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Semi-Implicit Homogeneous Euler Differentiator for a Second-Order
System: Validation on Real Data

Loı̈c MICHEL, Malek GHANES, Franck PLESTAN, Yannick AOUSTIN and Jean-Pierre BARBOT

Abstract— In this paper, a semi-implicit Euler approximation
scheme is proposed for a second-order homogeneous differ-
entiator. Compared to an explicit Euler approximation, it is
well-known that implicit Euler approximation scheme offers
better performances like reducing high frequency oscillations.
However, the implicit Euler approximation scheme works well
only when dealing with classical sliding mode differentiator.
In order to keep advantages of implicit Euler approximation,
when this approximation is applied in case of homogeneous
differentiators, a semi-implicit Euler approximation is proposed
for a second-order system. Validation on real data is conducted
to highlight the well-founded of the proposed differentiation
strategy.

Index Terms— Discretization, Homogeneous differentiator,
Attractor, Projectors, Experimental Data.

I. INTRODUCTION

This paper is dedicated to a real signal differentiation
problem that is a crucial problem from a practical point-
of-view; for example in robotics, a speed sensor is more
expensive and fragile than an encoder sensor [1], [2]. Numer-
ical differentiation is then preferred to design model based
control. However, digital differentiation in the presence of
Coulomb friction or noise can lead to instability or, at least,
to high frequency phenomena of the closed loop system. This
could be dramatic for example with a haptic control in a
medical application.
Improving the operation of differentiation is complex and
therefore attracts the interest of a lot of scientists and a
comparison of some of them has been performed in [3].
The differentiation problem can be treated by two ways. The
first way consists in using continuous-time differentiators [4]
based on, for example, higher order sliding mode approaches
and especially the well-known super-twisting algorithm [5].
The second way is closer to real systems that are driven by
discretized algorithms, and deals with differentiators based
on numerical Euler approximation. In the literature, two
approaches of Euler approximation can be used.
The first one is a classical Euler explicit approximation
approach, which has some drawbacks with respect to high
frequency oscillations phenomena, see for example [3]. Note
that, in [6], an explicit discrete differentiator including
additional Taylor expansion corrective terms is proposed.
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Moreover, in [7], the accuracy of such explicit discrete
differentiator is studied. The second one, introduced in [8], is
based on Euler implicit approximation approach and allows
reducing significantly the oscillation phenomena whatever
the actuator gain is [9]. In addition, a comparison of per-
formances among 25 classical and advanced differentiation
structures has been performed [3], [10] and highlights the
fact that implicit based methods are more efficient and robust
to the noise than the corresponding explicit strategies.
Motivated by this ascertainment, this paper proposes a semi-
implicit approximation, which is a combination between
explicit and implicit techniques in order to be able to
deal with homogeneous differentiators while keeping the
benefits of Euler implicit approximation in the context of
second order-system. The main contribution of the proposed
differentiator is to combine explicit part with implicit one
based on two projectors in order to reduce the effects of
chattering phenomena as well as measurement noise and per-
turbations. To prove this claim, a theoretical study estimating
the oscillation amplitude is firstly given in the context of
explicit discretization in one dimensional case. To highlight
the merit of the proposed strategy, experiments are conducted
within an electrical RC circuit.
This paper is outlined as follows. Section II describes the
background of the homogeneous differentiation approach.
Section III presents the main contribution and describes the
semi-implicit homogeneous approach including a single pro-
jector, whereas the extension with two projectors is presented
in Section IV. Section V describes a modification of the
projectors to improve the robustness with respect to the noise.
Both differentiation approaches are applied to experimental
data in Section VI in which their benefits are discussed.
Section VII concludes the paper and suggests some future
works.

