One-Pot Synthesis of Pyrrolo[1,2-f]phenanthridines From 1-Arylpyrroles via Successive Palladium-Catalyzed Direct Arylations

Jian Zhang, Xinzhe Shi, Henri Doucet

- To cite this version:

Jian Zhang, Xinzhe Shi, Henri Doucet. One-Pot Synthesis of Pyrrolo[1,2-f]phenanthridines From 1-Arylpyrroles via Successive Palladium-Catalyzed Direct Arylations. European Journal of Organic Chemistry, 2021, 2021 (35), pp.4974-4983. 10.1002/ejoc.202100766 . hal-03414079

HAL Id: hal-03414079
https://hal.science/hal-03414079
Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

One pot synthesis of pyrrolo[1,2-f]phenanthridines from 1arylpyrroles via successive palladium-catalyzed direct arylations

Jian Zhang, ${ }^{[a]}$ Xinzhe Shi, ${ }^{[a]}$ and Henri Doucet*[a]

[a] Mr J. Zhang, Dr. X. Shi, Dr. H. Doucet
Univ Rennes, CNRS, ISCR-UMR 6226
F-35000 Rennes
France
E-mail: henri.doucet@univ-rennes1.fr
Supporting information for this article is given via a link at the end of the document.

Abstract

The Pd-catalyzed annulative π-extension reaction of 1arylpyrroles using 1,2-dihalobenzenes as the coupling partners was investigated. The higher reactivity of pyrrole $\mathrm{C} 2-\mathrm{H}$ bond compared to $\mathrm{C}-\mathrm{H}$ bonds of the aryl unit of 1-arylpyrroles allows the selective synthesis of pyrrolo[1,2-f]phenanthridines via successive palladiumcatalyzed direct intermolecular followed by intramolecular direct arylation steps. From 1-bromo-2-iodobenzenes bearing substituents at C4- or C5-positions and ortho-, meta- or para-substituted 1arylpyrroles, the access to pyrrolo[1,2-f]phenanthridines containing substituents at $\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 10$ and/or C 11 positions is possible

Introduction

Pyrrolo[1,2-a]quinoline derivatives including pyrrolo[1,2f]phenanthridine units (Fig. 1), have a wide range of applications in organic functional materials or pharmaceuticals. ${ }^{[1]}$ Therefore, the discovery of simple, but general routes to pyrrolo[1,2f]phenanthridine allowing to introduce useful functional groups at the desired positions has potential for both organic material and pharmaceutical chemistry.

Pyrrolo[1,2-a] $]$ quinoline

Pyrrolo[1,2-f]phenanthridine

Figure 1. Structures of pyrrolo[1,2-a]quinoline and pyrrolo[1,2-f]phenanthridine.

Over the past two decades, the Pd-catalyzed arylation of a wide variety of 5-membered heteroarenes via a C-H bond activation step led to a revolution in the preparation of bi(hetero)aryls. ${ }^{[2]}$ In addition, this methodology represents a convenient method to build π-extended (hetero)polyaromatic structures by combining palladium-catalyzed intermolecular $\mathrm{C}-\mathrm{H}$ arylation with an intramolecular C-H arylation. Such one pot successive couplings are very attractive, compared to the more classical methods to prepare π-extended (hetero)polyaromatic, as they do not require the preliminary synthesis of organometallic derivatives. ${ }^{[3,4]}$
Several examples of Pd-catalyzed arylations at the C2/C5positions of pyrroles via a $\mathrm{C}-\mathrm{H}$ bond functionalization have been described. ${ }^{[5]}$ However, to the best of our knowledge, only a few examples of preparation of pyrrolo[1,2-f]phenanthridines from
pyrroles via $\mathrm{C}-\mathrm{H}$ bond functionalization steps have been reported. ${ }^{[6,7]}$ In 2007, Liu and Larock prepared pyrrolo[1,2f]phenanthridine in 63\% yield from 1-(2-iodophenyl)pyrrole and 2-(trimethylsilyl)phenyltrifluoromethanesulfonate using a Pdcatalyst (Scheme 1, a). ${ }^{[6 a]}$ In 2013, the use of 2-phenylpyrrole and 1,2-dibromobenzene as the reaction partners with $10 \mathrm{~mol} \%$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} /$ Xantphos catalyst allowed to prepare pyrrolo[1,2$f]$ phenanthridine in 78\% yield (Scheme 1, b). ${ }^{[6 b]}$ Two years later, our group described the use of 2-bromobenzenesulfonyl chloride as the aryl source for the two steps Pd-catalyzed preparation of pyrrolo[1,2-f]phenanthridine (Scheme 1, c). ${ }^{[6 c]}$ It should be mentioned that with this three methods, no examples of preparation of substituted pyrrolo[1,2-f]phenanthridines were reported.

Scheme 1. Metal-catalyzed direct arylation for the synthesis of pyrrolo[1,2f fphenanthridines.

As the discovery of an effective method, for the synthesis of pyrrolo[1,2-f]phenanthridine containing useful functional groups at the desired positions, especially using easily available substrates, catalyst and base is highly desirable, the annulative π-extension of diversely functionalized 1-arylpyrroles by 1,2dihalobenzenes in the presence of palladium catalysts needed to be investigated. Here, we report (i) conditions for the one pot synthesis of pyrrolo[1,2-f]phenanthridine from 1-arylpyrroles and 1,2-dihalobenzenes via successive palladium-catalyzed direct arylations; (ii) on the regioselectivity of the intramolecular $\mathrm{C}-\mathrm{H}$ arylation with meta-substituted 1-arylpyrroles and (iii) on the functional group tolerance on both coupling partners.

Results and Discussion

1-Phenylpyrrole (1.5 equiv.) and 1,2-dibromobenzene (1 equiv.) were employed as model substrates for our study (Table 1). We initially examined the influence of the nature of the base on the products distribution using 2 mol $\% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and DMA as the solvent. We had previously observed that this catalyst precursor associated with this solvent was very effective to promote the coupling of several heteroarenes with aryl bromides. ${ }^{[8]} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ were completely ineffective bases, and NaOAc or CsOAc gave the desired product $1 \mathbf{a}$ in trace amount (Table 1, entries 1-4). By contrast, the use of KOAc afforded 1a in higher yields of 61-63\%. This difference might arise from the dual role of the base for such reactions which certainly proceed via a concerted metalation deprotonation pathway, as the base is also a ligand which promotes the $\mathrm{C}-\mathrm{H}$ bond cleavage. ${ }^{[9]}$ With KOAc base, a complete conversion of 1,2-dibromobenzene was observed, but the product $\mathbf{1 b}$ was also obtained in low yield when the reaction was stopped after 6 h (Table 1, entry 5). The use of longer reaction times (16 or 48 h) gave 1a with very high or complete conversion (Table 1, entries 6 and 7). PivOK was found to be a less effective base for this reaction, as 1a was obtained in only 22% yield (Table 1, entry 8). A palladium catalyst bearing a diphosphine ligand gave 1a in similar yield (Table 1, entry 9). ${ }^{[10]}$ The use of DMF or NMP as solvents did not allowed to improve the yield in 1a; whereas xylene only gave product $\mathbf{1 b}$ in trace amount (Table 1, entries 10-12). A reaction performed with only 1 equiv. of KOAc led to a 1a:1b ratio of $62: 38$ with a large amount of unreacted 1,2dibromobenzene revealing that the intramolecular arylation step is quite fast compared to the intermolecular arylation (Table 1, entry 13). The use of $120^{\circ} \mathrm{C}$ instead of $150{ }^{\circ} \mathrm{C}$ as the reaction temperature gave 1a in a lower yield due to a partial conversion of the 1,2-dibromobenzene (Table 1, entry 14). When we employed 1-bromo-2-iodobenzene instead of 1,2dibromobenzene afforded $\mathbf{1 a}$ and $\mathbf{1 b}$ with a similar ratio and reaction yield (Table 1, entry 15); whereas, no formation of 2-(2-iodophenyl)-1-phenylpyrrole intermediate was detected by GC/MS analysis of the crude mixture.

