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Abstract 73 
Soft microfluidic systems that capture, store and perform biomarker analysis of microliter 74 

volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class 75 
of wearable technology with powerful capabilities that complement those of traditional biophysical 76 
sensing devices. Recent work establishes applications in real-time characterization of sweat 77 
dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. 78 
This paper presents a collection of advances in biochemical sensors and microfluidic designs that 79 
support multimodal operation in monitoring of physiological signatures directly correlated to 80 
physical and mental stresses.  These wireless, battery-free, skin-interfaced devices combine, 81 
lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin 82 
C), and digital tracking of skin galvanic responses.  Systematic bench-top evaluations and field 83 
studies on human subjects highlight the key features of this platform for continuous, non-invasive 84 
monitoring of biochemical and biophysical correlates of stress state.  85 

Significance Statement 86 

Skin-interfaced, wireless devices for clinical-grade monitoring of physiological parameters 87 
are of growing interest for uses that range from delivering high quality care. This paper introduces 88 
a multifunctional skin-mounted microfluidic platform for capture and biomarker analysis of microliter 89 
of sweat that is a biofluid has potential relevance in biophysical sensing and healthcare.  The focus 90 
is on colorimetric and digital assessments of a collection of parameters related to stress, including 91 
concentrations of vitamin C, cortisol and glucose in sweat, along with quantitative measurements 92 
of sweat rate and galvanic skin response.  The results represent important additions to a portfolio 93 
of emerging capabilities in skin-interfaced technologies for physiological monitoring, with particular 94 
relevance to conditions that follow from unhealthy levels of physical and mental stress.  95 

  96 
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Main Text 97 
 98 

Soft, wearable microfluidic systems with capabilities in colorimetric, fluorometric and 99 
electrochemical sensing of sweat biomarkers offer a range of modalities for tracking performance, 100 
nutrition, wellness and health (1-5).  These technologies exploit the rich mixture of solutes, 101 
metabolites, hormones of eccrine sweat and its non-invasive extraction directly from pores on the 102 
surface of the skin (6-10).  A key requirement for the broad adoption of devices for sweat sensing 103 
is in contamination-free capture of precise volumes of sweat and in situ quantitative analysis of 104 
multiple biomarkers with relevance to muscle fatigue, dehydration, cystic fibrosis and others.  An 105 
important and relatively unexplored frontier focuses on capabilities that support qualitatively 106 
expanded domains of application, such as those in tracking biochemical correlates of physical and 107 
mental stresses, and other aspects of cognitive status.  This area represents the main focus of the 108 
results reported here. 109 

Conventional techniques for sweat analysis rely on absorbent pads that adhere to the skin 110 
and require subsequent removal, special handling, bench-top centrifugation, and extraction of 111 
sweat for off-site analysis (11-13).  These lab-based strategies are incompatible with real-time 112 
monitoring in field settings due to the need for expensive and bulky analysis equipment.  Recent 113 
developments in advanced, soft forms of microfluidic technologies with integrated chemical and 114 
electrochemical sensors serve as the foundations for opportunities in real-time monitoring of 115 
various sweat biomarkers and tracking of sweat loss and local rate (3,14-16).  Such devices are 116 
thin and flexible, thereby allowing conformal, water-tight coupling to the skin in clinical, athletic, and 117 
real-world environments.  Related designs that incorporate capillary burst valves and mechanically 118 
reinforced stiffening materials (e.g. skeletal designs) enable time sequential analysis (i.e. 119 
chronosampling) of multiple sweat biomarkers, and application in demanding scenarios that involve 120 
physical impacts (17-19), respectively. In other demonstrations, surface coated electrodes with 121 
antibody- and enzyme-based assays capture information about cortisol and related biochemicals 122 
in a continuous mode of operation, although without field studies to demonstrate robustness of 123 
operation required for practical applications (20-23). 124 

Simultaneous, reliable analysis of species such as cortisol, together with vitamin C and 125 
glucose, has the unique potential to yield insights into transient states of physical and mental stress.  126 
Cortisol release from the adrenal glands occurs in response to cognitive and physical stressors.  127 
This release activates the sympathetic nervous system (24) and triggers a complex chain of 128 
biochemical responses that lead to an increase in energy production (25).  In particular, cortisol 129 
secretion in response to stress leads to elevated levels of glucose for muscle groups to consume 130 
in “fight or flight” scenarios.  Increased cortisol levels over prolonged time periods, however, have 131 
been linked to conditions such as obesity, depression, hypertension, and diabetes (26).  132 



 

 

5 

 

Supplementary intake of vitamin C can counteract these harmful effects by boosting the immune 133 
response and attenuating cortisol levels (27).  A desire to understand the complex relationship 134 
between cortisol, glucose, and vitamin C that define dynamic stress responses, motivates the 135 
development of devices for non-invasive monitoring of these stress-related biomarkers, as a means 136 
for establishing counteractive interventions.   137 

This paper reports technologies that allow measurements of multiple stress-related 138 
biomarkers in battery-free, wireless skin-interfaced device platforms.  The designs described here 139 
include skeletal microfluidic networks with integrated quantitative immunoassays for cortisol and 140 
fluorescence assays for glucose and vitamin C, along with features that allow for continuous 141 
sensing of sweat rate and conductivity using galvanic skin response (GSR).  Demonstrations in 142 
bench-top studies and in field trials on human subjects highlight unique capabilities in multimodal 143 
and non-invasive monitoring of stress during exercise and at rest in real-world settings.  144 

