1,xi, ϕ

i,xi+1) = qi − qi. (2.13)

This κi is twice the vector part I(qi) =
qi−qi

2 of the quaternion qi, which shows that it is indeed
a vector. Let κi,I denote its components in the Cartesian basis, such that κi =

∑3
I=1 κi,I eI . The

first two components κi,1 and κi,2 can be interpreted as measures of bending about the transverse
directors dj1 and dj2, while the third component κi,3 is a discrete measure of twisting. Like qi, these
are integrated versions of their smooth counterparts, that are proportional to the discretization
length `; this will be taken into account when setting up a discrete strain energy.

(g) Summary
The current configuration is reconstructed in terms of the degrees of freedom X from
equation (2.10) as follows:

• the node positions xi are directly extracted fromX , see equation (2.10),
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• the unit tangents tj(xj ,xj+1) are obtained from equation (2.6),
• parallel transport pj(xj ,xj+1) is obtained by combining equations (2.9) and (2.3),
• the director frames dj(xj , ϕj ,xj+1) are obtained from equation (2.8),
• the rotation gradient qi(xi−1, ϕi−1,xi, ϕi,xi+1) is available from equation (2.11),
• the bending and twisting deformation vector κi(xi−1, ϕi−1,xi, ϕi,xi+1) is calculated

from equation (2.13).

Finally, a possible definition of the discrete stretching measure on segment j joining nodes xj
and xj+1 is

εj(xj ,xj+1) =
1

2

(
(xj+1 − xj)2

`
− `

)
, (2.14)

see for instance [10]. Here, ` denotes the undeformed length of the segments, which is
different from the length |x?j+1 − x

?
j | in reference configuration. This discrete stretching

measure is an integrated version of the continuous strain ε(S), like the discrete bending and
twisting deformation measures κi,I . The particular definition of the stretching measure εj in
equation (2.14) requires the evaluation of the squared norm and not of the norm itself, which
simplifies the calculation of the gradient significantly.

(h) Interpretation of the discrete deformation measures
We now show that the discrete deformation measures (up to a minor rescaling) may be interpreted
as the rotation that transports the director frame from one segment to the next.

Consider the function ψ

ψ(t) =
arcsin(t/2)

t/2
for 0 6 t6 2, (2.15)

and note that ψ(t)≈ 1 for t� 1 (See supplementary information for a plot of this function). Define
the adjusted deformation measure to be

ωi,J =ψ(|κi|)κi · eJ . (2.16)

This is well defined for all values of κ since |κi|= |qi − qi|6 2 |qi|= 2. This rescaling is
insignificant in the continuum limit where di−1 ≈ di, qi ≈ 1 and |κi| � 1, implying ψ(|κi|)≈ 1.
Even for moderate values of |κi|, the original and adjusted deformations measures are not very
different, ωi,J ≈κi · eJ , as the variations of the function ψ are bounded by 1 6ψ(t) 6 π/2.

The adjusted deformation measure has a simple geometric interpretation. We start from the
decomposition (2.2) of the rotation gradient qi = rni(θi) = cos θi2 + ni sin θi

2 = exp ni θi
2 , where

ni is a unit vector aligned with the axis of the rotation qi, and θi is the angle of this rotation,
0 6 θ6 π. In view of equation (2.13), κi = qi − qi = 2 sin θi

2 ni. In particular, |κi|= 2 sin θi
2 and

so ψ(|κi|) =
θi/2

sin(θi/2)
from equation (2.15). The adjusted strain is then ωi,J eJ =ψ(|κi|)κi =

θi/2
sin(θi/2)

2 sin θi
2 ni = θi ni: in effect, the adjustment factor ψ(|κi|) transforms κi = 2 I(qi) (twice

the vector part of qi) into ωi,J eJ = θi ni = 2 log qi (twice its logarithm).

Now, rewriting qi = di−1 di = di−1
(
di di−1

)
di−1 = q

right
i , one sees that qi is conjugate

to di di−1. Combining with qi = cos θi2 + ni sin θi
2 , we have di di−1 = di−1 qi di−1 = cos θi2 +

(di−1 ∗ ni) sin θi
2 = exp

(di−1∗ni) θi
2 : as is well known, the conjugate rotation di di−1 has the same

angle θi as the original rotation qi and its axis is obtained by applying the rotation di−1 to the
original axis. This can be rewritten as

di = exp

(
Ωi

2

)
di−1 (2.17)

whereΩi = di−1 ∗ ni θi = di−1 ∗ ωi,J eJ = ωi,J d
i−1
J is a (finite) rotation vector. Similar relations

have been derived in the work of [26]. Repeating the same argument with qi = di−1 di =
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di (di di−1) di = qleft
i , one can show that the vector Ω has the same decomposition in the other

directors frame,Ωi = ωi,J d
i
J :

