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Abstract. The electromagnetic wavefront diffracted by an object carries information about the shape of
the object from which the wave was emitted. Being able to record the phase and intensity of such a wave
thus allows to reconstruct the object from the information carried by the wave, even if the object is no longer
present. Among the reconstruction techniques, holography plays a big part. However the waves may experience
a great variety of distortions on their way from the object to the measurement apparatus. Thus being able
to shape the wavefront at will is key in holography. Micromirror light modulators are powerful tools for that
matter and are well known for holographic applications. This paper explores the fundamental principles for
digitally reconstructing a precise image of an object, but also for digitally correcting an imperfectly shaped
wavefront, by exploiting the diffraction properties of light on a reflective surface. The methods presented here
have been implemented as part of practical work for 2nd year students at the Ecole Polytechnique (last year
of undergraduate program).
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1 Introduction

Holography is a process used to record both phase and
amplitude of a light wave diffracted by an object. Having
this information enables to reconstitute the stereoscopic
relief of the object and to create a 3D image of it. This
process was discovered 1948 by the Hungarian physicist
Dennis Gabor [1], who was awarded the Nobel Prize in
physics in 1971 for his invention. In order to record infor-
mation about the phase of an electromagnetic wave, the
oscillations of which are way to fast for available inten-
sity detectors and which cannot be recorded directly, the
interference of two coherent beams is generally used, the
spatial amplitude modulation of which is directly related
to the phase difference between the two incident beams.
Generally, a coherent beam is divided into two arms, then
recombined on a recording device (holographic plate or
CCD sensor), to measure the interference of the reference
beam and the beam diffracted by the object. To obtain
this interference pattern, it is necessary that the optical
path difference between the two arms of the interferometer
is shorter than the coherence length of the source.

* e-mail: guilhem.gallot@polytechnique.edu

The rise of digital holography goes along with the
popularization of the use of CCD devices, which thus
become widely available for industrial applications. Unlike
analog holography, this method presents the advantages
of reusable equipment (no recording plates, no chemi-
cals), a less complex recording process (shorter exposure
time, hence a lower sensibility to disturbances and vibra-
tions) and a reading of the results independent from the
experimental setup [2].

Another application of holography consists in the mod-
ification at will of a light wave both in amplitude and
phase. In this paper we use an array of rotating micromir-
rors, called Digital Micromirror Device (DMD), which acts
as a blazed grating and allows a spatial modulation of light
by arbitrarily shaping the incident wavefront [3–5]. The
shaped light field can then be recorded either by direct
imaging of the DMD, or by Fourier plane imaging. DMDs
are becoming increasingly used in experimental physics,
such as in the field of cold atoms [6], topological physics
[7], or imaging in complex and scattering environments
[8].

These different methods have been implemented as part
of practical work for second year students at the Ecole
Polytechnique (last year of undergraduate program). In
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Fig. 1. Operating principle of the DMD. On the left, the two
ON and OFF modes of a micromirror. Each micromirror rotates
on its diagonal therefore the DMD is rotated at 45◦ in order to
keep the incident beam parallel to the table.

this context, digital holography allows students to become
familiar with the fundamental concepts of Fourier optics,
optical coherence and lasers.

2 Digital Micromirror Device (DMD)

The DMD is an array of square micromirrors (pitch a =
13.68µm), each of which can rotate around one of its
diagonal axes, with an angle α = ±12◦ with respect to
the plane of the DMD . These two configurations define
the ON and OFF modes, as shown in Figure 1. The choice
of the mode of each of the micromirrors allows a controlled
modification of the wavefront of the reflected beam. The
spatial selection of the light is done by collecting the light
in the direction of reflection of one of these modes. In
order to keep the incident beam parallel to the table, the
DMD is rotated 45◦ around its normal.