 145 
 146 

Results and Discussion 147 
 148 

Soft, skin-interfaced skeletal microfluidic systems with lateral flow immunoassays and 149 
digital wireless measurement capabilities. Skin interfaced systems with integrated 150 
immunoassays for sweat cortisol, fluorescent assays for glucose and ascorbic acid (vitamin C), and 151 
with electrochemical sensors, support an important range of capabilities for analysis of sweat 152 
biomarkers and sweat dynamics related to stress.  These multimodal features in sensing exploit 153 
ruggedized microfluidic structures formed using a high modulus (~1 GPa), ultra-violet (UV) curable 154 
polyurethane (NOA81) embedded in a low modulus (~30 kPa; EcoflexTM, Smooth-On Inc., PA) 155 
silicone polymer matrix (28, 29).  Fig. 1A shows an exploded view of this ‘skeletal’ microfluidic 156 
design.  Compared to systems based on traditional elastomers, these polyurethane-based 157 
microfluidic structures greatly reduce the rate of evaporation of collected and stored sweat (29, 30) 158 
(SI Appendix, Fig. S1A and B) and serve as fluidic connections for embedded lateral flow 159 
immunoassays (LFIAs).  SI Appendix, Fig. S1C and D shows a schematic illustration and an optical 160 
image of the skeletal microfluidic channels, respectively.  The microfluidic channel stores ~ 70 µL, 161 
and electrodes within these channels establish contact with sweat for continuous, resistive 162 
measurements of sweat rate.  Additional structures define micro-reservoirs and capillary burst 163 
valves for fluorescence-based measurements of glucose and ascorbic acid.  A medical-grade skin 164 
adhesive layer with patterned openings attaches the device to the skin and defines access points 165 
for collection of sweat directly from skin pores, at positions aligned to inlets on the backside of the 166 
device (16).  SI Appendix, Fig. S2 shows bench-top results of a device filling with artificial sweat at 167 
a rate of ~2 µL/min.  An integrated system with electrodes, serpentine microchannels (600 µm 168 
width, 400 µm depth), and an LFIA for cortisol measurement appears in Fig. 1B and C.  Fig. 1D 169 
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illustrates the design of the microfluidic assembly for fluorescence-based glucose and ascorbic acid 170 
assays. 171 

Measurements of sweat loss and GSR exploit a collection of ultrathin electrodes (3-µm 172 
thick) defined photolithographically using a tacky formulation of polydimethylsiloxane (PDMS; 30:1 173 
mixture of base to curing agent; Sylgard 184, Dow Corning; Midland, MI) as a temporary carrier.  174 
These patterned electrodes bond to the polyurethane in a UV curing process as shown in SI 175 
Appendix, Fig. S3A.  SI Appendix, Fig. S3B presents images of electrodes after UV curing (top) 176 
and of a representative device with integrated electrodes (bottom).  SI Appendix, Fig. S4 shows 177 
results from a simple peel test (Mark-10 ESM1500; ABQ Industrial L.P., TX; SI Appendix, Fig. S4A-178 
C) that indicate levels of adhesion between the electrodes and the NOA81 substrate are ~6 times 179 
stronger than those associated with bonding to a tacky piece of PDMS (SI Appendix, Fig. S4D and 180 
E).  Aligned bonding of the relief side of the prepared structure to the electrode layer yields an 181 
enclosed skeletal microfluidic channel system with integrated electrode interfaces (SI Appendix, 182 
Fig. S3C).  The electrodes integrate along the serpentine microchannels with direct electrical 183 
interfaces to the sweat (Fig. 1B) as illustrated in SI Appendix, Fig. S5A.  The system includes 184 

reference electrodes (① in SI Appendix, Fig. S5A), tracking electrodes (④ in SI Appendix, Fig. 185 

S5A), and a counter electrode (② or ③ in SI Appendix, Fig. S5A).  SI Appendix, Fig. S5B shows 186 

magnified optical images of the reference (top) and tracking electrodes (bottom).  187 

The packaging scheme highlighted in SI Appendix, Fig. S3D and SI Appendix, Fig. S6A 188 
involves steps to embed the microfluidic structure within silicone (EcoflexTM; 1:1 mixing, cured at 189 
room temperature for 12 h).  A laser cutting process defines the perimeter of the resulting system 190 
(Fig. 1E, SI Appendix, Fig. S3D, SI Appendix, Fig. S7B and SI Note 1).  Fig. 1E shows the device 191 
during mechanical twisting and bending.  Fig. 1F and SI Appendix, Fig. S6C-E present results of 192 
finite element analysis (FEA) of the associated mechanics (SI Note 2).  The serpentine geometries 193 
of the microfluidic channels and the low modulus, stretchable silicone matrix (~30 kPa) facilitate 194 
high levels of elastic deformations (31-33) (SI Appendix, Fig. S6C-E).  195 

 196 

Lateral flow immunoassay for cortisol. The cortisol immunoassay relies on a competitive 197 
reaction that exploits anti-mouse-IgG (Anti-IgG) antibody, cortisol conjugated bovine serum 198 
albumin (cortisol-BSA) and gold nanoparticles (AuNPs; SI Appendix, Fig. S7A) with conjugated 199 
anti-cortisol antibodies (ACA) (34-36).  SI Appendix, Fig. S7B and C schematically illustrates the 200 
reagents and immunoreactions.  The ionic affinity of the hydrophobic surfaces of the AuNPs 201 
facilitates preparation of ACA-AuNP conjugates via spontaneous reaction of ACA and AuNP at ~ 202 
pH 7.2, ~23°C and 35% humidity.  The immunoassay initiates as approximately 90% of collected 203 
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sweat (~60 µL) from the main channel reaches the conjugation pad, and cortisol in the sweat 204 
conjugates with the ACA-AuNP (cortisol-ACA-AuNP).  Sweat then wicks along the nitrocellulose 205 
(NC) membrane to launch immunoreactions that occur along control and test lines defined on the 206 
membrane. The control line screens uncoupled ACA-AuNP by immobilizing the ACA active sites 207 
via cortisol-BSA. The test line senses cortisol-ACA-AuNP quantitatively as a result of binding to 208 
anti-IgG (34) (SI Appendix, Fig. S7B and C). Since there are multiple binding sites per AuNP, the 209 
sensitivity and dynamic range of the assay depend on the number of AuNPs, the number of binding 210 
sites per AuNP, the total amount of cortisol-BSA, and the concentration of sweat cortisol. 211 