Ωi = ωi,J d
i−1
J = ωi,J d

i
J . (2.18)

Equations (2.17–2.18) show that the adjusted deformation measures ωi,J are the components of the
rotation vectorΩi that maps one set of directors frame (di−1I )I=1,2,3 to the other one (diI)I=1,2,3 across
the vertexxi. Remarkably, these components can be calculated in any one of the adjacent directors
frame as they are identical.

One could build a Discrete elastic rod model based on the adjusted deformation measure

ωi,J eJ = 2 di−1 ∗ log
(
di di−1

)
= 2 di ∗ log

(
di di−1

)
instead of the deformation measure κi

proposed in Section 2(f). The benefit is that ωi,J have an even simpler interpretation, see
equations (2.17–2.18). The drawback is that the function ψ gets involved in the calculation of
the strain, resulting in cumbersome formulas for the strain gradients (Section 3). Therefore, we
continue to use the original deformation measures.

3. Variations of the discrete deformation measures
In this section, we present explicit formulae for the first and second derivatives of the deformation
measures κi (summarized in Section 2(g)) with respect to X . The first gradient is required
for determination of the internal forces, which are the first gradient of the strain energy. The
availability of the second gradient in analytical form makes it possible to use implicit time-
stepping methods (in dynamic problems) or to evaluate the Hessian for second order methods
(in static problems).

Our notation for variations is first introduced based on a simple example. For a function
y= f(x) taking a vector argument x and returning a vector y, the first variation is the linear
mapping δx 7→ δy= f ′(x) · δx, where δx is a perturbation to x and f ′(x) is the gradient matrix.
To compute the second variation, we start from δy= f ′(x) · δx, perturb the argument x of f ′

as x+ δx and linearize the result as f ′(x+ δx) · δx≈ f ′(x) · δx+ f ′′(x) : (δx⊗ δx). Here, the
second variation is defined as the second order term δ2y := f ′′(x) : (δx⊗ δx), where f ′′(x) is the
Hessian. By construction, δ2y is a quadratic form of δx.

In this section, the reference configuration is fixed and the degrees of freedom are perturbed
by δX = (· · · , δxi, δϕi, · · · ). We simply present the final results; the detailed calculations are
cumbersome but straightforward, and provided as supplementary material.

• unit tangents ti = (xi+1 − xi)/|xi+1 − xi| from equation (2.6),

δti = I−ti⊗ti
|xi+1−xi| · (δxi+1 − δxi)

δ2ti = −τ
i+(τ i)T (132)+(τ i)T (231)

|xi+1−xi|2 : ((δxi+1 − δxi)⊗ (δxi+1 − δxi)),
(3.1)

where I is the identity matrix, τ i is the third-order tensor τ i = (I − ti ⊗ ti)⊗ ti, the
colon denotes the double contraction of the last two indices of the rank-three tensor on
the left-hand side. For any permutation (n1, n2, n3) of (1, 2, 3), T (n1, n2, n3) denotes the
generalized transpose of a rank-three tensor µ such that µT (n1n2n3)

i1i2i3
= µin1

in2
in3

;

• parallel transport pi = pt
i

T i from equations (2.9) and (2.3),

δp̂i =
(

(ti)× − ti⊗ki

2

)
· δti,

δ2p̂i =
(

(ti)× − ti⊗ki

2

)
· δ2ti +

(
δti · k

i⊗T i+T i⊗ki

4 (1+T i·ti) · δti
)
ti − (δti ⊗ δti) · k

i

2

(3.2)
where for any vector a, a× is the linear operator

a× :u 7→ a× u (3.3)



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

and ki is the binormal defined by

ki =
2T i × ti

1 + T i · ti
; (3.4)

• directors rotation di from equation (2.8),

δd̂
i

= δϕiti + δp̂i,

δ2d̂
i

= δϕi δti + δ2p̂i;
(3.5)

• rotation gradient qi from equation (2.11),

δq̂i = di−1 ∗ (δd̂
i
− δd̂

i−1
),

δ2q̂i = di−1 ∗ (δ2d̂
i
− δ2d̂

i−1
) + δq̂i × (di−1 ∗ δd̂

i−1
);

(3.6)

• discrete bending and twisting strain measure vector κi from equation (2.13),

δκi = I (δq̂i qi) ,

δ2κi = I
((
δ2q̂i −

δq̂i·δq̂i
2

)
qi

)
;

(3.7)

where I(q) = q−q
2 denotes the vector part of a quaternion q.