In a simple approach, the DMD in ON mode can
be modelled as the convolution of a square micromirror
R of size ps with a grid Gr(x, y) defining the position
of each mirror. Therefore, DMD(x, y) = (R ∗ Gr)(x, y)
with R(x, y) = 1,∀(x, y) ∈ [−ps/2, ps/2] and 0 elsewhere,
and Gr(x, y) =

∑
i,j δ(x− i a, y − j a), where δ is Dirac’s

function and a the period of the grating. The far-field dis-
tribution of the reflected light can thus be expressed as
the Fourier transform of this convolution product, i.e. the
product of a sinc function and the function F [Gr]. The
diffracted orders are therefore Dirac peaks whose positions
are defined as follows along the principal directions of the
grating:

sin θi + sin θm =
mλ

a
(1)

with a the grating period, θi the angle of incidence, θm
the angle of reflection with respect to the DMD normal
for the diffracted order m. In reality, the DMD matrix
is not an infinite grid. As a consequence, the diffraction
pattern is not an ideal grid of Dirac functions but a grid of
sinc. Experimentally, the DMD is rotated at 45◦ since the
axis of rotation of each micro-mirror is along its diagonal.
The incident beam is set at θi = −31.3◦ from the DMD
to meet the blazing condition which allows to return the
maximum intensity at a given order (in our case the order

is m = 6). The blazing angle is the angle of incidence for
which the angle of a given diffracted order corresponds to
the angle of specular reflection θr = 2α− θi.

Since the axis of incidence of the light being at 45◦

from the grating axis, this DMD can be compared to a
blazed grating, whose particularity is to send the maxi-
mum intensity in a non trivial order by correctly selecting
the angle of incidence.

Thereafter, we use a Texas Instruments DLP7000 DMD
to conduct our experiments. Depending on the desired
wavefront at the output of the DMD, we used different
imaging techniques which are discussed in the following
sections.

3 Direct imaging

In the first geometry, the DMD can be imaged directly on
a CCD sensor with an afocal system. Initially, the laser
beam is cleaned by a first filter consisting of a microscope
objective and a hole of about 10 microns, which generates
a spherical wave. This wave is then reflected on the DMD,
then passes through an afocal system where the image and
object focal points of the two lenses coincide. At this point,
a second spatial filter is applied, which acts as a low-pass
filter and smooths the image. Knowing that the field at
the focal point is the Fourier transform of the field at the
DMD level, the use of an aperture allows to attenuate the
high frequencies, the lowest frequencies being located in
the center of the image.

This kind of setup enables to image large figures, with
slowly varying or uniform intensity over large areas. When
it comes to very sharp patterns, it is preferable to use a
Fourier plane imaging setup.

4 Fourier plane imaging

Knowing that the object and the image plane of a lens are
related by a Fourier transform relationship, the imaging of
the DMD in reciprocal space can be done with the setup
shown in Figure 2, which will be used later on.

4.1 Demonstration of the modification of amplitude
and phase of an incident wave by the DMD

Used in the Fourier plane configuration, the DMD can
modify both the amplitude and the phase of an incident
wave. Indeed, considering a 1D grating of period G, slit
widthW and centreXc, the amplitude Ap of the diffracted
field in the order p is proportional to the Fourier transform
of one period of the grating by an ideal lens modelled by
the function Γ(x), which is equal to 1 between xc − w/2
and xc +w/2 and 0 elsewhere, where w = W/G and xc =
Xc/G are the normalized width and centre (i.e. w ∈ [0, 1[

and xc ∈ [−1/2, 1/2[ ). Hence Ap ∝
∫ ∞
−∞

Γy(x)e−i2πpxdx,

and then

Ap ∝ e−i 2πpxc
sin(πpw)

πp
. (2)
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Fig. 2. Setup of the Fourier plane imaging of the DMD device.
The CCD sensor is placed in the Fourier Plane of the lens, i.e.
on the focal plane of the lens, symmetrically with respect to the
DMD.

Fig. 3. On the left, small round grating displayed on the DMD
to modulate the amplitude of diffracted orders, by changing its
rotation, period and width. The round diameter is 32 pixels
(438µm). On the right, two round gratings displayed on the
DMD to modulate diffracted wave by changing their relative
phase.

We notice that the grating is fully characterized by a
width w and a phase φ = 2πxc. This effect was visual-
ized by displaying a small round grating on the DMD, as
shown on the left of Figure 3 and by changing its proper-
ties, such as rotation, period and width. The results are
given by Figure 4.