Fig. 2A highlights the zeta-potential as a function of ACA concentration (0.02, 0.2, 2 and 212 
20 mg/mL ACA). The error bars are mean values across 3 samples with standard deviations for 213 
each concentration condition for conjugation of AuNPs (diameters of 30 nm, with highest optical 214 
density at ~550 nm wavelength) as shown in SI Appendix Fig. S7A.  Increasing the concentration 215 
of ACA increases the surface charge, until saturation at ~2 mg/mL ACA.  These measurements 216 
indicate that ~0.5 mg/mL ACA (~ -20 mV of zeta-potential) is a good choice for conjugation of ACA 217 
and AuNPs (37, 38).  Fig. 2B shows the absorbance spectrum for ACA-AuNP samples for various 218 
times of conjugation.  The results reveal the time dependence of AuNP aggregation, and the 219 
corresponding time required for saturation of the color response (39, 40) (SI Appendix, Fig. S8A).  220 
Insufficient conjugation time produces samples with absorbance lower than those processed in an 221 
optimized manner (3 min, as in Fig. 2B).  Fig. 2C shows that the peak absorbance occurs at ~280 222 
nm, a wavelength range where aromatic groups in the amino acid residues and antibodies absorb 223 
strongly (40-42).  Transmission electron microscope (TEM) images (SI Appendix, Fig. S8B) 224 
compare AuNPs before (left) and after conjugation (right), and the image after conjugation (right) 225 
shows development of ACA on the AuNP surface.  SI Appendix, Fig. S8C shows the effects of 226 
physiologically relevant changes in sweat pH (pH 5.0, 6.0, 7.0 and 8.0) on zeta-potentials for 227 
samples of ~0.5 mg/mL ACA conjugated with 30-nm AuNP.  The shift in zeta-potentials is ~ -25 228 
mV to ~ -41 mV for changes in pH from 5.0 to 8.0 that is based on that the carboxyl groups and 229 
hydroxyl groups are ionized in the shifting alkaline condition (43). 230 

The lateral flow strip consists of a conjugation pad (Glass fiber; GFB-R7L; mdi Membrane 231 
Technologies, Inc., PA; SI Appendix, Fig. S9A) and a NC membrane (10-µm pore size) with color 232 
development at the cortisol-BSA control line (SI Appendix, Fig. S9B).  The absorbent pad confines 233 
the reaction system within the NC membrane to ensure rapid and accurate immunoassay reactions.  234 
Selection of the membrane material and pore size follow considerations based on the Lucas-235 
Washburn model, according to (44, 45); 236 

𝐿! 	= 	𝛾𝑟𝑡𝑐𝑜𝑠𝜃	/	2𝜂                 (Eq. 1), 237 
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where L is the absorption distance, γ is the surface tension, r is the pore radius, θ is the contact 238 
angle between the membrane material and the solution, t is the time and η is the dynamic viscosity 239 
of the solution.  Once the collected sweat activates LFIA reaction from conjugation pad, the overall 240 
reaction time remains constant, consistent with the Lucas-Washburn model and independent of 241 
sweat rate.  SI Appendix, Fig. S9C-E show the process for assembly of the LFIA strip and optical 242 
images before and after laser cutting. A dispensing process delivers cortisol-BSA and anti-IgG to 243 
the control and test lines, respectively.  The immunoassay design and detection range depend on 244 
the amount of immobilized cortisol-BSA on the control line and the active surface areas of both the 245 
control and test lines.  Color development tests on the control line as a function of concentration of 246 
cortisol-BSA determine the optimal quantity of cortisol-BSA (Fig. 2D).  Fig. 2D shows the onset of 247 
color saturation at ~7 mg/mL cortisol-BSA with the assembled test strip (rectangular; 5 cm x 0.5 248 
cm) that 1 mL of prepared 0.8 OD ACA-AuNP is added to the unprocessed conjugation pad (SI 249 
Appendix, Fig. S9D; 6 cm x 1 cm of glass fiber) in the assembly process.  Accurate colorimetric 250 
evaluation of the LFIA involves analysis of images captured with a smartphone, after correcting for 251 
ambient lighting conditions (e.g. direct sun light, shade, indoor lighting, transmission properties 252 
through the polyurethane micro-channel; Eq. S1) and with the NC membrane surface as a white 253 
reference (SI Note 3) (5, 46).  254 

Fig. 2E shows an image of completed LFIA strip and SI Appendix, Fig. S10A shows the 255 
strip integrated in a device for measurements across the physiological range of cortisol 256 
concentrations at the test line (Fig. 2F; 5, 10, 30, 60 and 100 ng/mL; 50 µg/mL Anti-IgG immobilized 257 
at the test line).  Pictures of the LFIA strips after 10 min of color development appear in SI Appendix, 258 
Fig. S10B.  Tests with volunteer subjects indicate the ability to measure cortisol concentrations 259 
accurately using this approach, as an alternative to enzyme-linked immunosorbent assay (ELISA) 260 
tests that is reliable bench-top cortisol assay, as shown in Fig. 2G (47).  261 