• stretching measure εi from equation (2.14),

δεi =
xi+1−xi

` · (δxi+1 − δxi),
δ2εi = 1

` (δxi+1 − δxi) · (δxi+1 − δxi).
(3.8)

In these formula, the first and second variations of the rotations pi, di and qi are not captured by

quaternions but by regular vectors, bearing a hat, such as δp̂i, δ2p̂i, δd̂
i
, etc. Equations (3.1–3.8)

involve standard calculations from Euclidean geometry: the more advanced quaternion calculus
is only required in the proof given in the supplementary materials.

Equations (3.1–3.8) suffice to calculate the strain gradients. They can be implemented easily
and efficiently using standard libraries for vector and matrix algebra. These formulas for the first
and second gradient of strain are considerably simpler than those applicable to the discrete strain
measures used in earlier work on Discrete elastic rods [2,10,18,28].

In equations (3.1–3.8), the perturbations to the degrees of freedom such as δxi and δϕi are
dummy variables. The first-order variations such as δti, δp̂i, must be represented numerically
as linear forms, by storing their coefficients as vectors. Similarly, the second-order variations
such as δ2ti, δ2p̂i, etc. are represented as quadratic forms, whose coefficients are stored as
sparse symmetric matrices; the reader is referred to [10] for further details on this aspect of
implementation. All these coefficients depend on the current configuration and must be updated
whenever the degrees of freedomX or the reference configuration change.

These vectors and symmetric matrices should be stored at an appropriate place in the data

structure representing the Discrete elastic rod. The tensors representing δti, δp̂i, δ2p̂i and δ2d̂
i

depend on the perturbations δxi and δxi+1 to the nodes adjacent to a given segment, and
therefore best stored in the data structure representing segments, which have access naturally

to the degrees of freedom of the adjacent nodes. The quantities δd̂
i

and δ2d̂
i

make use of the
twisting angle δϕi in addition to the adjacent nodes δxi and δxi+1, and should be stored in the
data structure representing the material frame attached to particular segment. The quantities δq̂i,
δκi, δ2q̂i and δ2κi are best stored in a data structure representing an elastic hinge at a node, that
depends on the material frames at the adjacent segments.

4. Constitutive models
The discrete kinematics from Sections 2 and 3 can be combined with a variety of constitutive
laws to produce discrete numerical models for rods that are elastic, viscous, visco-elastic, etc.: the
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procedure has been documented in previous work, and it is similar to the general approach used
in finite-element analysis. Elastic problems are treated by introducing a strain energy function
U(X), whose gradient with respect to X yields the negative of the discrete elastic forces [10,18];
while viscous problems are treated by introducing a discrete Rayleigh potential U(X, Ẋ) ,whose
gradient with respect to velocities Ẋ yields discrete viscous forces [5,27,28]. More advanced
constitutive models such as visco-elastic laws can be treated by variational constitutive updates
of a discrete potential that makes use of the same discrete deformation measures [10]. In [10],
it is emphasized that these different constitutive models can be implemented independently of
the geometric definition of discrete deformation measure. Using this decoupled approach, it is
straightforward to combine the kinematic element proposed in the present work with constitutive
element from previous work. We illustrate this with the classical, linearly elastic rod in Section 4(a)
(Kirchhoff rod model), and a discrete inextensible ribbon model in Section 4(b) (Wunderlich
model). The latter is a novel application of the Discrete elastic rod method.

(a) Elastic rods (Kirchhoff model)
The classical, continuous theory of elastic rods uses a strain energy functional U [κ] =∫L
0 E(κ(1)(s), κ(2)(s), κ(3)(s)) ds, where κ(I)(s) =κ(s) · dI(s) are the components of the rotation

gradient in the frame of directors, see equation (1.3). For an inextensible, linearly elastic rod made
of a Hookean material with natural curvature κ(0), for instance, the strain energy density is

E(κ(1)(s), κ(2)(s), κ(3)(s)) =
1

2
Y I1 κ

2
(1) +

1

2
Y I2 (κ(2) − κ(0))

2 +
1

2
µJ κ2(3) (4.1)

where Y and µ are the Young modulus and the shear modulus of the material, I1 and I2 are the
geometric moments of inertia of the cross-section, and J is the torsional constant.