Table 1. Influence of the reaction conditions on the Pd-catalyzed reaction of 1phenylpyrrole with 1,2-dibromobenzene. ${ }^{\text {a] }}$

Entry	Catalyst	Solvent	Base	$\begin{aligned} & \text { Ratio } \\ & \text { 1a:1b } \end{aligned}$	Yield in 1a (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	nd	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	$\mathrm{K}_{2} \mathrm{CO}_{3}$	nd	0
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	NaOAc	54:46	<12
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	CsOAc	66:34	<3
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc	92:8	$57^{[b]}$
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc	96:4	61
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc	100:0	$63{ }^{[\text {c] }}$
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOPiv	63:37	22
9	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$	DMA	KOAc	91:9	58
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMF	KOAc	69:31	52
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	NMP	KOAc	84:16	60
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	xylene	KOAc	0:100	0
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc ${ }^{[d]}$	62:38	nd
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc	80:20	$41^{[e]}$
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DMA	KOAc	95:5	60[f]

[a] [Pd] (0.02 equiv.), 1-phenylpyrrole (1.5 equiv.), 1,2-dibromobenzene (1 equiv.), base (3 equiv.), $16 \mathrm{~h}, 150{ }^{\circ} \mathrm{C}$, isolated yields. [b] 6 h, [c] 48 h . [d] KOAc (1 equiv.). [e] Reaction performed at $120^{\circ} \mathrm{C}$. [f] Reaction performed with 1-bromo-2-iodobenzene instead of 1,2-dibromobenzene.

Then, 1,2-dibromobenzene was coupled with a set of 1arylpyrroles in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOAc}$ as the base in DMA (Scheme 2). A fluoro-para-substituent on the 1arylpyrrole was well tolerated giving rise to the C7-fluorosubstituted pyrrolo[1,2-f]phenanthridine 2 in 64\% yield. Good yields in the expected pyrrolo[1,2-f]phenanthridines 3 and 4 were also obtained with trifluoromethyl and nitrile parasubstituted 1-arylpyrroles. Conversely, the use of the electrondonating NMe_{2} para-substituent on 1-arylpyrrole gave no trace of the desired pyrrolo[1,2-f]phenanthridine. Then, the regioselectivity of the reaction of 1-arylpyrroles containing esteror fluoro-substituents at meta-position was investigated. In both cases, the annulation reaction occurred regioselectively at the less hindered position of the meta-substituted aryl ring providing the C6-substituted pyrrolo[1,2-f]phenanthridines 5 and 6 in 58\% and 42% yield, respectively. With 1-(3,5bis(trifluoromethyl)phenyl)pyrrole, the desired 6,8-
bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine 7 was obtained in 52% yield. Finally, an ortho-substituted 1-arylpyrrole were employed. 1-(2-Fluorophenyl)pyrrole and 1,2-dibromobenzene gave 5 -fluoropyrrolo[1,2-ffphenanthridine 8 in 61% yield.

Scheme 2. Scope of the pyrrole N-aryl substituent.

The one pot synthesis of C10-substituted pyrrolo[1,2f fphenanthridines from 4-substituted 2-bromo-1-iodobenzenes was then examined (Scheme 3). The use of 4 -substituted 2 -bromo-1-iodobenzene reagents allows to selectively introduce a substituent at the C10-position of the pyrrolo[1,2f]phenanthridines, as the oxidative addition of 2 -bromo-1iodobenzenes to palladium is generally faster for the C-I bond than for the $\mathrm{C}-\mathrm{Br}$ bond. The first step involves intermolecular $\mathrm{C}-1 /$ pyrrole-C2-H bond coupling (Fig. 2). Oxidative addition of the 2-bromo-1-iodobenzenes gives intermediate \mathbf{A}. Then, after a concerted metallation deprotonation, the complex \mathbf{C} is obtained. Reductive elimination affords the 2-(2-bromoaryl)-1arylpyrrole \mathbf{b}. This first catalytic cycle is followed by a second one which involves an intramolecular $\mathrm{C}-\mathrm{Br} / \mathrm{C}-\mathrm{H}$ bond coupling of the pyrrolyl aryl ring to give the pyrrolo[1,2-f]phenanthridines a.

Via Concerted Metallation Deprotonation (CMD)

Figure 2. Plausible mechanism.

2-Bromo-1-iodobenzenes bearing methyl, fluoro, chloro, trifluoromethyl or nitrile C4-substituents using 1-phenylpyrrole as the reaction partner gave the corresponding C10-substituted pyrrolo[1,2-ffphenanthridines $9-13$ in 42-67\% yields (Scheme 3). For the reaction with 2-bromo-4-chloro-1-iodobenzene, the $\mathrm{C}-\mathrm{Cl}$ bond remained untouched potentially allowing for further functionalizations. These 4 -substituted 2-bromo-1iodobenzenes were also reacted with 1 -arylpyrroles bearing fluoro, trifluoromethyl or nitrile groups at para-position in order to prepare pyrrolo[1,2-f]phenanthridines with functional groups at both C7 and C10 positions. In all cases, the desired compounds $14-25$ were obtained in moderate to good yields. For example, 10-chloropyrrolo[1,2-f]phenanthridine-7-carbonitrile 24 which contain the synthetically useful chloro and nitrile substituents was obtained in 68% yield. Then, the regioselectivity of the intramolecular arylation reaction with meta-substituted 1arylpyrroles was examined. Again, from both ester- and fluoro-meta-substituted 1-arylpyrroles, the annulation reaction occurred regioselectively at the less hindered position of the aryl ring, providing the C6,C10-disubstituted pyrrolo[1,2-f]phenanthridines 26-29 in moderate yields. From 1-(2-fluorophenyl)pyrrole and a variety of 4 -substituted 2-bromo-1-iodobenzenes, the preparation to the pyrrolo[1,2-f]phenanthridines 30-33 containing substituents at C5 and C10 was also successful.

1.5 equiv.

R^{1}	R^{2}		Yield (\%)
H	Me	9	42
H	F	10	51
H	Cl	11	58
H	CF_{3}	12	67
H	CN	13	53
F	Me	14	41
F	F	15	51
F	Cl	16	¢ 6
F	OCF_{3}	17	64
CE_{3}	Me	18	3ิ8
CF_{3}	F	19	51
CE_{3}	Cl	20	(6)
CF_{3}	CN	21	6ิ
CN	Me	22	32
CN	F	23	(6)
CN	Cl	24	68
CN	OCF_{3}	25	53

R^{1}	R^{2}		Yield (\%)
$\mathrm{CO}_{2} \mathrm{E}^{\text {E }}$	Me	26	55^{3}
$\mathrm{CO}_{\underline{2}} \mathrm{E}^{\text {E }}$	F	27	44
F	Me	22	37
F	F	29	40

R^{2}		Yield (\%)
Me	$\mathbf{3 0}$	388
F	$\mathbf{3 1}$	46
Cl	$\mathbf{3 2}$	54
CE_{3}	$\mathbf{3 3}$	44

Scheme 3. Scope of the reaction with 4-substituted 2-bromo-1-iodobenzenes.