II. BACKGROUND ON HOMOGENEOUS DIFFERENTIATION

A. Basic analysis on the explicit Euler discretization

To introduce the homogeneous approach, consider the
following continuous time system

ẋ = a (1)

where a is a constant perturbation. A continuous time
estimator for (1) reads as (with b > 0)

˙̂x = bdx− x̂cα (2)

where the notation d•cα = | • |α sgn(•) is adopted all along
the paper. So, the dynamics of the estimation error e = x− x̂



read as
ė = a− bdecα (3)

Setting α ∈ (0, 1), and supposing that b is sufficiently large
versus a, i.e. b� |a|, e converges to eeq = dab c

1
α in a finite

time tf > 0. The explicit Euler discretization of (3) gives

e+ = e+ h(a− bdecα), (4)

where the notation •+ = •(k+ 1) is adopted in the discrete-
time framework along the paper. For ease of reading,
notation ”e” is kept in the term of the right part of (4),
but the term has also to be considered in the discrete-time
framework; the equilibrium point of (4) being exactly the
same than (3) i.e. eeq = dab c

1
α . Remark that if α = 0, then

eeq → 0 since b > a. In the sequel, two cases α ∈ (0, 1)
and α > 1 are considered. The particular case α = 1 will
be discussed at the end of this section.

CASE 1: 0 < α < 1.
It is well-known that e oscillates in the case of (4); consid-
ering the change of coordinate e = z + eeq yields to

z+ = z + h(a− bdz + eeqcα). (5)

A graph of z+ versus z for ha = 10−3, hb = 1.7783 and
α = 0.75 is displayed Fig. 1.

Fig. 1. z+ versus z (blue line) for α = 0.75.

From Fig. 1, quarters 1 and 3 appear to be unstable, whereas
the quarters 2 and 4 are stable: as a consequence, contrarily
to (3), the equilibrium point eeq is unstable for (4). Fig. 1
allows to define the domain Ω such that

Ω = {z, z+/ zos1 ≤ z ≤ zos2, zos1 ≤ z+ ≤ zos2 }

where zos1 is the value of the abscissa of the point marked
with a green diamond, and zos2 is the value of the abscissa
of the point marked with a magenta diamond. Starting for
example from the initial value denoted z0 = 0.2 (marked
with a black bullet), the system (5) converges to a limit cycle,
whose behaviour oscillates between zos1 and zos2 such that

zos2 = −zos1 ≈ 0.6

as shown in Fig. 2. Now, with respect to Fig. 1, in order
to evaluate the magnitude of the oscillation, it is necessary
to evaluate a majorant of the non-zero coordinates of the

Fig. 2. z versus t (sec) for z(0) = 1.

intersection point, denoted zint, between z+-function (blue
line - Fig. 1) and red lines of Fig. 1. The intersection points
are defined such that

−zint = zint + h(a− bdzint + eeqcα)

which gives

2zint = hbdzint + eeqcα − ha. (6)

Replacing eeq by dab c
1
α , equation (6) becomes

2zint = hbdzint + da
b
c 1

α cα − ha

or
2zint = h(db 1

α zint + dac 1
α cα − a). (7)

Assuming that there exists w such that zint = dwc 1
α ,

equation (7) gives (8) and allows determining a majorant
of zint depending on the following sign conditions:

2zint = h(ddbwc 1
α + dac 1

α cα − a) (8)

1) if sgn(dbwc 1
α + dac 1

α ) sgn(a) = 1, then two cases
occur

a) if |dbwc 1
α + dac 1

α |α > |a| then, from Jensen
inequality dedicated to the convex functions [11],
one has

|dbwc 1
α + dac 1

α |α ≤ |bw|+ |a|

and from (8), one gets

|2zint| ≤ h|bw|+ |a| − |a| = h|bw| = hb|zint|α

that gives the inequality

|zint| =
(
hb

2

) 1
1−α

.

b) if | (bw)
1
α + a

1
α |α ≤ |a|, it comes from (8)

|2zint| ≤ |ha|

then, for sgn(dbwc 1
α + dac 1

α ) sgn(a) = 1, one
has

|zint| ≤ max

{(
hb

2

) 1
1−α

,
h|a|

2

}
. (9)



2) if sgn(dbwc 1
α + dac 1

α ) sgn(a) = −1, it implies
|bw| 1α > |a| 1α . As a consequence, |dbwc 1

α + dac 1
α | <

|bw| 1α and |ha| < h|bw|. Then, equation (7) gives

|2zint| < h|bw|+ h|bw| ⇒ |zint| < hb|zint|α

⇒ |zint| < (hb)
1

1−α .