In the discrete setting, we introduce a strain energy
∑
iEi(κi) where the sum runs over all

interior nodes i. The strain energy assigned to an interior node i is defined in terms of the strain
energy density as

Ei(κi) = `E
(κi
`

)
, (4.2)

(no implicit sum over i), where ` is the undeformed length of the segments for a uniform mesh.
The factor ` in the argument of E takes care of the fact that κi is an integrated quantity, i.e., it
is κi

` · eJ and not just κi · eJ that converges to the continuous strain κ(J)(s); for a non-uniform
grid, this `would need to be replaced with the Voronoi length associated with the interior vertex i
in undeformed configuration. The factor ` in factor of E in equation (4.2) ensures that the discrete
sum

∑
iEi =

∑
i`E converges to the integral

∫L
0 E ds=U [18].

Consider for instance an equilibrium problem with dead forces F i on the nodes: it is governed
by the total potential energy Φ(X) defined in terms ofX = (x0, ϕ0, . . . , ϕN−1,xN ) as

Φ(X) =

N−1∑
i=1

Ei(κi(xi−1, ϕ
i−1,xi, ϕ

i,xi+1))−
N∑
i=0

F i · xi. (4.3)

This energy is minimized subject to the inextensibility constraints

∀i∈ (0, N − 1) εj(xj ,xj+1) = 0. (4.4)

In equations (4.3–4.4), the elastic deformation measures κi and εj is reconstructed in terms
of the unknown X by the method described in Section 2, as expressed by the notation
κi(xi−1, ϕ

i−1,xi, ϕ
i,xi+1) and εj(xj ,xj+1).

In the case of dead forces, the first and second variations of the total potential energy is derived
as

δΦ =
∑N−2
i=1

∂Ei
∂κi
· δκi −

∑N−1
i=0 F i · δxi

δ2Φ =
∑N−2
i=1

(
δκi ·

∂2Ei
∂κ2

i

· δκi +
∂Ei
∂κi

: δ2κi

)
,

(4.5)
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see for instance [10]. Here, ∂Ei
∂κi

and ∂2Ei

∂κ2
i

are the internal stress and tangent elastic stiffness

produced by the elastic constitutive modelEi(κi). The two terms appearing in the parentheses in
the right-hand side of δ2Φ are known as the elastic and geometric stiffness, respectively. The first
and second variations of the strain, δκi and δ2κi, are available from Section 3: the equilibrium can
be solved using numerical methods that require evaluations of the Hessian of the energy. Note
that the Hessian can be represented as a sparse matrix thanks to the local nature of the energy
contributions Ei(κi(xi−1, ϕi−1,xi, ϕi,xi+1)) in equation (4.3).

In the applications presented in the forthcoming sections, we find equilibrium configurations
by minimizingΦ(X) in equation (4.3) using the sequential quadratic programming method (SQP)
described by [29]; it is an extension of the Newton method for non-linear optimization problems
which can handle the non-linear constraints in equation (4.4). It requires the evaluation of the first
and second gradient of the energy Φ, see equation (4.5), and of the first gradient of the constraints
that are available from equation (3.8). We used an in-house implementation of the SQP method
in the C++ language, with matrix inversion done using the SimplicialLDLT method available
from the Eigen library [30].

(b) Inextensible elastic ribbons (Wunderlich model)
Ribbons made up of material that are sensitive to light [31,32] or temperature change [33] have
been used to design lightweight structures that can be actuated. They are easy to fabricate,
typically by cutting out a thin sheet of material, and their thin geometry can turn the small strains
produced by actuation into large-amplitude motion. For this reason, there has been a surge of
interest towards mechanical models for elastic ribbons recently. When the width-to-thickness
ratio of a ribbon cross-section is sufficiently large, its mid-surface is effectively inextensible.
Sadowsky has proposed a one-dimensional mechanical model for inextensible ribbons [12].
Sadowsky model is one-dimensional but differs from classical rod models in two aspects: one of
the two bending modes is inhibited due to the large width-to-thickness aspect-ratio, and the two
remaining twisting and bending modes are governed by an non-quadratic strain energy potential
that effectively captures the inextensible deformations of the ribbon mid-surface. Sadowsky’s
strain energy is non-convex which can lead to the formation of non-smooth solution representing
a micro-structure [34,35]; to avoid these difficulties, we use the higher-order model of Wunderlich
that accounts for the dependence of the energy on the longitudinal gradient of bending and
twisting strain [13].