Then, in order to prepare pyrrolo[1,2-f]phenanthridines with a substituent at C11-position, the reactivity of 5 -substituted 2 -bromo-1-iodobenzenes was studied (Scheme 4). Similar yields compared with the 4 -substituted 2 -bromo-1-iodobenzenes were obtained, and using 1-phenylpyrrole, the pyrrolo[1,2f]phenanthridines 34 and 35 containing chloro or trifluoromethyl C11-substituents were obtained in 50% and 58% yield, respectively. From these 5 -substituted 2 -bromo-1-iodobenzenes, we also prepared pyrrolo[1,2-ffphenanthridines containing substituents at C7,C11-positions (products 36 and 37), C6,C11positions (products 38 and 39), and C5,C11-positions (product 40) demonstrating the potential of this methodology to introduce the desired substituents at the appropriate position.

Scheme 4. Scope of the reaction with 5-substituted 2-bromo-1-iodobenzenes.

The reaction is not limited to the use of unsubstituted 1arylpyrroles. The reaction of 1-phenylpyrrole bearing a benzonitrile substituent at C2-position with 1,2-dibromobenzene and substituted 2-bromo-1-iodobenzenes was also studied (Scheme 5). As expected, a regioselective arylation at C5position of the pyrrole ring was observed affording after the intramolecular arylation, the corresponding pyrrolo[1,2f jphenanthridines 41-43 bearing a benzonitrile at the C 3 -position. In addition, compounds 42 and 43 contain OCF_{3} or CF_{3} substituents at C 10 or C11-positions.

Scheme 5. Scope of the pyrrole N-aryl substituent.

We performed two competition reactions to probe the substitution preference on the aryl ring of 1-arylpyrroles for this synthetic pathway (Scheme 6). From an equimolar mixture of 1phenylpyrrole and 1-(4-(trifluoromethyl)phenyl)pyrrole using 1,2dibromobenzene as the aryl source, in the presence of $2 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ associated to KOAc as base, the formation of the pyrrolo[1,2-f]phenanthridines $1 \mathbf{1 a}$ and 3 in 45:55 ratio was obtained. A similar trend was observed using 1-phenylpyrrole and 4 -(pyrrol-1-yl)benzonitrile, with the formation of 1a and 4 in

42:58 ratio. These results indicate that the presence of an electron-withdrawing substituent on the aryl ring of 1-arylpyrrole has a positive effect, even if this effect is not very significant.

Scheme 6. Competition reactions to probe the substitution preference.

Finally, a competition reaction using an equimolar mixture of 4-methyl- and 4-trifluoromethyl-substituted 1-iodo-2bromobenzenes using 1-phenylpyrrole (1.5 equiv.) in the presence of 2 mol\% $\mathrm{Pd}(\mathrm{OAc})_{2}$ associated to KOAc gave the products 9 and 12 in 10:90 ratio (Scheme 7). This result is consistent with a faster oxidative addition of 2 -bromo-1-iodo-4(trifluoromethyl)benzene than 2-bromo-1-iodo-4-methylbenzene to palladium.

Scheme 7. Competition reactions to probe the substitution preference

Conclusion

In summary, we demonstrated that using a Pd-catalyzed intermolecular associated to intramolecular double C-H bond arylation of 1 -arylpyrroles, a wide variety of the π-extended pyrrolo[1,2-f]phenanthridines can be obtained with high regioselectivities and good yields. This procedure tolerates a variety of useful substituents on the 1-arylpyrrole and aryl dihalide. Therefore, with this inedited synthetic scheme, the introduction of desired functional groups at positions $5,6,7,8$, 10 and 11 of pyrrolo[1,2-ffphenanthridines is possible. Our procedure employs commercially available compounds and only $2 \mathrm{~mol} \%$ of easily available $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst precursor and KOAc as inexpensive base. Such simple reaction conditions should be very attractive for synthetic chemists, giving a robust access to pyrrolo[1,2-f]phenanthridines.

Experimental Section

General procedure for palladium-catalyzed synthesis of pyrrolo[1,2f]phenanthridines:

The reaction of the aryl dihalide (1 mmol), 1-arylpyrrole (1.5 mmol) and KOAc ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ during 16 h in DMA (4 mL) under argon affords the coupling products 1a and 2-43 after evaporation of the solvent and purification on silica gel. Eluent heptane for compounds 1a, 1b, 2, 7, 911, 28, 29, 34. Eluent heptane:ethyl acetate $95: 5$ for compounds 3, 12, 18-20, 39. Eluent heptane:ethyl acetate $9: 1$ for compounds 4, 5, 13, 17, 21-24, 25, 26, 27, 38, 41-43. Eluent heptane:ethyl acetate 99:1 for compound 6. Eluent heptane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 95: 5$ for compounds 8, 14-16, 3033, 35-37, 40. HRMS (ESI) were performed using a Bruker Maxis 4G apparatus.

Pyrrolo[1,2-f]phenanthridine (1a) ${ }^{[6 \mathrm{a}]}$ From 1-phenylpyrrole (0.214 g , 1.5 mmol) and 1,2-dibromobenzene ($0.236 \mathrm{~g}, 1 \mathrm{mmol}$), product 1a was obtained in 61% yield $(0.132 \mathrm{~g})$ as a white solid: $\mathrm{mp} 152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36$ (dd, $\mathrm{J}=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $\mathrm{J}=$ $8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=3.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $133.2,129.3,128.5,128.1,126.3,126.0,124.8,124.0,123.9,122.8$, $122.5,121.7,115.0,113.1,112.2,102.0$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}$ 218.0964, found: 218.0966. Intermediate $\mathbf{1 b}$ was also isolated in an impure form: ${ }^{[11]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.53(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=2.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.45-6.40 (m, 2H).

7-Fluoropyrrolo[1,2-f]phenanthridine (2) From 1-(4fluorophenyl)pyrrole ($1 \mathrm{~g}, 6.2 \mathrm{mmol}$) and 1,2-dibromobenzene (0.975 g , $4.1 \mathrm{mmol})$ and $\operatorname{KOAc}(1.214 \mathrm{~g}, 12.4 \mathrm{mmol})$ in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$ $(9.9 \mathrm{mg}, 0.083 \mathrm{mmol})$ product 2 was obtained in 64% yield $(0.620 \mathrm{~g})$ as a yellow solid: mp 118-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.10(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (dd, $J=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4(\mathrm{~d}, \mathrm{~J}=$ $242.0 \mathrm{~Hz}), 129.7(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 129.0,128.7,126.6,126.0,124.0(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}), 123.4(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 122.8,122.7,116.4(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}), 115.8$ (d, J = 23.9 Hz), 113.1, 112.2, $109.8(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 102.2$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}$ 236.0870, found: 236.0870.

7-(Trifluoromethyl)pyrrolo[1,2-f]phenanthridine (3) From 1-(4(trifluoromethyl)phenyl)pyrrole (0.317 g, 1.5 mmol) and 1,2dibromobenzene ($0.236 \mathrm{~g}, 1 \mathrm{mmol}$), product 3 was obtained in 72% yield $(0.205 \mathrm{~g})$ as a yellow solid: mp $138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=8.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=$ 3.8, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $135.2,129.5,129.0,126.5,126.3,125.8(q, J=32.5 \mathrm{~Hz}), 125.0(q, J=$ $3.5 \mathrm{~Hz}), 124.2(q, J=271.8 \mathrm{~Hz}), 123.8,122.9,122.6,121.8,121.4(q, J=$ $4.0 \mathrm{~Hz}), 115.5,113.6,113.1,102.9$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}$ 286.0838, found: 286.0841.

Pyrrolo[1,2-f]phenanthridine-7-carbonitrile (4) From 4-(pyrrol-1yl)benzonitrile ($0.252,1.5 \mathrm{mmol}$) and 1,2-dibromobenzene ($0.236 \mathrm{~g}, 1$ $\mathrm{mmol})$, product 4 was obtained in 70% yield $(0.169 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=$ $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.7,131.2,129.5,129.4,128.7,126.6,126.5$, 123.1, 123.0, 122.5, 122.4, 118.9, 115.8, 113.8 (m), 107.3, 103.4. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{2}$ 243.0917, found: 243.0922.