 262 

Fluorescence-based assays for glucose and ascorbic acid. The device also supports 263 
fluorescence-based assays for glucose and ascorbic acid.  A pair of reservoirs connected by 264 
microchannels and capillary burst valves enable time-sequential sampling of sweat for these 265 
measurements.  The passive valve geometries have lateral dimensions (~50 µm) that are 266 
significantly smaller than those of the microchannels leading into the reservoirs (150 µm).  The 267 
burst pressure mechanism follows from the Laplace-Young equation (Eq. 2) according to: 268 

Burst	Pressure = 	−2𝜎 7"#$%!
∗

&
+ "#$%#

'
9                (Eq. 2) 269 

where 𝜎 is the surface tension of liquid, 𝜃( is the contact angle of the channel, 𝜃)∗ is the min [𝜃(+	𝛽; 270 

180˚], 𝛽 is the diverging angle of the channel, 𝑏 and ℎ are the width and the height of the diverging 271 
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section, respectively (30, 48, 49).  SI Appendix, Fig. S11A illustrates the overall design of this 272 
network of channels, assays, and the capillary burst valves where ‘Valve#1’ and ‘Valve#2’ have 273 
diverging angles of 90˚ and 120˚, respectively.  Magnified optical images for the valves are shown 274 
in SI Appendix, Fig. S11B.  Tailoring the burst pressures for these valves ensures ordered routing 275 
of sweat as it fills into the reservoirs. A separate set of circular reservoirs not connected to the 276 
microfluidic network serve as fluorescence reference markers prefilled with fluorescent dye (5 277 
mg/mL Tetramethylrhodamine, Ethyl Ester, Pechlorate; TMRE; Thermo Fisher Scientific, Waltham, 278 
MA) (50).  279 

SI Appendix, Fig. S12A and B summarize reactions that involve glucose and ascorbic acid 280 
with glucose oxidase (GOx) and ascorbic acid oxidase (AOx) enzymes, respectively.  The oxidation 281 
reactions for both substrates generate hydrogen peroxide, and excess activity of horseradish 282 
peroxidase (HRP) leads to reduction of a fluorometric probe (OxiRedTM) to form resorufin as the 283 
basis for a fluorescence signal (Fig. 3A; λexcitation: ~550 nm wavelength and λemission: ~600 nm 284 
wavelength) with magnitude that depends on the concentration (51) (SI Appendix, Fig. S12C).  SI 285 
Note 4 summarizes the details of enzymes preparation for glucose and ascorbic acid assays.   SI 286 
Appendix, Fig. S12D and E shows the effect of pH on the activity of GOx and AOx, respectively.  287 
An apparatus with integrated excitation and emission filters attaches to a smartphone to facilitate 288 
rapid measurement of the fluorescence in situ (49) (Fig. 3B).  The emission filter passes only light 289 
with wavelengths longer than 610 nm.  SI Appendix, Fig. S12F shows the key features of this 290 
module and its coupling to a smartphone imager.  This setup facilitates capture of fluorescence 291 
signals, as measures of the concentration of target substrates (i.e. glucose and ascorbic acid).  Fig. 292 
3C features signals from glucose and ascorbic acid relative to those from the TMRE reference 293 
reservoir.  Calibration involves first analyzing the signal intensity from each reservoir and then 294 
normalizing these results by the intensity of TMRE (49, 52) (Eq. S2).  The depth of each 295 
microreservoir controls the dynamic range of the fluorescence signal, according to the Beer-296 
Lambert law (53).  Fig. 3D shows the effect of the silicone packaging on the fluorescent signal at 297 
0:10, 1:9, 3:7 and 10:0 ratios (0%, 10%, 30% and 100%, respectively) of black and white pigments 298 
mixed in uncured Ecoflex at ~5% (w/w).  Fig. 3E and F exhibit examples that the fluorescence 299 
intensity increases for glucose and ascorbic acid assays in a linear manner with relevant range of 300 
concentrations. 301 

 302 

Battery-free, wireless electronic interface for readout of sweat rate and galvanic skin 303 
response. Fig. 4A highlights the wireless electronic module, which consists of three electrodes 304 
(sweat rate, skin conductance, and sweat reference), a near field communication (NFC) 305 
microcontroller (RF430, ISO/IEC 15693, ISO/IEC 18000-3; Texas Instruments, Dallas, TX) and an 306 
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RF antenna.  The microcontroller receives power wirelessly (SI Appendix, Fig. S13A-D) from an 307 
NFC-enabled device such as smartphone (16, 54, 55). The electrodes deliver alternating current 308 
(AC) to the skin to measure galvanic skin response (GSR), with a common node of VTMS for applying 309 
an AC driving signal (Fig. 4B and C; Ra, Rb and Rc for 100 kΩ, 300 kΩ and 10 kΩ, respectively).  310 
The digital readout system compares measured resistances to known reference resistors, Ra Rb 311 
and Rc to allow for evaluating sweat rate, GSR and sweat conductivity, respectively (Fig. 4C).  The 312 
analog to digital converter (ADC) ports on the NFC microcontroller (RF430, ISO15693 interface) 313 
acquire data from the three electrodes of RL, RG and RR (Fig. 4C).  The ADC output voltages for 314 
each channel can be described by the following equations: 315 

ADC0 = 𝑉+,- ×
.$

.$/.%
− 𝑉0, ADC1 = 𝑉+,- ×

.&
.&/.'