The Wunderlich model has been solved numerically by a continuation method, see for instance
the work of [15]. The continuation method is an extension of the shooting method that can
efficiently track solutions depending on a parameter [36]. It requires the full boundary-value
problem of equilibrium to be specified spelled out, which is quite impractical in the case of
Wunderlich ribbons. A recent and promising alternative is the high-order method of [22] that
starts from linear and quadratic interpolations of the bending and twisting strains, and treats
the center-line position and the directors as secondary (reconstructed) quantities. In the present
work, we explore an alternative approach, and show that simulations of the Wunderlich model
are possible with limited additional work on top of the generic Discrete elastic rod framework.

We build on the work of [16] who have shown that the Wunderlich model can be viewed as a
special type of a non-linear elastic rod, see also [37]. Accordingly, simulations of the Wunderlich
model can be achieved using a simple extension of the Discrete elastic rod model, which we
describe now. We first introduce a geometric model for a discrete inextensible ribbon, in which the
inextensibility of the mid-surface is fully taken into account. We start from a rectangular strip
lying in the plane spanned by (e1, e3), as shown in Figure 4.1a. Through every node (shown as
black dots in the figure), we pick a folding direction within the plane of the strip (brown dotted
line in the figure); we denote by π/2− γi the angle of the fold line relative to the centerline. Next,
we fold along each one of these lines by an angle θi, as shown in Figure 4.1b. We call the resulting
surface a discrete inextensible ribbon. By construction, it is isometric to the original strip.
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𝒅3
i−1

𝒅2
i

𝒅3
i

𝒙i

i

𝒅2
i−1

𝛾i
𝒆3

𝒆1
𝒆2

𝜔i,J 𝒆J

i +1

i− 1

(b)(a) di−1 𝒅1
i−1

Ωi 𝜃i
𝒅1

i

di

Figure 4.1. A discrete inextensible ribbon: (a) flat configuration and (b) current (folded) configuration obtained by folding

along the generatrices (brown dashed lines) by an angle θi. By the inextensibility condition, the fold line through vertex

xi in current configuration lies at the intersection of the adjacent faces, i.e., of the planes spanned by di−1
1 and di−1

3 on

the one hand and by di
1 and di

3 on the other hand.

Let us now introduce the director frames diI following rigidly each one of the faces: the planar
faces are spanned by the directors di1 and di3. By construction the vector Ωi for the rotation that
maps one frame, di−1I , to the next, diI , see equation (2.17), is aligned with the fold line. We observe
that the unit tangent along the fold direction is e3 sin γi + e1 cos γi in the flat configuration of
the strip; it is therefore mapped to di−13 sin γi + di−11 cos γi = di3 sin γi + di1 cos γi in the current
configuration. In view of this, we conclude

Ωi =
(
di−13 sin γi + di−11 cos γi

)
θi =

(
di3 sin γi + di1 cos γi

)
θi.

Comparing with equation (2.18), we obtain the discrete deformation measure in the developable
ribbon as ωi,1 = θi cos γi (bending mode), ωi,2 = 0 (inhibited bending mode) and ω3,i = 0

(twisting mode). Eliminating θi, we find ωi,2 = 0 and ωi,3

ωi,1
= tan γi, which can be rewritten in

terms of the original discrete strain κi = (κi,1, κi,2, κi,3) with the help of equation (2.15) as

κi,2 = 0

κi,3 = ηi κi,1
(4.6)

where
ηi = tan γi.

The continuous version of the developability conditions is κ2(s) = 0 and κ3(s) = η(s)κ1(s),
where η(s) = tan γ(s) and π/2− γ(s) is the angle between the generatrix and the tangent, see
for instance [16]. It is remarkable that the discrete developability conditions (4.6) are identically
satisfied. This is a consequence of the simple geometric interpretation for the discrete deformation
measures introduced in Section 2.

To simulate inextensible ribbons, we introduce the unknown ηi as an additional degree of
freedom at each one of the interior nodes, and we use in equation (4.3) a strain energy density
directly inspired from that of Wunderlich [15,16]

Ei(κi, ηi−1, ηi, ηi+1) =
Dw

2 `
κ2i,1 (1 + η2i )2

1

w η′i
ln

(
1 + 1

2 η
′
i w

1− 1
2 η
′
i w

)
. (4.7)

In equation (4.7), D= Y h3

12 (1−ν2)
is the bending modulus from plate theory, h is the thickness, w is

the width and ` is the discretization length. The quantity η′i is calculated by a central-difference
approximation of the gradient of η,

η′i =
ηi+1 − ηi−1

2 `
,

where ` is the mesh size. The constraint (4.6)2 is imposed at each node using the SQP method.
Introducing the nodal degrees of freedom ηi together with the constraint (4.6)2 allows us to
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work around calculating ηi = κi,3/κi,1, which is a division with a potentially small denominator;
in addition, this approach warrants that κi,3 = 0 whenever κi,1 = 0, which is necessary for the
Wunderlich energy to remain finite.