From (9) and the previous inequation, the worth case is

|zint| < (hb)
1

1−α . (10)

CASE 2: α > 1.
Figure 3 displays z+ versus z for ha = 10−3, hb = 1.7783
and α = 2. It can be seen that the equilibrium point eeq is
stable.

Fig. 3. z+ versus z (blue line) for α = 2.

Moreover, in Fig. 3, green and magenta diamonds highlight
the points allowing to define the attractivity domain of eeq .
Starting with an initial condition far from the equilibrium
point, i.e. over the diamonds w.r.t. the origin of the (z, z+)-
plane, the explicit Euler discretization generates an unstable
solution.

Remark 1: For the specific case α = 1, the curve is a
line crossing the origin and either the line is included inside
the quarters 1 or 3, and therefore (4) is unstable, or the line
is included inside the quarters 2 and 4, and consequently (4)
is globally stable. Moreover in (9) and (10), it not possible
to consider the case α = 1 because the limit goes to ∞.

B. Some recalls on two dimensional case

Continuous-time system. Let p(t) be a bounded perturba-
tion, which is considered unknown. The system under study
consists of a double integrator defined as

ẋ1 = x2

ẋ2 = p(t)

y = x1

(11)

where x(t) ∈ R2 is the state of the system, and y ∈ R is
the output of the system.

Assumption 1: There exists pM > 0 such that |p(t)| <
pM for all t > 0.

Homogeneous continuous-time differentiator.
Given Assumption 1, from [12], [13], a continuous-time
homogeneous differentiator can be designed as follows ż1 = z2 + λ1µdε1cα

ż2 = λ2µ
2dε1c2α−1

(12)

where ε1 = x1 − z1. The gains λi > 0, i = {1, 2} and the
parameter µ (sufficiently large to cancel the effect of p(t))
are tuned such that ε1 and ε2 = z2 − x2 converge towards
zero. Then, the system (12) allows to get an estimation of
ẋ1 thanks to z2.

Implicit Euler discrete-time system. Given Assumptions
1-2 on p(t) and h, the implicit Euler discretization of
continuous-time system (11) reads as x+1 = x1 + hx+2 = x1 + h(x2 + hp+)

x+2 = x2 + hp+
. (13)

Objective. The objective is now to propose an Euler dis-
cretization of the continuous-time homogeneous second-
order differentiator (12). Two possibilities can be offered:

• Explicit homogeneous Euler differentiator This solu-
tion consists in proposing an explicit Euler approxima-
tion of the differentiator (12) x̂+1 = x̂1 + h (x̂2 + λ1de1cα)

x̂+2 = x̂2 + h
(
λ2de1c2α−1

) (14)

where e1 = x1 − x̂1.
However, this solution based on (14) is not attractive
since it suffers of chattering phenomenon.

• Implicit homogeneous Euler differentiator This so-
lution reading as x̂+1 = x̂1 + h

(
x̂+2 + λ1de+1 cα

)
x̂+2 = x̂2 + h

(
λ2de+1 c2α−1

) (15)

allows to propose an implicit Euler approximation [8]
of (12) in the case of α = 0.5 (Levant differentiator).

It can be noticed that, from (15), the observation error
equation reads

e+1 = e1 + h
(
e+2 + λ1de+1 cα

)
. (16)

Remark that it is impossible to solve (16) under the constraint
e+1 = 0 for α 6= 0 due to the presence of |e+1 |α associated to
the correction term. Consequently, the implicit homogeneous
Euler second-order differentiator (15) does not work. That
is the reason why, in the next section, a semi-implicit
homogeneous Euler second-order differentiator is proposed,
and its accuracy is evaluated considering experimental data.