− 𝑉0, ADC2 = 𝑉+,- ×
.(

.(/.)
− 𝑉0    (Eq. 3) 316 

where RL is the resistance across the pair of electrodes in main channel, RG is the resistance across 317 
the electrodes for GSR, RR is the resistance at the reference electrode and Vf is the forward voltage 318 
of the rectifier (~150 mV) (16).  Fig. 4D shows the terminals for GSR (left; SI Appendix, Fig. S13E) 319 
and the tracking and reference electrodes that couple with the embedded electrodes in microfluidic 320 
channel (right).  The acquired data passes wirelessly to the smartphone.  SI Appendix, Fig. S13F 321 
provides details on the individual terminals of the RF430 and TSV632 and the layer of PDMS that 322 
prevents ingress of external moisture, respectively.   323 

SI Appendix, Fig. S14A summarizes conductance measurements from ADC0 for artificial 324 
sweat collected in the main microchannel for various electrolyte concentrations.  The captured 325 
sweat volume depends linearly on sweat filling length along the channel (SI Appendix, Fig. S6A) 326 
and, as a result, on the resistance at the tracking electrodes according to: 327 

𝐿 = 𝛼 ∙ 𝑅./𝑅1                 (Eq. 4) 328 

where L is the filling length (L = 0-165 mm) and α is a coefficient that accounts for the ratio of the 329 
lengths of the reference and tracking electrodes (reference electrode: 1.5 mm; tracking electrodes: 330 
165 mm).  Measurements at 1 kHz minimize the dependence of impedance phase on the 331 
conductivity of the skin and sweat (16) (SI Appendix, Fig. S14B-D).  Bench-top and field testing 332 
with volunteer subjects determine the relationship between ADC2 and sweat conductivity (SI 333 
Appendix, Fig. S14E and Fig. 4E for bench-top and field testing, respectively).  334 

Evaluations of skin conductivity using the GSR electrodes, as shown in SI Appendix, Fig. 335 
S13E and comparison with sweat rate provide important insights into sweat gland activity, including 336 
sweat rate and ion reabsorption.  Coupling of electronics module with the skeletal microfluidics 337 
electronically enables sweat rate data collecting.  The magnets (3-mm diameter, ~0.5-mm 338 
thickness), attached to the electronics module, offer robust magnetic forces for mechanical coupling 339 
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with the electrode terminals (16) (Fig. 1A and SI Appendix, Fig. S14F).  Previous studies 340 
demonstrate that sweat electrolyte concentrations increase with increasing sweat rate (55-57).  341 
Prolonged exercise on a stationary bike induces high sweat rates, which could give rise to ion 342 
reabsorption.  Fig. 4F shows results that correlate ∆GSR with skin temperature for the initial phases 343 
of exercise (~10 min at 18°C room temperature).  A warmup period of 10-15 min leads to sweating 344 
and development of a stable skin temperature (58).  Fig. 4G shows representative ∆GSR data 345 
collected from the forearm of a subject. The eccrine glands selectively reabsorb ions, especially 346 
sodium, during sweating as the basis of physiological regulation for homeostasis.  The constant 347 
∆GSR trend shown in Fig. 4G reflects this type of physiological regulation at low sweat rate phase 348 
of under ~0.8 μL/min.  Further exercise without hydration induces over-perspiration and perturbs 349 
the regulation system.  The ∆GSR data is consistent with this behavior, as it increases after 0.7 350 
µL/min sweat rate as the ion resorption rate exceeds the excretion rate (59-62) (Fig. 4G).   351 

 352 

Demonstrations and field testing. Field tests illustrate capabilities in measurement of cortisol, 353 
glucose and ascorbic acid along with digital tracking of sweat rate and GSR through studies with 354 
four healthy volunteer subjects engaged in physical exercise on a stationary bike in a gym 355 
environment (SI Appendix, Fig. S15A-C; 18-22°C temperature and 15-30% humidity).  The initial 356 
set of experiments involve data collection from subjects #1 and #2 in the morning and evening. 357 
Sweating was induced within 30 min after the subject woke up at ~7am and before going to sleep 358 
around 7pm (Fig. 5A and B). Intensive work periods ensued for ~7 days (including working 359 
overnight for several days with consumption of caffeine) and rest (regular patterns of sleeping and 360 
meals) for 14 days, serving as short-term stressors.  Additional short-term studies with subjects #3 361 
and #4 focused on cortisol, glucose and ascorbic acid measurements along with measurements of 362 
sweat rate and GSR (Fig. 5C-J) in the morning and evening during intensive work, rest with healthy 363 
diet, and control (63-65).  364 