Ethyl pyrrolo[1,2-f]phenanthridine-6-carboxylate (5) ${ }^{[7]}$ From ethyl 3-(pyrrol-1-yl)benzoate ($0.322 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 1,2-dibromobenzene ($0.236 \mathrm{~g}, 1 \mathrm{mmol}$), product 5 was obtained in 58% yield $(0.168 \mathrm{~g})$ as a white solid: mp 132-134 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~s}, 1 \mathrm{H})$, $8.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.86$ (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96 (dd, J = 3.8, 1.0 Hz, 1H), 6.76 (t, J = $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (q, J = 7.6 Hz , $2 \mathrm{H}), 1.50(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,132.9$ 129.9, 129.1, 127.1, 126.0, 125.5, 124.3, 123.9, 123.8, 123.1, 122.8, $116.3,113.7,112.5,102.5,61.4,14.4$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2} 290.1175$, found: 290.1173 .

6-Fluoropyrrolo[1,2-f]phenanthridine (6) From 1-(3fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 1,2-dibromobenzene (0.236 $\mathrm{g}, 1 \mathrm{mmol})$, product 6 was obtained in 42% yield $(0.099 \mathrm{~g})$ as a yellow solid: mp 136-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.74$ (ddd, J = 8.3, $3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07 (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=3.0,1.4 \mathrm{~Hz}$, 1 H), 7.69 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56-7.40 (m, 3H), 7.13 (dd, J = 13.0, 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=4.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9$ (d, $\mathrm{J}=252.1 \mathrm{~Hz}$), 135.1 (d, $\mathrm{J}=7.1 \mathrm{~Hz}$), 129.5, $128.5(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 127.6(\mathrm{~d}, \mathrm{~J}=26.1 \mathrm{~Hz})$, $126.5,126.4(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 122.7(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 122.5,113.5,112.8$, $111.5,111.4(\mathrm{~d}, \mathrm{~J}=25.4 \mathrm{~Hz}), 110.8(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 102.2$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}$ 236.0870, found: 236.0870.

6,8-Bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (7) From 1-(3,5bis(trifluoromethyl)phenyl)pyrrole (0.418 g, 1.5 mmol$)$ and 1,2dibromobenzene ($0.236 \mathrm{~g}, 1 \mathrm{mmol}$), product 7 was obtained in 52% yield $(0.183 \mathrm{~g})$ as a white solid: $\mathrm{mp} 160-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ $8.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}$, $1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99 (dd, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.0,135.2,131.8,130.2,130.1-128.0(\mathrm{~m}), 125.7,125.1$ ($q, J=271.0 \mathrm{~Hz}$), $125.0(q, J=271.0 \mathrm{~Hz}), 122.9,120.4(\mathrm{~m}), 115.4,113.9$, 103.2. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N} 354.0712$, found: 354.0711.

5-Fluoropyrrolo[1,2-f]phenanthridine (8) From 1-(2fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 1,2-dibromobenzene (0.236 $\mathrm{g}, 1 \mathrm{mmol})$, product 8 was obtained in 61% yield $(0.143 \mathrm{~g})$ as a white solid: mp 102-104 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22$ (dd, $\mathrm{J}=3.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, \mathrm{J}=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}$ $=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2(\mathrm{~d}, \mathrm{~J}=247.0 \mathrm{~Hz}), 129.5,128.7,126.6$, $126.0,125.0(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 124.0(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 123.4(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz})$, 122.9, 122.8, 119.6, 119.4, 119.2 ($d, J=3.4 \mathrm{~Hz}$), 115.4 ($d, J=22.3 \mathrm{~Hz}$), $112.1(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 101.7(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz})$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN} 236.0870$, found: 236.0870

10-Methylpyrrolo[1,2-f]phenanthridine (9) From 1-phenylpyrrole ($0.214 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4-methylbenzene ($0.297 \mathrm{~g}, 1$ $\mathrm{mmol})$, product 9 was obtained in 42% yield $(0.097 \mathrm{~g})$ as a white solid: $\mathrm{mp} 78-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33$ (dd, $\mathrm{J}=8.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, J = 3.8, 3.0 Hz, 1H), $2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $135.5,133.3,129.5,129.4,128.4,124.8,124.0,123.9,123.7,122.8$, 122.6, 121.7, 115.0, 112.7, 112.1, 101.3, 21.8. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}$ 232.1121, found: 232.1123.

10-Fluoropyrrolo[1,2-f]phenanthridine (10) From 1-phenylpyrrole ($0.214 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1-iodobenzene ($0.301 \mathrm{~g}, 1$ $\mathrm{mmol})$, product 10 was obtained in 51% yield $(0.120 \mathrm{~g})$ as a white solid: $\mathrm{mp} 120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24$ (dd, $\mathrm{J}=8.1,1.4 \mathrm{~Hz}$, 1 H), 8.00 (dd, $J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94-7.86 (m, 2H), 7.79 (dd, J = 3.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, \mathrm{J}=7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, \mathrm{J}=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{td}, \mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=$
3.8, 3.0 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3(\mathrm{~d}, \mathrm{~J}=244.0 \mathrm{~Hz})$, $133.5,129.3,128.8,126.7(d, J=7.9 \mathrm{~Hz}), 124.7(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 124.2$, $123.9,122.9$ (d, J = 2.4 Hz), 121.0 ($\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}$), 116.2 ($\mathrm{d}, \mathrm{J}=23.1 \mathrm{~Hz}$), $115.1,112.9,112.3,108.5(d, J=23.1 \mathrm{~Hz}), 101.6$. HRMS calcd for $[M]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN} 235.0792$, found: 235.0791.

10-Chloropyrrolo[1,2-f]phenanthridine (11) From 1-phenylpyrrole ($0.214 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-chloro-1-iodobenzene ($0.317 \mathrm{~g}, 1$ $\mathrm{mmol})$, product 11 was obtained in 58% yield $(0.146 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28$ (dd, J = 8.1, 1.4 Hz , $1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=8.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ 7.38 (m, 2H), 6.96 (dd, $J=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.4,131.7,129.2,128.6,128.3,126.3$, $124.8,124.2,124.1,124.0,122.4,120.6,115.1,113.4,112.4,102.4$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{CIN}$ 252.0574, found: 252.0576.

10-(Trifluoromethyl)pyrrolo[1,2-f]phenanthridine (12) From 1phenylpyrrole ($0.214 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 12 was obtained in 67% yield $(0.191 \mathrm{~g})$ as a white solid: $\mathrm{mp} 150-152^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{dd}, \mathrm{J}=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84 (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (dd, J = 8.3, 1.8 Hz, 1H), 7.59 (td, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (td, $J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.3,129.4,128.8,128.2,127.5$ (q, J = 32.5 Hz), 124.7, $124.3(q, J=3.5 \mathrm{~Hz}), 124.2(q, J=271.8 \mathrm{~Hz}), 124.1$, 124.0, 123.2, 120.8, 119.8 ($q, J=4.2 \mathrm{~Hz}$), 115.1, 114.2, 112.7, 103.9. HRMS calcd for [M] ${ }^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}$ 285.0760, found: 285.0763.

Pyrrolo[1,2-f]phenanthridine-10-carbonitrile (13) From 1phenylpyrrole ($0.214 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 3-bromo-4-iodobenzonitrile (0.308 $\mathrm{g}, 1 \mathrm{mmol})$, product 13 was obtained in 53% yield $(0.128 \mathrm{~g})$ as a white solid: mp 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.20$ (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H})$, 7.64-7.55 (m, 2H), 7.42 (t, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80 (dd, $J=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.2$, $130.2,129.7,129.2,127.7,127.2,124.9,124.4,123.9,123.2,119.9$, 119.4, 115.1, 114.9, 113.0, 108.7, 105.0. HRMS calcd for $[M]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2}$ 242.0838, found: 242.0843 .