III. SEMI-IMPLICIT HOMOGENEOUS EULER
DIFFERENTIATOR WITH ONE PROJECTOR

A semi-implicit Euler discretization of the homogeneous
differentiator (12) with a single projector (SIHD-1) is pro-
posed and reads as x̂+1 = x̂1 + h

(
x̂+2 + λ1µ|e1|αN1

)
x̂+2 = x̂2 + E+

1 h
(
λ2µ

2|e1|2α−1N1

) (17)

where

N1 :=


|e1|1−α < λ1µh (e+1 = 0)→ N1 = de1c1−α

λ1hµ

|e1|1−α ≥ λ1µh (e+1 6= 0)→ N1 = sgn(e1)

(18)

is the projector that replaces the function sgn(e+1 ) in (15);
see [8] for detailed explanations.

Remark 2: As it is not possible to solve (16) because of
the term |e+1 |α sgn(e+1 ), this latter is replaced in the proposed
method by |e1|αN1, where N1 formally replaces sgn(e+1 ).

Moreover, E+
1 is defined as

E+
1 =

 1 if e1 ∈ SD

0 if e1 /∈ SD
(19)

with SD defined as

SD = {e1/ |e1| ≤ (λ1µh)
1

1−α }. (20)

Remark 3: The terms |e1|α and |e1|2α−1 are the explicit
parts while the projector (the term N1) refers to the implicit
part. This projector N1 cannot be evaluated for h = 0.
Moreover, in (19), to take into account that, at the first time,
e1 ∈ SD, E1 has no information with respect to e2 (this will
be explained later in (28)).

The differentiation error dynamics read as e+1 = e1 + h
(
e+2 − λ1µ|e1|αN1

)
e+2 = e2 + h

(
p+ − E+

1 λ2µ
2|e1|2α−1N1

) . (21)

Before presenting the main results, the following assumption
is needed.

Assumption 2:
1) there exists ẏM > 0 such that for all t > 0,
|ẏ(t)| < ẏM ;

2) the perturbation p(t) is a constant parameter or slowly
variable, that implies that for sufficient small h > 0,
p+ ' p.

Remark 4: Assumption 2.1 is one of the conditions to
stay in SD (see (26) and after); assumption 2.2 is an extra
condition on the perturbation due to the Euler discretization

and the fact that the variation of the perturbation must be
negligible over a sampling period.

Theorem 1: Suppose that Assumptions 1 and 2 hold and
he2M ∈ SD. Then, for h > 0, there exist λ1 > 0 and λ2 > 0
such that the differentiation error dynamics (21) converge in
finite time to

SD1,2 = {e1, e2/ e1 ∈ SD1 and e2 ∈ SD2}

with

SD1 = {e1/ |e1| ≤ max {he2O1, he2O2}}
SD2 = {e2/ |e2| ≤ max {e2O1, e2O2}} .

where

e2O1 =

∣∣∣∣ pMλ1
λ2µhα−1

− λ2µh
α

λ1

∣∣∣∣ (22)

and

e2O2 =
pMλ1

λ2µhα−1
+
λ2µh

α

2λ1
. (23)

Proof: The proof is done in three steps: firstly the con-
vergence in finite time of e1 on SD is done using the
stability analysis of (3). Afterwards, the equilibrium point
of e2 is calculated. Finally, the magnitude of the steady-state
oscillations is deduced using the stability analysis of (3).