SI Appendix, Fig. S16 shows these sequences of events and methods for capturing sweat 365 
information at each stage using a smartphone. The filling of sweat into the microchannels activates 366 
the glucose and ascorbic acid assays within ~10-15 min after the start of the stationary bike 367 
exercise.  Upon filling of the reservoirs for glucose and ascorbic acid assays, a smartphone camera 368 
with the shielding module (Fig. 3B and SI Appendix, Fig. S12F) captures the fluorescent signals. 369 
As sweat fills into the main channel, measurements of sweat rate and GSR (4~13 separate times) 370 
can be performed by placing the smartphone in proximity to the device.  The LFIA assay activates 371 
after complete filling of the main channel (~70 µL). The digital camera on the smartphone captures 372 
the developed color.  373 
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Fig. 5A-D compares measurements of cortisol conducted with the LFIA and a bench-top 374 
ELISA protocol in the morning and evening, under intensive work and resting conditions.  Under 375 
ordinary, routine circumstances, diurnal variations of cortisol level among the subjects exhibit 376 
standard patterns, with concentrations that peak in the morning, to facilitate focus during the 377 
daytime, and then gradually decrease through the afternoon and evening.  This cortisol circadian 378 
rhythm is apparent in data from subjects #3 and #4, as shown in Fig. 5C and D (64, 65).  The 379 
subjects, during intensive work, experience physiological stress, fatigue and irregular life patterns 380 
with inadequate sleep.  These conditions disrupt the cortisol-melatonin circadian rhythm.  As a 381 
result, the hypothalamus region of the brain produces corticotropin releasing hormone (CRH), 382 
which in turn, activates the hypothalamic-pituitary-adrenal axis and stimulates anterior pituitary 383 
activity (23, 24, 66), thereby increasing cortisol production and disrupting of cortisol circadian 384 
rhythm (67).  The cortisol levels for Subject #2, #3 and #4 during intensive work show disruptions 385 
of circadian rhythm, consistent with physiological conditions that reflect exhaustion (Fig. 5B and C).  386 
This disruption could aggravate the psychological state (e.g. anxiety, insomnia, etc.).  Fig. 5K 387 
demonstrates the accuracy and reliability of the LFIA in the device compared with bench-top ELISA 388 
results (R2=0.7974).  The control tests measuring saliva cortisol levels before and after exercise 389 
show that the effect of exercise intensity on cortisol level is small (68) compared to circadian rhythm 390 
changes that occur during the day.  After intense work condition, the subjects return to a routine 391 
life pattern for 2 weeks and consume ascorbic acid (1000 mg per a day for subject #3 and #4) (69).  392 
The result is that the cortisol patterns recover to normal circadian rhythm, as shown in Fig. 5A-C.  393 
Although subjects #1-#3 show lower cortisol levels after 14 days, the relative changes in sweat 394 
cortisol levels due to circadian rhythm appear to dominate compared to dietary interventions for 395 
subject #4 (Fig. 5D).  Fig. 5E and F show that the ascorbic acid levels increase from ~0 µM to ~0.33 396 
µM for subject #3 and from ~0 µM to ~0.42 µM for subject #4, as a result of vitamin C intake.  By 397 
contrast, the glucose levels exhibit no specific trends, i.e. ~0.62 µM and ~0.80 µM for subject #3 398 
and 0.84 µM and 0.81 µM for subject #4, as mean values of measurements taken on day 0 and 399 
day 14.  SI Appendix, Fig. S15D and E show glucose and ascorbic acid measurements at day 0, 400 
2, 6, 10 and 14 for these same two subjects.  These results show that the device along with 401 
integrated assays have practical utility, as the glucose and ascorbic acid sensitivity ranges are 402 
within previously reported physiological ranges (3, 70). 403 

Representative results for sweat rate and ∆GSR appear in Fig. 5I-J.  These findings 404 
establish correlations between ∆GSR and sweat rate, likely associated with resorption and 405 
secretion of ions due to sweating.  Sweat rate measurements from Subjects #1 and #2 appear in 406 
Fig. 5H and I, with comparisons to ∆GSR in SI Appendix, Fig. S15F and G.  Wirelessly acquired 407 
data from ADC0 and ADC2 yield the sweat rate and electrolyte concentrations, respectively.  408 
Comparisons of ∆GSR and sweat rate in Fig. 5I and J suggest that resorption behavior occurs for 409 
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secreted ions (i.e. sodium) from the proximal secretory coil (18, 59, 70-72).  In the limiting case, 410 
the rate of secretion of ions exceeds the rate of resorption, thereby leading to an increase in ∆GSR 411 
at a critical sweat rate (73-74).  Fig. 5I and J shows that ∆GSR measurements for subjects #3 and 412 
#4 remain steady until the sweat rate reaches ~1.1 µL/min for subject#3 and ~0.8 µL/min for subject 413 
#4, at which point the ∆GSR increases. 414 

 415 
Conclusion 416 
 417 

Eccrine sweat is an interesting, yet incompletely understood, class of biofluid that contains 418 
a range of chemical species whose concentrations could provide significant information on 419 
physiological status. The potential relevance spans sports science, diagnosis in clinical medicine 420 
and evaluations of military readiness.  The multifunctional device platform described here exploits 421 
a soft microfluidic network of hard channels and reservoirs, with integrated flexible electronic 422 
systems, as a practical lab-on-a-chip type system with immunoassays, fluorometric detection 423 
capabilities and wireless functionality tailored specifically to monitoring of physical and mental 424 
stresses.  A key feature is the lateral flow integration for immunoassay analysis of sweat cortisol. 425 
The fluorescence assay provides information on other trace substrates such as glucose and 426 
ascorbic acid.  Wireless modes of operation based on NFC protocols support real-time, wireless 427 
digital tracking of sweat rate and GSR.  Field tests on human subjects engaged in activities to 428 
create and then relieve stresses demonstrate the utility of the technology in this important context, 429 
as well as its ability to address scenarios of practical interest.  The versatile design principles 430 
introduced here can be configured to address many additional capabilities in sweat collection, 431 
storage and chemical analysis in remote field settings (e.g. modified skin mounted microfluidics, in 432 
which micro-photodetector and excitation light are embedded to enable FL readouts).  433 

 434 

Materials and Methods 435 
 436 
Fabrication of soft skeletal microfluidics with flexible electrodes system. Fabrication began 437 
with the formation of a mold from a silicon wafer patterned using photolithography techniques.  438 
More precisely, photoresist KMPR1010 was spin-cast on a silicon wafer at 3000 rpm for 30 s, baked 439 

on a hot plate at 110°C for 3 min, exposed to UV irradiance at 300 mJ⋅cm-2 for 2 min and developed 440 
with developer MF917.  Deep reactive-ion etching (polymethylmethacrylate coating; STS Pegasus 441 
ICP-DRIE, SPTS Technologies Ltd, UK) removed the exposed silicon to a selected depth (~400 442 
µm).  A prepolymer to polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning, Midland, MI, mixed 443 
at a 10:1 ratio of base to curing agent by weight) was then cast and cured on the silicon structures 444 
to yield soft molds.  These molds were used to form structures of NOA (Norland Optical Adhesive; 445 
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NOA 81, Norland Products, Inc., Cranbury, NJ; Partial curing; Expose to 30 W UV light for 4~10 446 
min; SI Appendix, Fig. S1B). 447 