It is a feature of the Wunderlich model that η can take on arbitrary values in intervals where
κ1 vanishes identically. To work around this, we have introduced an artificial drag on the ηi’s
between iterations of the solve. When convergence is reached, the drag force is identically zero.

The discrete potential energy Φ(X) is minimized by the same numerical method as
described in Section 4(a), taking into account the kinematic constraints (4.6) and the centerline
inextensibility (4.4).

5. Illustrations
In this section, the Discrete elastic rod model is used to simulate

• a linearly elastic model for an isotropic beam, Section 5(a),
• a linearly elastic model for an anisotropic beam with natural curvature, Section 5(b),
• Sano and Wada’s extensible ribbon model, Section 5(c),
• Wunderlich’s inextensible ribbon model, Section 5(d).

These examples serve to illustrate the capabilities of the model. In addition, comparison with
reference solutions available from the literature provide a verification of its predictions.

(a) Euler buckling
We consider Euler buckling for a planar, inextensible elastic rod that is clamped at one endpoint.
We consider two types of loading: either a point-like force fp at the endpoint opposite to the
clamp, or a force fd distributed along the length of the rod. In both cases, the force is applied along
the initial axis of the rod, is invariable (dead loading), and is counted positive when compressive.
A sketch is provided in Figure 5.1.

Mathematically, the equilibria of the rod having bending modulus B are the stationary points

of the functional Φ=
∫L
0
B
2 θ
′2(s) ds+ fp x(L) (point load) or Φ=

∫L
0

(
B
2 θ
′2(s) + fd x(s)

)
ds

(distributed load), subject to the clamping condition θ(0) = 0. The coordinates of a point on the
centerline (x(s), y(s)) are reconstructed using the inextensibility condition as x(s) e1 + y(s) e2 =∫s
0 (cos θ e1 + sin θ e2) ds.

The boundary-value equilibrium problem for the Elastica is obtained by the Euler-Lagrange
method as

0 =B θ′′(s) + sin θ(s)×

{
fp (point-like load)
fd (L− s) (distributed load)

θ(0) = 0 θ′(L) = 0. (5.1)

By writing this problem in dimensionless form, one can effectively set the bending modulus, the
length and the load to B = 1, L= 1, and fp = fp (point-like load) or fd = fd (distributed load),
where the dimensionless load is

fp =
fp

B/L2
fd =

Lfd
B/L2

. (5.2)

The critical buckling loads are found by solving the linearized version of the buckling problem (5.1)
(linear bifurcation analysis),(

fp

)
crit

= π2

4 (point-like load)(
fd
)

crit = 7.837 (distributed load)
(5.3)

Numerical simulations of this Euler buckling problem are conducted using the Discrete elastic
rod method, as explained in Section 4.3. Simulations are set up withB = 1,L= 1, number of nodes
N = 100. In view of this we expect to the buckling loads to be fd = fd fp = fp. The inextensibility
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(fp)crit = π2
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fp fd
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(fd)crit = 7.837

x(L)
L

L

Figure 5.1. Buckling of a planar Elastica subject to (a) a point-like force applied at the endpoint and (b) a distributed force.

Comparison of the solutions of the boundary-value problem (5.1) by a numerical shooting method (dashed curves) and

of the Discrete elastic rod method (solid curves): the scaled coordinates of the endpoint s=L are plotted as a function

of the dimensionless load. The dotted vertical line is the first critical load predicted by a linear bifurcation analysis from

equation (5.3).

constraint is enforced exactly using SQP. The clamped boundary is enforced by fixing the first and
second nodes as well as the first frame.

The typical simulation time is about 1/10s for each equilibrium on a personal computer, and
the results are shown in Figure 5.1, and compared to that obtained by solving (5.1) using the
bvp4c solver from Matlab. A good agreement on the position of the endpoint of the rod is found
in the entire post-bifurcation regime. In addition, the onset of bifurcation agrees accurately with
the prediction (5.3) from the linear stability analysis.