• Convergence of e1 in (SD) . From (19)-(20), e1 ∈ SD if

|e1|1−α < λ1µh⇐⇒ |e1| < (λ1hµ)
1

1−α (24)

the conditions to reach SD are given in the sequel taking
into account that e1 = z+ eeq . As it is expected at least that
for z = zint, the solution is inside SD, and (24) reads

|zint|+ |eeq| < (λ1hµ)
1

1−α (25)

1) if z has the same sign than e2, then from (5) including
a = e2 and b = λ1µ, considering (9) and the worth
case |e2| = e2M , the convergence in SD in finite time
is given by the following inequality∣∣∣∣e2Mλ1µ

∣∣∣∣ 1
α

+

∣∣∣∣hλ1µ2

∣∣∣∣ 1
1−α

< |λ1µh|
1

1−α (26)

where h > 0 and λ1µ > 0 are chosen to satisfy (26).
Moreover, to stay in SD, e2M used in (26) must be
bounded. This condition is satisfied from assumption
2 and the fact that |x̂2| < ẏM then |e2M | < 2ẏM .

2) if z has not the same sign as e2, taking the same way
than the previous case, considering (10) and the worth
case i.e |e2| = e2M , it yields

|λ1µh|
1

1−α > max

{∣∣∣∣e2Mλ1µ
∣∣∣∣ 1
α

− |hλ1µ|
1

1−α ,

∣∣∣∣e2Mλ1µ
∣∣∣∣ 1
α

}
.

(27)
It is always possible to find λ1µ such that (27) is
verified.



Remark that for e2M = 0 the oscillation z is symmetrical
around zero and the condition to reach SD is

|λ1µh|
1

1−α >

∣∣∣∣λ1µh2

∣∣∣∣ 1
1−α

that is always verified for h, λ1 and µ strictly positive. When
e1 ∈ SD, its implies that

E+
1 = 1 and N1 =

de1c1−α

λ1hµ
,

then e+1 verifies the following equation

e+1 = he+2 (28)

and e1 stays on SD if |e+2 | is smaller than e2M , which will
be proved in the sequel. Then, from (28), on SD, the second
row of (21) becomes

e+2 = e2 + h

(
p+ − λ2µ

λ1h
dhe2cα

)
. (29)

Remark 5: Equation (29) is the explicit Euler discretiza-
tion of the following continuous dynamics

ė2 = p+ − λ2µh
α−1

λ1
de2cα (30)

and it is well known that explicit Euler discretization of (30)
oscillates.

• Equilibrium Point of (29). The equilibrium point of (29)
is the solution of

p+ − λ2µ

λ1h
dhe+2 cα = 0. (31)

This gives the following equilibrium point e2,eq for e2

e2,eq =

(
λ1
λ2µ

p+
) 1

α

h
1−α
α . (32)

• Steady-state oscillations of e2 and e1. Remark that (29) is
exactly (4) with b = λ2µh

α−1

λ1
and a = p+. Then setting

e2 = z + e2eq , equation (5) is obtained with eeq = e2eq .
From the previous analysis, e2 converges in the domain

SD2 = {e2 / |e2| ≤ max {e2O1, e2O2, }} , (33)

where e2O1 and e2O1 are respectively defined in (22)-(23).
Remark that the absolute values are removed because all the
terms are positive, and e2M is chosen larger than e2O1 and
e2O2.
Finally, from (28), the oscillation within e1 is confined inside
the SD1 domain

SD1 = {e1/ |e1| ≤ max {he2O1, he2O2}} . (34)

IV. SEMI-IMPLICIT HOMOGENEOUS EULER
DIFFERENTIATOR WITH TWO PROJECTORS

In order to remove the oscillation on e2 and consequently
on e1, the following differentiator with two projectors
(SIHD-2) is proposed

x̂+1 = x̂1 + h
(
x̂+2 + λ1µ|e1|αN1

)
x̂+2 = x̂2 + E+

1 h
(
λ2µ

2 |e1|2α−1N2

) (35)

where x̂+2 is computed in the first and second rows. The
associated projectors are defined by

N1 :=


|e1|1−α < λ1µh (e+1 = 0)→ N1 = de1c1−α

λ1hµ

|e1|1−α ≥ λ1µh (e+1 6= 0)→ N1 = sgn(e1)

(36)

and, given that, on SD, e1 = he2

N2 :=


|e1|2−2α < λ2µ

2h2 → N2 = de1c2−2α

λ2h2µ2

|e1|2−2α ≥ λ2µ2h2 → N2 = sgn(e1)

(37)

with E1 defined in (19). The estimation error dynamics read
as 

e+1 = e1 + h
(
e+2 + λ1µ|e1|αN1

)
e+2 = e2 + h

(
p+ − E+

1 λ2µ
2 |e1|2α−1N2

)
.