7-Fluoro-10-methylpyrrolo[1,2-f]phenanthridine (14) From 1-(4fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 14 was obtained in 41% yield $(0.102 \mathrm{~g})$ as a white solid: $\mathrm{mp} 77-79^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.99 (dd, $J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.82 (dd, J = 9.1, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4$ (d, $\mathrm{J}=242.0 \mathrm{~Hz}$), 135.7, $130.1,129.8(d, J=2.1 \mathrm{~Hz}), 129.2,124.3,124.1(d, J=2.7 \mathrm{~Hz}), 123.4(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 122.8(\mathrm{~d}, \mathrm{~J}=19.7 \mathrm{~Hz}), 116.5(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}=$ 23.8 Hz), 112.7, 112.2, $109.8(\mathrm{~d}, \mathrm{~J}=23.7 \mathrm{~Hz}), 101.4,21.7$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FN}$ 250.1027, found: 250.1028.

7,10-Difluoropyrrolo[1,2-f]phenanthridine (15) From 1-(4fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 15 was obtained in 58% yield $(0.147 \mathrm{~g})$ as a white solid: $\mathrm{mp} 152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ 7.98 (dd, J = 8.7, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=9.1,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=$ $3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.2(\mathrm{~d}, \mathrm{~J}=244.6 \mathrm{~Hz}), 159.3(\mathrm{~d}, \mathrm{~J}=242.6 \mathrm{~Hz}), 130.0(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz})$, $128.5,125.8(d d, J=7.9,2.7 \mathrm{~Hz}), 124.8(d, J=8.4 \mathrm{~Hz}), 123.2(d, J=2.3$ $\mathrm{Hz}), 122.6(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 117.0,116.7(\mathrm{~m}), 112.9,112.4,110.0(\mathrm{~d}, \mathrm{~J}=$ $23.80 \mathrm{~Hz}), 108.6(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz})$, 101.8. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}$ 254.0776, found: 254.0780.

10-Chloro-7-fluoropyrrolo[1,2-f]phenanthridine (16) From 1-(4fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-chloro-1iodobenzene ($0.317 \mathrm{~g}, 1 \mathrm{mmol}$), product 16 was obtained in 60% yield $(0.161 \mathrm{~g})$ as a white solid: $\mathrm{mp} 142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ 8.01 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84 (dd, $\mathrm{J}=10.0,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77$ (dd, $J=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (bs, 1H), 7.43 (dd, $J=8.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, J = 3.8, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (t, J = 3.5 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4$ (d, J = 242.0 $\mathrm{Hz}), 131.7,129.8(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 128.9,128.2,125.3(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz})$, $125.0,124.2,122.5,122.2(d, J=7.8 \mathrm{~Hz}), 116.6(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 116.5(\mathrm{~d}$, $J=23.8 \mathrm{~Hz}), 113.4,112.5,109.8(\mathrm{~d}, \mathrm{~J}=23.9 \mathrm{~Hz}), 102.5$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{CIFN}$ 270.0480, found: 270.0476.

7-Fluoro-10-(trifluoromethoxy)pyrrolo[1,2-f]phenanthridine
From 1-(4-fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4-(trifluoromethoxy)benzene ($0.367 \mathrm{~g}, 1 \mathrm{mmol}$), product 17 was obtained in 64% yield $(0.204 \mathrm{~g})$ as a white solid: $\mathrm{mp} 108-110{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (bs, 1H), 7.84 (dd, $\mathrm{J}=10.0$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{bs}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=3.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4(\mathrm{~d}, \mathrm{~J}=242.0 \mathrm{~Hz}), 147.2(\mathrm{q}$, $J=1.8 \mathrm{~Hz}), 129.9(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 128.0,125.4(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 125.3$, $122.3(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 121.8,120.6(\mathrm{~d}, \mathrm{~J}=253.0 \mathrm{~Hz}), 116.9,116.8(\mathrm{~d}, \mathrm{~J}=$ $23.8 \mathrm{~Hz}), 116.7(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 115.1,113.5,112.6,110.0(\mathrm{~d}, \mathrm{~J}=23.9$ $\mathrm{Hz})$, 102.7. HRMS calcd for $[\mathrm{M}]^{+} \mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{4} \mathrm{NO}$ 319.0614, found: 319.0607.

10-Methyl-7-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (18) From 1-(4-(trifluoromethyl)phenyl)pyrrole ($0.317 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4-methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 18 was obtained in 38% yield $(0.114 \mathrm{~g})$ as a white solid: $\mathrm{mp} 158-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=$ $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.1,135.3,130.3,129.7,125.8$ ($\mathrm{q}, \mathrm{J}=32.5$ $\mathrm{Hz}), 124.1(\mathrm{q}, \mathrm{J}=271.8 \mathrm{~Hz}), 124.8(\mathrm{q}, \mathrm{J}=3.5 \mathrm{~Hz}), 124.2,123.8,122.9$, $122.6,121.9,121.4$ (q, $J=4.0 \mathrm{~Hz}), 115.5,113.2,113.1,102.2,21.7$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}$ 300.0995, found: 300.0993.

10-Fluoro-7-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (19) From 1-(4-(trifluoromethyl)phenyl)pyrrole ($0.317 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1-iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 19 was obtained in 51% yield $(0.154 \mathrm{~g})$ as a white solid: $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1 H), 7.88 (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82-7.76 (m, 2H), 7.25 (td, $J=7.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.4(\mathrm{~d}, \mathrm{~J}=244.0 \mathrm{~Hz}$), 135.5, 129.0, $126.2,125.7(\mathrm{~m}), 125.0,124.9,123.1(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 122.8,121.6(\mathrm{q}, \mathrm{J}=$ $4.0 \mathrm{~Hz}), 121.1(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 117.1(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}), 115.7,113.4,113.3$, $108.5(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz})$, 102.5. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}$ 304.0744, found: 304.0741.

10-Chloro-7-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (20) From 1-(4-(trifluoromethyl)phenyl)pyrrole ($0.317 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-chloro-1-iodobenzene ($0.317 \mathrm{~g}, 1 \mathrm{mmol}$), product 20 was obtained in 63% yield $(0.201 \mathrm{~g})$ as a yellow solid: mp 196-198 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, 2 H), 7.83-7.75 (m, 2H), 7.50 (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (dd, $J=3.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.81(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 135.5, 132.2, 129.3, 128.7, 126.0 (q, $J=32.5 \mathrm{~Hz}$), 125.9 (q, $J=3.5 \mathrm{~Hz}$), $125.3,124.9,124.4,124.1(q, J=271.8 \mathrm{~Hz}), 122.5,121.5(q, J=4.1 \mathrm{~Hz})$, $120.8,115.7,113.9,113.4,103.2$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}$ 320.0448, found: 320.0448.

7-(Trifluoromethyl)pyrrolo[1,2-f]phenanthridine-10-carbonitrile (21) From 1-(4-(trifluoromethyl)phenyl)pyrrole ($0.317 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 3-bromo-4-iodobenzonitrile ($0.308 \mathrm{~g}, 1 \mathrm{mmol}$), product 21 was obtained in 68% yield $(0.211 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 240-242{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.53(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$,

1H), 7.90 (s, 1H), 7.87 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J = 8.3, 1.5 Hz, 1H), 7.15 (dd, J = 3.8, 1.2 Hz, 1H), $6.88(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.2,131.2,129.5,127.9,127.3,126.4(\mathrm{q}, \mathrm{J}=32.5 \mathrm{~Hz})$, $126.3(q, J=3.5 \mathrm{~Hz}) 124.0,123.9(q, J=272.0 \mathrm{~Hz}), 123.5,121.5(q, J=$ $4.1 \mathrm{~Hz}), 120.2,118.9,115.8,115.4,114.1,109.4,105.9$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2}$ 311.0791, found: 311.0796.