(b) Folding of an over-curved ring
A circular elastic ring with length L can buckle out of plane if its natural natural curvature κ(0)
does not match the curvature 2π/L of the circle with length L. In the case of an over-curved ring,
such that κ(0) > 2π/L, a buckled shape featuring two symmetric lobes has been reported [33,38,
39]. Here, we simulate the buckling of over-curved rings using the Discrete elastic rod model and
compare the results to the experimental shapes reported by [38].

In the experiments of [38], a commercial slinky spring with a width w= 5 mm, thickness
t= 2 mm and length L= 314 mm is used; Poisson’s ratio has been measured as ν = 0.41. Note
that the aspect-ratio t/w= 0.4 is not small. In our simulations, we use a discrete version of the
quadratic strain energy for a linearly elastic rod having an anisotropic cross-section (I1 6= I2), see
equations (4.1–4.3). We use the elastic moduli reported in the supplement of [38]:

Y I1 = Y
w t3

12
Y I2 = Y

w3 t

12
µJ = Y

0.256w t3

2 (1 + ν)
. (5.4)

The value 0.256 in the numerator was obtained by [38] from the book of [40], and applies to the
particular commercial Slinky used in their experiments. In the absence of applied loading, the
value of the Young modulus is irrelevant and we set Y = 1 in the simulations.

The equilibria of the Discrete elastic rod are calculated numerically for different values of the
dimensionless loading parameter O= 2π κ(0)/L, with O> 1 corresponding to the over-curved
case. We useN = 400 nodes. We start from a circular configuration having curvature κ(0) = 2π/L.
The Discrete elastic rod model is closed into a ring as follows: the first two nodes and the last two
nodes are prescribed to x0 =xN−1 = 0 and x1 =xN = ` ex, respectively; the first and last frames
are also fixed, such that d01 = dN−11 = ey . Next, the over-curvature κ(0) is varied incrementally.
For each value of κ(0), an equilibrium configuration is sought, and we extract the minimal
distance D between pairs of opposite points on the ring. In Figure 5.2, the scaled distance D
is plotted as a function of O. A good agreement is found with the experiments over the entire
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1.5

2.0
D

2.5
3.0
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O

Discrete elastic rods experiments (Mouthuy et al.)

Figure 5.2. Equilibrium of an over-curved elastic ring. Material and geometric parameters correspond to the slinky used

by [38] (see main text for values). a) Equilibrium configurations for different values of the over-curvature ratioO. b) Minimal

distance of approach D as a function of O: comparison of Discrete elastic rod simulations and experiments [38]. The

simulations reproduces both the initial buckling at Ob, and the ‘de-buckling’ into a flat, triply covered ring at Od.

range of values of the over-curvature parameterO> 1. The simulations correctly predict a planar,
triply covered circular solution for O>Od ≈ 2.85, as seen in the experiments.

(c) Buckling of a bent and twisted ribbon
We now turn to an effective rod model applicable to thin ribbons. Sano and Wada [41] have
proposed an effective beam model that accounts for the stretchability of the ribbon having
moderate width, thereby improving on Sadowsky’s inextensibility assumption. A discrete version
of their continuous model is of the form (4.3) with a strain energy per elastic hinge

Ei(κ1, κ2, κ3) =
1

2 `

(
A1 κ

2
1 +A2

(
κ22 +

κ43
`2/ξ2 + κ22

)
+A3 κ

2
3

)
. (5.5)

Here, ` is the uniform segment length in undeformed configuration, A1 = Y hw3/12 and A2 =

Y h3 w/12 are the initial bending moduli, A3 = Y h3 w/[6 (1 + ν)] is the initial twisting modulus
and ξ2 = (1− ν2)w4/60h2. The parameter ξ is the typical length-scale where the stretchability
of the mid-surface starts to play a role. The potential Ei from equation (5.5) is non-quadratic,
meaning that the equivalent rod has non-linear elastic constitutive laws.

The elastic model (5.5) of Sano and Wada is applicable to thin ribbons, for w� h. It is
based on kinematic approximations. A refined version of their model has been obtained very
recently by [17], by asymptotic expansion starting from shell theory; in the latter work, a detailed
discussion of the validity of the various models for thin ribbons can also be found. We do not
expect any difficulty in applying the present numerical model to the ribbon model in [17]. Both
the models of Sano and Wada, and of Audoly and Neukirch improve on Wunderlich model by
addressing the stretchability of the ribbon; unlike the Wunderlich model, however, they ignore the
dependence of the energy on η′, and therefore account less accurately for the ‘conical’ singularities
often observed in ribbons [42] as η varies quickly there.