(38)

Theorem 2:
Suppose that assumptions 1-2 hold. Then for h > 0, there
exist λ1 > 0 and λ2 > 0 such that the differentiation error
dynamics (38) converge in finite time to

SD′1,2 = {e1, e2/ e1 ∈ SD′1 and e2 ∈ SD′2}

with

SD′1 =
{
e1/ |e1| ≤ h2pM

}
,

SD′2 = {e2/ |e2| ≤ hpM} .

Proof: The beginning of the proof is similar to the proof
of Theorem 1 concerning the convergence on SD. After this
convergence, E1 = 1, and since e1 = he2, the dynamic of
e+2 becomes

e+2 = e2 + h
(
p+ − λ2µ2h2α−1 |e2|2α−1N2

)
.

Choosing λ2 sufficiently large after some iterations, it reads
|e2|2−2α < λ2µ

2h2α. Then, substituting again e1 = he2, the
projector N2 can be read as N2 = de2c2−2α

λ2h2αµ2 and consequently

e+2 = hp+

and finally |e2| ≤ hpM and |e1| ≤ h2pM .



V. θ PROJECTORS

To improve the robustness with respect to the noise, a
modification could be made for the projectors N1, and N2

as follows

N1 :=


(1− θ)|e1|1−α < λ1µh → N1 = (1−θ)de1c1−α

λ1hµ

(1− θ)|e1|1−α ≥ λ1µh → N1 = sgn(e1)

and

N2 :=


|(1− θ)e1|2−2α < λ2µ

2h2 → N2 = (1−θ)de1c2−2α

λ2h2µ2

|(1− θ)e1|2−2α ≥ λ2µ2h2 → N2 = sgn(e1)

with θ ∈ [0, 1). Indeed, to damp the influence of the
noise on the sliding surface, instead of requesting e+1 = 0,
it is only requested e+1 = (1 − θ)e1. From the stability
perspective, considering θ equal to zero, finite-time conver-
gence is ensured and when θ is different from zero, the
differentiator is less sensitive to noise, providing only an
asymptotic convergence, since the influence of noise on the
sliding surface is multiplied by (1− θ).

VI. EXPERIMENTAL APPLICATION

In this section, a comparative study illustrates the prop-
erties of the proposed versions of the semi-implicit homo-
geneous differentiation technique. Similarly to the previous
work of the authors [14] where some homogeneous differ-
entiation algorithms have been compared in the framework
of velocity/acceleration estimation regarding the position of
a pneumatic actuator, this study deals with the estimation of
the current in the case of an electronics RC low pass circuit.
It aims to compare the performances of the proposed differ-
entiation solutions with a standard first order Butterworth
filter1. This comparison is mainly based on the analysis of
the Sum of Square Error (SSE)2 applied to the error between
each differentiation version and the measured current.

The objective is to differentiate the output of a RC series
circuit (R = 100 Ω and C = 100µF), this signal being a
sine function of frequency ω = 64.71 rad/s (f = 10.3 Hz).
The measured signal to differentiate - see Fig. 4 has been
obtained by scoping the voltage vc across the capacitor C.

Moreover, the voltage vr = R ic is accordingly scoped
across the terminals of the resistor R, and constitutes the
reference measured differentiated signal since

v̇c =
1

RC
vr. (39)

Remark 6: By a practical point-of-view, the interest of
the differentiator is to avoid the use a current sensor given
that ic = Cv̇c.