One can observe, in reciprocal space, several diffracted
orders resembling Airy disks. As expected, the width of
the slits affects the brightness of the orders (Fig. 4ab), the
maximum brightness being at w = 1

2 , which is consistent
with equation (2) at order 1. The tilt angle of the grating
rotates the figure by the same angle (Fig. 4c and d). At
last, increasing the spacing between the slits contracts
horizontally the figure (Fig. 4e and f), since the position
Xp of order p verifies Xp = 2πfp

ka , f being the focal length
of the lens and k the wave vector.

In order to observe the effect of the phase, two grat-
ings corresponding to the convolution of Young holes by
a diffraction grating, shown on the right of Figure 3, are
displayed on the DMD. The results are given by Figure 5.
On the top of the figure, one can observe the orders −1, 0
and +1 diffracted by the DMD for two different dephasing
between the two gratings (∆φ = π

2 to the left and ∆φ = π
to the right). The plots below represent the intensity pro-
file of the first order, perpendicularly to the fringes for the
corresponding dephasing. The dephasing between those

Fig. 4. Orders −1, 0 and +1 diffracted by the DMD for different
parameters of the displayed gratings. (a) and (b) The width of
the slits varies from W = 26.3 to 65.75µm. (c) and (d) The
angle of the grating varies from 0 to π/5. (e) and (f) The period
of the grating varies from G = 78.9 to 131.5µm.

two gratings strongly affects the position of interference
fringes since the phase difference verifies

∆φ =
2πp∆xc

a
, (3)

which is exactly what was shown experimentally. These
results are thus consistent with equations 2 and 3.

4.2 Correction of the DMD wave front

We saw in the previous section that the DMD is able
to modify both the amplitude and the phase of an inci-
dent wave (for example by taking the first order diffracted
mode of a displayed grating). We will demonstrate that,
using the Fourier plane imaging setup, we are able to
reconstruct various images in the plane of the CCD, by
displaying on the DMD the computed inverse Fourier
transform of a given image. In order to obtain an accurate
image, the diffracted wavefront must only carry the infor-
mation of what is displayed on the DMD chip. However,
DMD are not ideal micromirror arrays. Imperfections like
non-planarity of the DMD surface (which leads to phase
disturbances), as well as inhomogeneous reflection coef-
ficients of the micromirrors (which causes variations in
intensity), disturb the diffracted light field.

We first looked at the diffraction pattern on the DMD
without any correction by applying Figure 8a which rep-
resents a simple grating in a square smaller than the
DMD itself. In the Fourier plane, we can therefore expect
a bi-dimensional sinc distribution. What is observed in
reality, due to the imperfections of the DMD, is shown
in Figure 8b, and is not at all the expected distribution
rather than a blurry big spot. Thus, a quantification of
imperfections becomes mandatory.

In order to correct for the disturbances and obtain an
accurate recorded image, we measured the defects in terms
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Fig. 5. On the top, orders −1, 0 and +1 diffracted by the DMD with two gratings displayed. On the left, the dephasing is
∆φ = π/2, on the right ∆φ = π. The plots below correspond to the intensity profile of the first order, perpendicularly to the
fringes, for the two corresponding dephasings. Here G = 131.5µm.

Fig. 6. Calibration of the DMD wavefront. Each pattern is
composed of a round grating.

of intensity and phase over the entire surface of the DMD.
This was done by sampling the entire surface of the DMD
with a series of small circular gratings (geometry shown
in Figure 6 [3]). A single displayed grating theoretically
gives rise to an Airy disk on the CCD, the intensity and
position of which provides information about the local
reflection coefficient and surface deformation of the DMD.
All grating patterns together cover the whole surface and

also warrant overlapping redundancy. We recorded the
diffraction pattern resulting from the display of each grat-
ing. By scanning the position of the grating on the DMD
surface, the intensity and the position of Airy discs on
the CCD are slightly altered, which reveals the variations
in intensity and phase restitution on the surface of the
DMD. Thus, by numerically recording the position of the
first order and its intensity, information on local phase and
intensity imperfections on the surface of the DMD can be
deduced. The intensity profile of the wave is simply given
by the measured amplitude of the Airy disks.