Following [41], we consider the buckling of a ribbon with length L= π R bent into half a circle,
whose ends are twisted in an opposite senses by an angle φ, see Figure 5.3. Specifically, they
identified a snapping instability which occurs for moderately wide ribbons, when the width w<
w∗ is below a threshold w∗ ≈ 1.24

√
Lh, but not for wider ribbons, when w>w∗; they showed

that their equivalent rod model can reproduce this instability, as well as its disappearance for
larger widths. In Figure 5.3, we compare the predictions of a Discrete elastic rod model using (5.5)
with the original experiments and simulations from [41]. Our simulations use N = 350 vertices
each. Our simulation results are in close agreement with both their experimental and numerical
results. In particular, we recover the instability when w<w∗ only.
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Figure 5.3. Equilibria of an extensible ribbon, as captured by Sano and Wada’s equivalent rod model, see equation (5.5).

Top row : equilibrium diagram showing the scaled value of the deflection y0 at the center of the ribbon as a function of

the twisting angle φ at the endpoints. Comparison of the experiments (triangles) and simulations (squares) from [41]

with simulations using the Discrete elastic rod model (solid curves and circles). Left column: moderately wide ribbon

(h,w,R) = (0.2, 8, 108)mm showing a snapping instability; Right column: wider ribbon (h,w,R) = (0.2, 15, 108)mm,

in which the instability is suppressed. Bottom row : smallest eigenvalues of the tangent stiffness matrix, on the same

solution branch shown as shown in the plot immediately above: the presence of an instability for w<w∗ (left column) is

confirmed by the fact that the smallest eigenvalue reaches zero when the instability sets in.

(d) The elastic Möbius band
An extension of the Discrete elastic rod model that simulates the inextensible ribbon model of
Wunderlich has been described in Section 4(b), see equation (4.7). With the aim to illustrate
and verify this discrete model, we simulate the equilibrium of a Möbius ribbon, and compare
the results to those reported in the seminal paper of Starostin and van der Heijden [14]. In
our simulations, the inextensible strip is first bent into a circle, and the endpoints are turned
progressively twisted by an angle of 180◦ to provide the correct topology. The final equilibrium
shapes are then recorded for all possible values of the aspect-ratiow/L. For these final equilibrium
shapes, the conditions x0 =xN−1 = 0 and x1 =xN = ` ex hold as earlier, and the orientation of
the terminal material frames are such that d01 = +ey and dN−11 =−ey .

The equilibrium shape for a particular aspect-ratiow/L= 1/ (2π) is shown in Figure 5.4a, with
arc-length L= 1, width w= 1/ (2π) and N = 150 simulation nodes. A detailed comparison with
the results of [14] is provided in Figure 5.4b, where the scaled bending and twisting strains κi,1/`
and κi,3/` from the discrete model with N = 250 vertices are compared to the strains κ1(s) and
κ3(s) obtained by [14] using numerical shooting, for different values of the width w.

6. Conclusion
We have presented a new formulation of the Discrete elastic rod model. The formulation is
concise and uses only the minimally necessary degrees of freedom: the position of the nodes and
the angle of twist of the segments between the nodes. It naturally incorporates the adaptation
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Figure 5.4. Simulation of an inextensible Möbius strip with L= 1. (a) Equilibrium width w= 1/ (2π), as simulated by

the Discrete elastic rod model from Section 4(b) with N = 150 nodes. (b) Distribution of bending and twisting: Discrete

elastic rod simulations with N = 250 vertices (dashed curves) versus solution of [14] obtained by numerical shooting

(solid curves); the latter have been properly rescaled to reflect our conventions.

condition without the need for any constraint, penalty or Lagrange multiplier. We use bending
and twisting deformation measures that are different from those used in earlier work on Discrete
elastic rods, are equally consistent with their continuum counterparts, and have a simple physical
interpretation in the discrete setting. Consequently, the formulation is versatile in the sense that it
can be combined with a variety of linear and nonlinear as well as elastic and inelastic constitutive
relations. In fact, ribbons can be incorporated as generalized rods with a nonlinear constitutive
model. Similarly, the formulation can be used both for static and dynamic simulations.

We have presented explicit formulae for the first and second derivatives of the deformation
measures that eases implementation. We have demonstrated our method with four examples,
and verified our results against prior experimental and theoretical findings in the literature.

Data Accessibility. The source code used for the numerical simulation is available through CaltechDATA
at https://data.caltech.edu/records/2147.
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