1The butter function of Matlab R© is used to perform a discrete first order
high pass filtering.

2The SSE is given by SSE(•) = 1
n

∑n
l=1 •2l with n the data size; the

second half of the signal (in the steady state) has been considered for the
SSE evaluation.

Fig. 4. Measured vc versus time (s) for h2 = 210−4 s.

Two sampling periods h1 = 2 10−4 s and h2 = 2 10−3

s are considered in the sequel to highlight the properties of
the SIHD method at lower sampling.

The Butterworth filter is set at the cutoff frequency of 100
Hz; the parameters of the SIHD methods λ1 = λ2 = 106 are
chosen to have the linear part stable, and the θ1, θ2, α and
µ parameters have been obtained thanks to an optimization
procedure in order to improve the SSE performance index
[15]. These choices are summarized in the following table.

h [s] method θ1 θ2 α µ SSE
2.10−4 Butterw. - - - - 2.31 103

SIHD-1 0.95 - 0.64 400 3.4 102

SIHD-2 0.98 0.37 0.76 0.74 2.2 102

2.10−3 Butterw. - - - - 1.78 103

SIHD-1 0.71 - 0.77 400 3.9 102

SIHD-2 0.75 0.73 0.65 99.9 3.7 102

Figures 5-6 display the real differentiated signal (obtained
from measurement - see (39)) and the outputs of the three
differentiators (Butterworth, and the both proposed ones)
for the two sampling periods h1 and h2. It appears that,
globally, these three solutions allow to get an image of the
differentiation, but with a huge difference of performances.
Furthermore, the value of the sampling period has an impact
on the quality of the differentiation.

Fig. 5. Differentiated signals (measured, Butterworth, proposed methods)
versus time (s) for h1 = 210−4 s.

Figures 7 and 8 compare the SSE performances3 of the

3The normalization of SSE in Figures 7 and 8 is made with respect to
results obtained with the Butterworth filter (always equal to one).



Fig. 6. Differentiated signals (measured, Butterworth, proposed methods)
versus time (s) for h2 = 210−3.

Fig. 7. Evaluation of the normalized index SSE for h1 = 210−4 s.

Fig. 8. Evaluation of the normalized index SSE h2 = 210−3 s.

SIHD-1 and SIHD-2 according to the Butterworth filter. For
both samplings h1 and h2, the semi-implicit homogeneous
differentiators show better accuracy regarding the SSE index
than the classical Butterworth filter. Since the two-projector-
based version (SIHD-2) includes a dedicated projector to
drive the tracking error on e2 and suppress the corresponding
oscillations, it provides slightly better performances than
the corresponding SIHD-1 method. Moreover, the SIHD-
2 method is easier to extend to higher order. Nevertheless
in applications, performances and the feasibility of both
methods are quite similar (see [14]).

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a semi-implicit Euler approximation
of an homogeneous differentiator for a second-order system.
The proposed scheme allows to apply an implicit Euler
approximation (combined with explicit one) when homo-
geneous differentiators are considered instead of classical
sliding mode differentiators. Two versions of differentiators
based on one or two projectors are proposed to reduce

the effect of chattering phenomena, measurement noise and
perturbation. These two differentiators and a discrete Butter-
worth filter (used for comparison) have been implemented
and tested on an experimental electronics RC filter. Better
performances have been obtained within the proposed two
differentiators compared to the discrete Butterworth filter in
term of tracking and noise rejection.
Future investigations include the generalization of the pro-
posed approaches to higher order differentiation as well as
extension to variable exponent differentiators to deal with
adaptive noise rejection [13]. In addition, more comparisons
and investigations will be conducted with respect to recent
implicit differentiation techniques. Moreover, it will be very
interesting to adapt the Taylor expansion corrective term
proposed in [6] to the proposed implicit methods and also
to consider not only a regular sampling but also the self and
event triggering case [7], [16].
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