Fabrication of Cu electrodes relied on a photolithographic process, whereby photoresist 448 
(AZ4620) was spin-cast at 3000 rpm for 30 s, and then baked on a hot plate at 60°C for 1 min.  449 

After UV irradiance at 300 mJ⋅cm-2 to expose the photoresist, a development process for 1 min 450 
yielded the desired pattern.  Next, wet etching with copper etchant (HFCE100, Transense, 451 
Oxfordshire, UK) of Cu foils (DuPont, Wilmington, DE) laminated onto glass slides (Fisherbrand, 452 
Pittsburgh) coated with PDMS (Sylgard 184, Dow Corning, Midland, MI; mixed at a 20:1 ratio of 453 
base to curing agent by weight and partially cured on a hot plate at 110°C for 3 min; SI Appendix, 454 
Fig. S3A) removed the exposed regions of the Cu. Casting a ~500 µm thick layer of NOA 81 on the 455 
patterned Cu-PDMS substrate and exposing to UV light (30 W for 4 min) enabled transfer of the 456 
Cu electrodes to the surface of the NOA 81 (SI Appendix, Fig. S3A).  Assembly of NOA microfluidic 457 
trenches (SI Appendix, Fig. S1D) and electrodes (SI Appendix, Fig. S3B) exploited uncured NOA81 458 
to create sealed channels with precise alignment (SI Appendix, Fig. S3C).  A laser cutter 459 
(ProtoLaser R; LPKR, Germany) defined the perimeter of the assembly as the final step to complete 460 
the fabrication.  SI Note 4  461 

 462 

Lateral flow immunoassay platform preparation. The addition of 1 M NaOH to colloidal 30-nm 463 
gold nanoparticles (GNP; Sigma-Aldrich, St. Louis, MO) shifted the pH close to 7.0. Adding 0.5 464 
mg/mL anti-cortisol antibody (ACA; ab1951, Abcam Inc, Cambridge, UK) to a final concentration of 465 
~0.5 µg/mL and incubating (rotating at 30 rpm) the solution for 1, 3, 20 min enabled spontaneous 466 
conjugation of antibody onto the activated GNP.  Adding 10% (w/v) Bovine serum albumin (BSA; 467 
to final concentration of 0.1%; Sigma, St. Louis, MO), allowing stabilization at room temperature for 468 
1 h, centrifuging (9000 g for 30 min at 4 °C, followed by ~4 times repetition of washing-resuspending 469 
of precipitated pellet with a storage buffer; PBS buffer includes 1% BSA and 2% sucrose) and 470 
drying of the separated precipitation at room temperature for 4 h yielded anti-cortisol antibody 471 
conjugated gold nanoparticles (ACA-GNP; stored at 4°C).  472 

Cortisol-BSA and IgG antibody were immobilized on a nitrocellulose membrane (pore size: 473 
5, 8, 10, 12, 15 µm; Advanced Microdevices, Ambala Cantt, India) as the control and test lines, 474 
respectively (Claremont BioSolutions, LLC, CA).  A sample-conjugation pad (Advanced 475 
Microdevices, Ambala Cantt, India) was saturated with ACA-GNP for 1 h and then dried for 30 min 476 
at 37 °C.  The prepared nitrocellulose membrane and an absorbent pad (Filter paper No.1, 477 
Whatman, GE Healthcare Life Sciences, UK), as shown in SI Appendix, Fig. S9C, served as 478 
supports for the lateral flow immunoassay.  Standard protocols for ACA, Cortisol-BSA, IgG antibody 479 
and BSA set a 1-year shelf life from when the package is delivered.  480 
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 481 

Electronics design and assembly. Fabrication began with patterning of a two-layer printed circuit 482 

board by processing of multilayer foils of Cu-PI-Cu (18 µm/75 µm/18 µm) with a UV laser cutter 483 

(ProtoLaser U4; LPKF, Germany).  The main processor, RF430FRL152HCRGER (RF430, ISO/IEC 484 
15693, ISO/IEC 18000-3; Texas Instruments, Dallas, TX) served as the NFC platform, with the 485 
ability to rectify incident power from a smartphone device at up to 720 µW at 2.0 V, depending on 486 
coupling efficiency, and relaying data over the 13.56 MHz communications link.  The RF430 487 
supports 14-bit Sigma-Delta ADC with triple analog inputs at an input range up to 900 mV and 488 
maximum sampling frequency of 2 kHz, down-sampled to 1 Hz resolution.  Signal amplification and 489 
measurement of the main and reference channels used another chip, TSV634QFN16 490 
(STMircoelectronics, Geneva, Switzerland), as a four-channel operation amplifier with low energy 491 
consumption (60 μA at 5V) and large unity gain-bandwidth (800 kHz).  On power-up, the system 492 
sourced a 5 kHz, rail-to-rail square wave to the channels, causing an AC current to flow through 493 
the collected sweat.  The magnitude of this current is proportional to the concentration of ions in 494 
sweat, as an electrical impedance that causes the sourced 5 kHz waveform to attenuate during 495 
passage through the sweat.  This attenuation reduces the amplitude of the waveform whose 496 
rectified voltage is buffered and measured by the TSV634 and ADC, respectively.  This rectified 497 
voltage level is sampled, processed, and relayed to an NFC compatible reader by the RF430.  An 498 
NFC-compatible smartphone (LG Nexus 5X; LG, Seoul, South Korea) and custom-developed 499 
application for the Android operating system enabled visualization of the data. 500 