10-Methylpyrrolo[1,2-f]phenanthridine-7-carbonitrile (22) From 4-(pyrrol-1-yl)benzonitrile $(0.252,1.5 \mathrm{mmol})$ and 2-bromo-1-iodo-4methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 22 was obtained in 32% yield $(0.082 \mathrm{~g})$ as a white solid: $\mathrm{mp} 174-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.60(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.4,135.8,131.1,130.7,129.8,128.7,124.2,123.1$, 122.9, 122.6, 122.4, 119.0, 115.9, 113.7, 113.4, 107.1, 102.6, 21.8. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2}$ 257.1073, found: 257.1077.

10-Fluoropyrrolo[1,2-f]phenanthridine-7-carbonitrile (23) From 4-(pyrrol-1-yl)benzonitrile ($0.252,1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 23 was obtained in 64% yield $(0.166 \mathrm{~g})$ as a white solid: $\mathrm{mp} 184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.40 (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (dd, $J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84 (d, J = 8.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{td}, \mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=$ $3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, J = 3.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 161.3(\mathrm{~d}, \mathrm{~J}=244.0 \mathrm{~Hz}), 135.7,131.7,128.9,128.7,124.9(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}), 124.7(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}), 122.9(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 121.4(\mathrm{~d}, \mathrm{~J}=3.1$ $\mathrm{Hz}), 118.6,117.5(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}), 115.8,113.9,113.5,108.4(\mathrm{~d}, \mathrm{~J}=22.5$ $\mathrm{Hz}), 107.3,103.0(d, J=1.5 \mathrm{~Hz})$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{FN}_{2}$ 261.0822, found: 261.0820.

10-Chloropyrrolo[1,2-f]phenanthridine-7-carbonitrile (24) From 4-(pyrrol-1-yl)benzonitrile ($0.252,1.5 \mathrm{mmol}$) and 2-bromo-4-chloro-1iodobenzene ($0.317 \mathrm{~g}, 1 \mathrm{mmol}$), product 24 was obtained in 68% yield $(0.188 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 196-198{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.54(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (dd, $J=8.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00$ (dd, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.9,132.5,131.9,129.7,128.8,125.0,124.5$, $124.4,122.5,121.4,120.7(q, J=257.5 \mathrm{~Hz}), 118.6,116.1,114.1,114.0$, 107.6, 103.8. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClN}_{2}$ 277.0527, found: 277.0527.

10-(Trifluoromethoxy)pyrrolo[1,2-f]phenanthridine-7-carbonitrile (25) From 4-(pyrrol-1-yl)benzonitrile ($0.252,1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4(trifluoromethoxy)benzene ($0.367 \mathrm{~g}, 1 \mathrm{mmol}$), product 25 was obtained in 53% yield $(0.173 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-$ $7.99(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.7$ (q, J = 1.8 Hz), 136.0, 132.1, 128.9, 128.6, $125.2,124.8,124.5,122.6,121.5,118.6,116.1,115.1,114.2,114.1$, 107.7, 104.0. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ 327.0740, found: 327.0743.

Ethyl 10-methylpyrrolo[1,2-f]phenanthridine-6-carboxylate (26) From ethyl 3-(pyrrol-1-yl)benzoate ($0.322 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4-methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 26 was obtained in 53% yield $(0.161 \mathrm{~g})$ as a white solid: $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.54(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$, 8.01 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(d, J=8.1,1 \mathrm{H}), 7.87$ (dd, $J=3.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.36 (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (dd, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.76(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,135.8,133.1,130.6$, $129.9,129.4,125.6,124.8,124.2,124.0,123.9,123.2,122.9,116.4$, 113.4, 112.4, 101.8, 61.4, 21.7, 14.4. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}$ 304.1332, found: 304.1332.

Ethyl 10-fluoropyrrolo[1,2-f]phenanthridine-6-carboxylate (27) From ethyl 3-(pyrrol-1-yl)benzoate ($0.322 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 27 was obtained in 44% yield $(0.135 \mathrm{~g})$ as a white solid: $\mathrm{mp} 186-188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ $8.49(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (td, $\mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75$ (dd, J = 3.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.49(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,161.3(\mathrm{~d}, \mathrm{~J}=244.0$ $\mathrm{Hz}), 133.2,130.7,128.6,125.7(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 124.8(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz})$, 124.6 (d, J = 3.4 Hz), 124.3, 124.1, 123.6 (d, J = 2.3 Hz), 117.3 (d, J = $23.1 \mathrm{~Hz}), 116.5,113.5,112.6,109.0(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}), 102.1(\mathrm{~d}, \mathrm{~J}=1.0$ $\mathrm{Hz})$, 61.5, 14.4. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FNO}_{2}$ 308.1081, found: 308.1085.

6-Fluoro-10-methylpyrrolo[1,2-f]phenanthridine (28) From 1-(3fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 28 was obtained in 37% yield $(0.092 \mathrm{~g})$ as a white solid: $\mathrm{mp} 62-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.55(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=13.0$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9(\mathrm{~d}, \mathrm{~J}=242.0 \mathrm{~Hz}), 136.0$, $135.2,129.7,129.6(d, J=2.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 127.7(\mathrm{~d}, \mathrm{~J}=$ $25.4 \mathrm{~Hz}), 124.1,122.8(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 122.5,113.1,112.7,111.6,111.4$ (d, $J=22.3 \mathrm{~Hz}$), $110.8(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 101.5,22.0$. HRMS calcd for $[M]^{+}$ $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN} 249.0948$, found: 249.0947 .

6,10-Difluoropyrrolo[1,2-f]phenanthridine (29) From 1-(3fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 29 was obtained in 40% yield $(0.101 \mathrm{~g})$ as a white solid: $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ 8.45-8.38 (m, 1H), $8.02(\mathrm{dd}, \mathrm{J}=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=13.0$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1(\mathrm{~d}, \mathrm{~J}=244.9 \mathrm{~Hz}), 159.2(\mathrm{~d}, \mathrm{~J}=242.9$ $\mathrm{Hz}), 130.0(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 128.5,125.8(\mathrm{dd}, \mathrm{J}=7.9,2.8 \mathrm{~Hz}), 124.8(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}), 123.2(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 122.5(\mathrm{dd}, \mathrm{J}=7.8,3.1 \mathrm{~Hz}), 116.9(\mathrm{~d}, \mathrm{~J}=$ 23.0, Hz), 116.7 (d, $J=8.4 \mathrm{~Hz}), 116.6(\mathrm{~d}, \mathrm{~J}=23.9 \mathrm{~Hz}), 112.9,112.4$, $110.0(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 108.6(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}), 101.7(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz})$. HRMS calcd for [M] ${ }^{+} \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{~N}$ 253.0698, found: 253.0698.