The phase we want to determine is the phase of the
wave diffracted by the DMD, which corresponds to the
incident phase on the DMD distorted by the aberrations
introduced by the reflection on the DMD. This phase is
measured experimentally from the local phase gradient.
For each pattern applied on the DMD, we measure the
distance between a reference position and the real posi-
tion of the Airy disk produced by this pattern. Therefore,
(δφ/δx, δφ/δy) = kf(∆x,∆y). This principle is similar to
the one used in Shack-Hartmann wavefront sensor [9]. The
wavefront profile is therefore reconstructed by integrating
the local gradient. A reference phase is chosen to be zero
on a round pattern and then integrated step by step from
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Fig. 7. Top: intensity maps, before and after correction, scaled
by the DMD normalized intensity. Bottom: phase maps before
and correction, scaled by the path difference divided by the laser
wavelength. The width of the images is 800 pixels (10.9 mm).

it using the following Taylor expansion

φ(x+ Λ, y + Λ) = φ(x, y) +
kΛ

f
(∆x+ ∆y) (4)

where Λ is the step between adjacent patterns. A lin-
ear interpolation is then used to adjust the phase profile
on each pixel of the DMD. We can thus reconstitute the
intensity and phase distortions on the mirror surface and
establish calibrated intensity and phase maps of the DMD.

The intensity and phase maps (Figs. 7a and 7c) show
huge distortions. The non-planarity of the DMD is high-
lighted by the phase maps where the DMD is shown to
induce a path difference of 8λ from the center to the edge
of its surface, making it usable only near the center.

The previous method allowed us to establish phase and
intensity maps of the DMD. They were fed back to the
hologram displayed on the DMD in order to correct for
the distortion (Fig. 8c). Then a new intensity and phase
characterization was performed (Fig. 7b and 7d). The
established correction reduces the induced path difference
to λ/3, which represents an improvement by a factor of
20. Intensity variations are reduced as well.

The output of this corrected grating provides a proper
sinc distribution (see Fig. 8d). We then iterated the cali-
bration process using this new grating. After 2 iterations,
the process is precise enough to render correct images. The
smoothed calibration maps have been taken into account
to compute the inverse Fourier transform, considering the
corrected wavefront information, as shown in Figures 8c
and 8e.

Wavefront correction for a simple grating was success-
fully used to reconstitute its Fourier transform. After
respectively 1 and 2 iterations of the process described
above, we obtained the results presented in Figure 8d and

Fig. 8. Illustration of wavefront correction. Holograms projected
on the DMD and corresponding patterns obtained on the Fourier
plane: (a) and (b) without correction, (c) and (d) corrected after
1 iteration, (e) and (f) after 2 iterations.

8f. The profile is already satisfactory at the first itera-
tion (Fig. 8d) but is better at the second one (Fig. 8f).
An interpolation with the square of a sinc function
has been performed. We then calculated the root mean
square (RMS) between the results obtained and the ini-
tial sinc function. We found a deviation of about 2.3%
for one iteration, and 1.1% after the second iteration. The
improvement of the profile obtained after calibration of
the DMD is therefore very satisfactory, even after only
one iteration.

4.3 Application to complex images

After the above calibration of the DMD, more complex
images can be displayed on the DMD, in order to record
their Fourier transform on the CCD camera. We first con-
sidered Laguerre-Gaussian and Hermite-Gaussian modes
(see Eq. (5)), which have the property of being their
own Fourier transform [10]. The expression of these func-
tions, determined by two positive integers (m,n) are the
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Fig. 9. Experimental restitution of HG and LG modes. They
respectively correspond to the modes HG2,2, HG3,3, HG5,8

(top) and LG1,1, LG2,2, LG4,4 (bottom), from left to right.

Fig. 10. Cut of the intensity profile of the mode LG2,2 in black
obtained experimentally and in red as predicted by the theory.
The calculated RMS error is 0.46%.

following:

HGm,n(x, y) ∝ Hm

(√
2
x

σ

)
Hn

(√
2y

σ

)
exp

(
−x

2 + y2

σ2

)
LGnm(r, θ) ∝ r|n|Lnm

(
2r2

σ2

)
exp

(
− r

2

σ2

)
eiθn, (5)

where Hm and Lnm are respectively the Hermite and
Laguerre polynomials. We used the same setup and dis-
played examples of corrected modes. The results are
presented in Figure 9, after 1 iteration only, for the modes
HG2,2, HG3,3, HG5,8 (top) and LG1,1, LG2,2, LG4,4

(bottom). Only order 1, which is corrected, is depicted
here. The results are already very close to the expec-
tations. Figure 10) presents the profile of mode HG2,2

superimposed on that of the theory, and we computed
the root mean square of the normalized difference theory-
experience. The RMS error is about 0.46%, which is very
satisfactory.