 501 

Field studies. Field studies with four healthy volunteers who exercise regularly involved operating 502 
stationary bike in gym environment (18-20°C temperature and 15-30% humidity) before, during and 503 
after intensive works.  The intensive works involve mostly the environment of mental stress (i.e. 504 
long studying or research time with irregular sleeping pattern) that is followed by ascorbic acid 505 
supplement of 1,000 mg/day for the next 14 days (75).  All subjects provided signed consent, and 506 
had medical consultations before and after field tests with a medical doctor.  This study was 507 
approved by the Institutional Review Board (IRB: STU00208494) at Northwestern University.  508 
Control tests using saliva from the subjects verified circadian rhythm changes observed in sweat 509 
cortisol levels.  Prior to mounting the devices, the skin was cleaned with 70% ethanol.  Subjects 510 
wore sportswear (shorts and t-shirt) for the tests.   511 
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Figures and captions 693 

 694 

Fig. 1 Schematic illustrations and optical images of a skeletal microfluidic device for immunoassays 695 
for cortisol, fluorescence assays for glucose and ascorbic acid (vitamin C) and electrical interfaces 696 
for sweat loss, sweat rate and galvanic skin response.  (A) Exploded schematic illustration of the 697 
structure of the device.  (B) Magnified view of the main serpentine skeletal channel for tracking 698 
sweat loss, sweat rate, and an immunoassay for cortisol.  (C) Cross-sectional view of the main 699 
channel, highlighting channel dimensions and integrated electrodes.  (D) Microfluidic structures for 700 
fluorescence assays of glucose and ascorbic acid and an optical image of the system (inset).  (E) 701 
Optical image of an assembled device (top), and undergoing mechanical twisting (middle) and 702 
bending (bottom).  (F) 3D modeling of the mechanics associated with similar configurations: flat 703 
(undeformed; top), twisted (middle) and bent (bottom) to show the corresponding distributions of 704 
strain. 705 
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 706 

Fig. 2 Immunoassay-based lateral flow design and measurements for sweat cortisol.  (A) Zeta 707 
potential values measured after conjugation of ACA (0, 0.02, 0.2, 2 and 20 mg/mL; 3 data points 708 
for each ACA concentration; N=15) on 30-nm AuNPs.  (B) Effects of ACA (0.5 mg/mL) conjugation 709 
time on absorbance.  (C) Comparison of absorbance at a wavelength of ~280 nm before and after 710 
ACA conjugation.  (D) Color development of ACA-AuNP at various concentrations of cortisol-BSA 711 
on the NC membrane.  (E) Optical image of the lateral flow immunoassay strip after assembly and 712 
laser cutting.  (F) Color development trends at various cortisol concentrations (5, 10, 30, 60 and 713 
100 ng/mL) as a function of time.  (G) Calibration of color index from the device at various 714 
concentrations of cortisol (20, 40, 60, 80 and 100 ng/mL) and comparisons to bench-top ELISA 715 
tests at concentrations of 2, 4, 8, 16 and 32 ng/mL. 716 

 717 
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 718 

Fig. 3 Fluorescence assay design and measurements for sweat glucose and ascorbic acid.  (A) 719 
Excitation and emission curves of OxiRed, the fluorescence probe.  (B) Optical image of the 720 
apparatus used for fluorescence readout.  (C) Image of ascorbic and glucose signals along with 721 
the reference (TMRE) signal.  (D) Effect of the silicone packaging on the fluorescent signal for 722 
various ratios at black and white pigments at 0:10, 1:9, 3:7 and 10:0 (0, 10, 30 and 100%, 723 
respectively), along with corresponding images (top).  (E) Plot of the normalized fluorescence 724 
intensity for various glucose concentrations at 0.1, 0.5, 1, 2 µM and their fluorescence intensities 725 
from associated images (top).  (F) Plotting of normalized fluorescence intensity for various ascorbic 726 
acid concentrations at 5, 10, 50, 100 µM concentrations and their fluorescence intensities from 727 
associated images (top). 728 
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 729 

Fig. 4 Design of NFC electronics for monitoring sweat loss, sweat rate, and GSR.  (A) Schematic 730 
block diagram of the NFC electronic system and its interface to a sweat microfluidic device and a 731 
smartphone.  (B) Optical image of the electronics to show chip placement.  (C) Schematic block 732 
diagram of the electronics to show the reference resistor layouts for the main, reference, and GSR 733 
readout.  (D) Magnified optical images of the electrode terminals for GSR (left) and tracking-734 
reference to the microfluidic device (right).  (E) Plot of electrolyte concentration for a series of 735 
samples of human sweat in the reference microchannel and corresponding ADC2 values 736 
determined by wireless readout.  (F) Effect of body temperature at the initial phase of exercise on 737 
∆GSR.  (G) Correlation between sweat rate and ∆GSR after skin temperature stabilizes and 738 
sweating begins (forearm, 18-20°C temperature, and 15-30% humidity). 739 
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 740 

Fig. 5 On-body measurements of sweat biomarkers during exercise.  (A-D) Cortisol lateral flow 741 
immunoassay results for subjects #1 and #4 at 0 and 14 days.  ‘Control’ (C, D) indicates 742 
measurements of sweat cortisol under normal conditions of that the subjects are not stressed.  (E, 743 
F) Results of ascorbic acid and glucose at 0 and 14 days for subjects #3 and #4.  (G, H) Sweat rate 744 
measurements for subjects #1 and #2 at 0 and 14 days.  (I, J) ∆GSR measurements during high 745 
intensity exercise and sweating for subjects #3 and #4.  (K) Plotting and regression of quantitative 746 
assays results from LFIA and ELISA. Dotted line is prediction line. 747 