5-Fluoro-10-methylpyrrolo[1,2-f]phenanthridine (30) From 1-(2fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4methylbenzene ($0.297 \mathrm{~g}, 1 \mathrm{mmol}$), product 30 was obtained in 38% yield $(0.095 \mathrm{~g})$ as a white solid: $\mathrm{mp} 108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ 8.20 (dd, J = 2.8, 1.3 Hz, 1H), 8.16 (dd, J = 4.2, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.03 (s, 1H), $7.95(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 153.2 (d, $J=247.0 \mathrm{~Hz}), 135.6,130.1,129.7,125.0(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 124.3$, $124.0(d, J=2.3 \mathrm{~Hz}), 123.3(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}), 122.8(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 119.3$, $119.2,119.0,115.3(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 112.0(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 101.0(\mathrm{~d}, \mathrm{~J}=$ 1.6 Hz), 21.7. HRMS calcd for [M] ${ }^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN} 249.0948$, found: 249.0947

5,10-Difluoropyrrolo[1,2-f]phenanthridine (31) From 1-(2fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 31 was obtained in 46% yield $(0.116 \mathrm{~g})$ as a white solid: $\mathrm{mp} 148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.17 (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00-7.94 (m, 2H), 7.80 (dd, $\mathrm{J}=10.7,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{td}, \mathrm{J}=8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=$ $3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $161.3(\mathrm{~d}, \mathrm{~J}=244.2 \mathrm{~Hz}), 153.1(\mathrm{~d}, \mathrm{~J}=247.0 \mathrm{~Hz}), 129.0,125.8(\mathrm{~d}, \mathrm{~J}=2.6$ $\mathrm{Hz}), 125.7(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 124.7(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 124.1(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz})$, $124.0(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 123.5(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}), 123.1(\mathrm{~m}), 119.5,119.4$, $119.2,116.8(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}), 116.1(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz})$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}$ 254.0776, found: 254.0780.

10-Chloro-5-fluoropyrrolo[1,2-f]phenanthridine (32) From 1-(2fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-4-chloro-1-
iodobenzene (0.317 g , 1 mmol), product 32 was obtained in 54% yield $(0.145 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18$ (dd, J = 3.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1$ (d, $\mathrm{J}=247.0 \mathrm{~Hz}$), 131.7, 128.9, 128.7, 125.3 (d, $J=2.7 \mathrm{~Hz}$), 125.0, 124.1, 123.8 (d, J = 2.3 Hz), 123.5 ($\mathrm{d}, \mathrm{J}=$ $8.9 \mathrm{~Hz}), 123.0(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 122.7,119.7(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}), 119.3(\mathrm{~d}, \mathrm{~J}=$ $3.5 \mathrm{~Hz}), 116.1(\mathrm{~d}, \mathrm{~J}=22.3 \mathrm{~Hz}), 112.4(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 102.1(\mathrm{~d}, \mathrm{~J}=1.6$ Hz). HRMS calcd for [M] ${ }^{+} \mathrm{C}_{16} \mathrm{H}_{9}$ CIFN 269.0402, found: 269.0400.

5-Fluoro-10-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (33) From 1-(2-fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-4(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 33 was obtained in 44% yield $(0.133 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, \mathrm{J}=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.10(\mathrm{~m}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1(\mathrm{~d}, \mathrm{~J}=247.0 \mathrm{~Hz}), 129.0,128.4,127.6(\mathrm{q}$, $J=32.4 \mathrm{~Hz}), 124.9(q, J=3.5 \mathrm{~Hz}), 124.2(q, J=271.0 \mathrm{~Hz}), 124.0(\mathrm{~d}, \mathrm{~J}=$ $2.3 \mathrm{~Hz}), 123.9,123.8,123.2,123.0(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 120.6(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz})$, 120.3 ($q, J=4.0 \mathrm{~Hz}$), $119.4(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 116.3(\mathrm{~d}, \mathrm{~J}=22.3 \mathrm{~Hz}), 112.6$ (d, $J=4.9 \mathrm{~Hz}$), $103.7\left(d, J=1.6 \mathrm{~Hz}\right.$). HRMS calcd for $[M]^{+} \mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{4} \mathrm{~N}$ 303.0666, found: 303.0661.

11-Chloropyrrolo[1,2-f]phenanthridine (34) From 1-phenylpyrrole ($0.214 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-5-chloro-1-iodobenzene ($0.317 \mathrm{~g}, 1$ $\mathrm{mmol})$, product 34 was obtained in 50% yield $(0.126 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29$ (dd, $\mathrm{J}=8.2,1.4 \mathrm{hz}$, $1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=8.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, \mathrm{J}=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=3.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.76 (dd, J = 3.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 134.0, 133.1, 128.8, 128.1, 127.6, 126.1, 124.2, 124.1, 123.9, 123.2, $122.3,121.0,115.1,113.7,112.5,102.9$. HRMS calcd for $[M]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{CIN}$ 251.0496, found: 251.0497 .

11-(Trifluoromethyl)pyrrolo[1,2-f]phenanthridine (35) From 1phenylpyrrole $(0.214 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 2-bromo-1-iodo-5(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 35 was obtained in 58% yield $(0.165 \mathrm{~g})$ as a yellow solid: mp $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.35$ (dd, $\left.J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}$, $1 \mathrm{H}), 7.89$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 (dd, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-$ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{td}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79 (dd, $J=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.7$, 129.8 (q, $J=32.2 \mathrm{~Hz}), 129.7,128.3,127.4,126.3,124.4,124.2,124.1$ (q, $J=271.8 \mathrm{~Hz}), 123.2,121.9(q, J=3.5 \mathrm{~Hz}), 120.6,119.9(q, J=4.2 \mathrm{~Hz})$, 115.2, 113.8, 112.6, 103.2. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}$ 286.0838, found: 286.0841.

7-Fluoro-11-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (36) From 1-(4-fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-5(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 36 was obtained in 61% yield $(0.185 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 94-96{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (dd, $J=10.0,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76$ (dd, $J=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.57$ (dd, $J=8.4,1.9 \mathrm{~Hz}$, 1H), $7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (t, $\mathrm{J}=3.5 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.3(\mathrm{~d}, \mathrm{~J}=242.0 \mathrm{~Hz}$), $130.2(\mathrm{q}, \mathrm{J}=$ $32.7 \mathrm{~Hz}), 130.1(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 128.0,126.6,126.5,123.9(q, J=272.2$ $\mathrm{Hz}), 123.3,122.1(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 122.0(\mathrm{q}, \mathrm{J}=3.6 \mathrm{~Hz}), 119.9(\mathrm{q}, \mathrm{J}=4.0$ $\mathrm{Hz}), 117.1(\mathrm{~d}, \mathrm{~J}=23.9 \mathrm{~Hz}), 116.7(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 113.8,112.7,110.2(\mathrm{~d}$, $J=23.7 \mathrm{~Hz}$), 103.3. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N} 304.0744$, found: 304.0741 .

7,11-Bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (37) From 1-(4(trifluoromethyl)phenyl)pyrrole ($0.317 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-5-(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 37 was obtained in 45% yield $(0.159 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 194-196{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.53$ (s, 1H), 8.29 (d, J = $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, J = 8.2 Hz, 1H), 7.84-7.77 (m, 2H), $7.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}$, $\mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, \mathrm{J}=3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 135.6,130.8(\mathrm{q}, \mathrm{J}=32.8 \mathrm{~Hz}), 128.4,126.5,126.4,126.3(\mathrm{q}, \mathrm{J}=$ $32.2 \mathrm{~Hz}), 126.2(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz}), 124.1(\mathrm{q}, \mathrm{J}=271.0 \mathrm{~Hz}), 124.0(\mathrm{q}, \mathrm{J}=$ $271.0 \mathrm{~Hz}), 123.3,122.3(q, J=3.6 \mathrm{~Hz}), 121.8(q, J=4.0 \mathrm{~Hz}), 120.7$, $120.0(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 115.7,114.3,113.6,104.1$. HRMS calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N} 353.0634$, found: 353.0628 .

Ethyl 11-fluoropyrrolo[1,2-f]phenanthridine-6-carboxylate (38) From ethyl 3-(pyrrol-1-yl)benzoate ($0.322 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-5-fluoro-1iodobenzene ($0.301 \mathrm{~g}, 1 \mathrm{mmol}$), product 38 was obtained in 41% yield $(0.126 \mathrm{~g})$ as a white solid: $\mathrm{mp} 170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.52(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, \mathrm{J}=9.0,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=9.5$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, \mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (dd, J = 3.8, 3.0 Hz, 1H), $4.48(q, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9,163.1$ (d, $J=244.0 \mathrm{~Hz}$), 132.5 129.9, 128.9 (d, J = 9.5 Hz), 128.3 (d, J = 3.6 Hz), 125.7 (d, J = 9.1 Hz), $124.9,124.5,123.7,120.4(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 116.4,114.3,114.1(\mathrm{~d}, \mathrm{~J}=$ $23.1 \mathrm{~Hz}), 112.7,108.3(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 103.5,61.4,14.4$. HRMS calcd for [M] ${ }^{+} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FNO}_{2}$ 307.1003, found: 307.1004.