A Fourier plane reconstitution of more complex images
is also possible. As an example, we have reconstructed
the image of a wind rose. The initial image is presented in
Figure 11a (left), as well as its corrected Fourier transform
(right). Eventually, our correction applied to the images

Fig. 11. Application of the wave front correction to the wind
rose image.

of the wind rose after 1 iteration leads to the results pre-
sented in Figure 11b. Here, orders 0, 1 and 2 are shown,
but only order 1 is corrected and represents the wind
rose image. One can notice the precision of the correc-
tion applied, since even the letters indicating the cardinal
points, although small details, are visible.

We can estimate the spatial resolution of this wind rose
image. By estimating several transition widths, we find
3.2 ± 0.5 and 2.8 ± 0.4 px for the small and large wind
roses respectively.

5 Discussion

Even though these results are very satisfying, we also
experienced some drawbacks and limitations with Fourier
plane imaging. First, sharpness is limited by the size of the
DMD, since the highest frequencies in the Fourier plane
correspond to points that are further from the centre.
More precisely, two aspects of the DMD must be taken
into account: the spatial resolution of the image that can
be obtained is inversely proportional to the total dimen-
sion of the DMD, while the total size of the image is
inversely proportional to the individual size of a micromir-
ror. Moreover, the correction scheme strongly depends on
the experimental setup layout itself (including lens, CCD
or DMD position) which prevents the reuse of previously
established corrections and requires new calibration every
time the setup is moved. Another disadvantage inherent to
this method is the fact that some objects are likely to have
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a Fourier transform whose main information is located
near the center of the plane (images with little details),
and therefore low brightness (see Fig. 11a for the exam-
ple of the compass rose). To solve this problem, it might
be possible to introduce an additional random phase to
the initial image. Instead of calculating the Fourier trans-
form of an image with a phase of zero (before correction),
one could calculate the Fourier transform of the image
with the same amplitude, but with an additional random
phase. The Fourier transform would often be more homo-
geneous, for an unchanged amplitude of the image. Indeed,
in our gratings, the intensity is coded by the width of the
holes/slots, and the phase by the interval with respect to
its column or row, so that if the holes are less spaced, they
are likely to be superimposed.

6 Dead end

Throughout these experiments, we had some difficulties
with the quality of some optical components, especially
the lenses: astigmatism was sometimes a problem when
placing the CCD (the focusing was not done at the same
distance on the horizontal and vertical plane, which is a
problem to adjust the parallelism of our images when it
is too important). Moreover, the indicated focal length is
often wrong (sometimes up to 1/4 of the focal length while
the number of significant digits suggested a much smaller
error). Aware of this problem, we have always measured
the focal length of our lenses before using them.

Finally, with the wind rose experiment, our attempt
to reconstruct larger wind roses was a failure, because the
larger wind roses led us to very dark inverse Fourier trans-
forms, which it was not possible to display on the DMD.
This can be attributed to the fact that an extended object
will have an inverse Fourier transform with lower frequen-
cies since F−1[f ◦ (αId)](p) = F−1[f ]( pα ), so the display
on the DMD is closer to the center as the homothetic
factor is important, which was probably the reason why
our DMD was poorly exploited. We therefore used smaller
reference images to obtain more satisfactory results.

7 Conclusion

To summarize, our work consisted in finding the good
methods and procedures to make satisfactory digital holo-
grams in the shaping of an incident wavefront with
micro-mirror devices. We succeeded in improving the spa-
tial resolution of the recorded images by using Fourier
plane imaging instead of direct imaging. Fourier plane
imaging produces much sharper images, but requires a
complex digital correction of the wavefront : a correction
of the imperfections inherent to the surface of the device in
terms of intensity and phase is necessary. The objective of
the practical work (60 hours) is therefore to allow students
to implement certain familiar methods and to pursue the
analysis with new ideas in the domain of physical optics.
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