6-Fluoro-11-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (39) From 1-(3-fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-5(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 39 was obtained in 77% yield $(0.233 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.80(\mathrm{dd}, \mathrm{J}=8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H})$, 7.70 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.15$ (dd, $J=13.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (dd, $J=3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=3.8$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9(\mathrm{~d}, \mathrm{~J}=243.5 \mathrm{~Hz}$), 130.3 ($q, J=32.5 \mathrm{~Hz}$), 128.3, 126.4, 126.2, $124.0(\mathrm{q}, \mathrm{J}=272.1 \mathrm{~Hz})$, 123.6 (d, $J=8.8 \mathrm{~Hz}$), $123.5(\mathrm{~m}), 123.4,123.1(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 121.8(\mathrm{q}, \mathrm{J}$ $=3.5 \mathrm{~Hz}), 120.1(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}), 119.7(\mathrm{q}, \mathrm{J}=4.2 \mathrm{~Hz}), 119.5(\mathrm{~d}, \mathrm{~J}=3.6$ $\mathrm{Hz}), 116.4(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 112.4(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 103.4$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}$ 304.0744, found: 304.0742.

5-Fluoro-11-(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (40) From 1-(2-fluorophenyl)pyrrole ($0.242 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-bromo-1-iodo-5(trifluoromethyl)benzene ($0.350 \mathrm{~g}, 1 \mathrm{mmol}$), product 40 was obtained in 62% yield $(0.188 \mathrm{~g})$ as a white solid: $\mathrm{mp} 140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.16-8.07(\mathrm{~m}, 3 \mathrm{H}), 7.98$ (dd, $\left.J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52(\mathrm{~d}, \mathrm{~J}=$ $8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=$ $3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.9$ (d, J = 247.0 Hz), 130.3 (q, J = 32.6 Hz), 128.3, 126.4, 126.2, 124.0 ($\mathrm{q}, \mathrm{J}=272.0 \mathrm{~Hz}$), 123.6 (m), 123.4, 123.1 (d, $J=8.4 \mathrm{~Hz}), 121.8(q, J=3.5 \mathrm{~Hz}), 120.1(\mathrm{~d}, \mathrm{~J}$ $=24.0 \mathrm{~Hz}), 119.6(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 119.5(\mathrm{~d}, \mathrm{~J}=23.5 \mathrm{~Hz}), 116.4(\mathrm{~d}, \mathrm{~J}=$ $22.1 \mathrm{~Hz}), 112.4(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 102.8(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz})$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}$ 304.0744, found: 304.0741.

4-(Pyrrolo[1,2-f]phenanthridin-3-yl)benzonitrile (41) From 4-(1-phenylpyrrol-2-yl)benzonitrile ($0.244 \mathrm{~g}, 1 \mathrm{mmol}$) and 1,2-dibromobenzene ($0.354 \mathrm{~g}, 1.5 \mathrm{mmol}$), product 41 was obtained in 54% yield $(0.172 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 86-88^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.7,133.4,133.3,132.4,129.5,128.5$, $128.4,127.3,126.7,126.3,125.7,124.4,124.2,123.3,122.9,122.5$, 119.3, 119.0, 118.1, 110.3, 103.0. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{2}$ 319.1230, found: 319.1233.

4-(11-(Trifluoromethyl)pyrrolo[1,2-f]phenanthridin-3-yl)benzonitrile

(42) From 4-(1-phenylpyrrol-2-yl)benzonitrile ($0.244 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-bromo-1-iodo-5-(trifluoromethyl)benzene ($0.525 \mathrm{~g}, 1.5 \mathrm{mmol}$), product 42 was obtained in 51% yield $(0.197 \mathrm{~g})$ as a white solid: $\mathrm{mp} 218-220^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41-8.33(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-$
7.35 (m, 2H), 7.32-7.24 (m, 1H), 7.16 (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=4.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.4,133.8,132.5,132.2$, 130.2 (q, $J=32.2 \mathrm{~Hz}$), 130.1, 128.7, 128.5, 128.2, 126.4, 124.8, 124.5, $124.0(q, J=271.8 \mathrm{~Hz}), 123.2,122.6(q, J=3.5 \mathrm{~Hz}), 122.2,120.1(q, J=$ $4.2 \mathrm{~Hz}), 119.3,118.9,118.2,110.8,104.0$. HRMS calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} 387.1104$, found: 387.1104 .

4-(10-(Trifluoromethoxy)pyrrolo[1,2-f]phenanthridin-3-yl)benzonitrile (43) From 4-(1-phenylpyrrol-2-yl)benzonitrile ($0.244 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-bromo-1-iodo-4-(trifluoromethoxy)benzene ($0.550 \mathrm{~g}, 1.5 \mathrm{mmol}$), product 43 was obtained in 52% yield $(0.209 \mathrm{~g})$ as a white solid: mp 186-188 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.08$ $(\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42-7.36 (m, 3H), 7.29-7.22 (m, 1H), 7.10 (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.8,139.5,133.6,132.5$, 132.3, 129.8, 128.6, 128.2, 127.1, 125.0, 124.7, 124.5, 124.4, 122.3, $121.5,120.1(q, J=257.5 \mathrm{~Hz}), 119.3,118.9,118.2,114.9,110.6,103.4$. HRMS calcd for [M] ${ }^{+} \mathrm{C}_{24} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ 402.0974, found: 402.0964.

Acknowledgements

We are grateful to the ANR for a grant to X . S. We thank CNRS and "Rennes Metropole" for providing financial support.

Keywords: Catalysis • C-H Bond functionalization • Direct arylation • Palladium • Pyrrolo[1,2-f]phenanthridines
[1] a) L. Yan, D. Zhao, J. Lan, Y. Cheng, Q. Guo, X. Li, N. Wu, J. You, Org. Biomol. Chem. 2013, 11, 7966-7966; b) S. Mathew, N. A. Astani, B. F. E. Curchod, J. H. Delcamp, M. Marszalek, J. Frey, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, J. Mater. Chem. A 2016, 4, 2332-2339; c) D. Wu, L. Chen, S. Ma, H. Luo, J. Cao, R. Chen, Z. Duan, F. Mathey, Org. Lett. 2018, 20, 4103-4106; d) A. S. Patel, V. Jain, V. N. Rao, Y.-W. Lin, A. Shah, K.-C. Lai, T.-L. Su, T.-C. Lee, Eur. J. Med. Chem. 2020, 202, 112516.
[2] For reviews on metal-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization: a) T . Satoh, M. Miura, Chem. Lett. 2007, 36, 200-205; b) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; c) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-5115; d) G. P. Chiusoli, M. Catellani, M. Costa, E. Motti, N. Della Ca, G. Maestri, Coord. Chem. Rev. 2010, 254, 456-469; e) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254; f) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17117; g) S. Agasti, A. Dey, D. Maiti Chem. Commun. 2017, 53, 6544-6556; h) T. Gensch, M. J. James, T. Dalton, F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 2296-2306; i) J. Kalepu, P. Gandeepan, L. Ackermann, L. T. Pilarski Chem. Sci. 2018, 9, 4203-4216; j) S. Mao, H. Li, X. Shi, J.-F. Soulé, H. Doucet ChemCatChem 2019, 11, 269-286; k) S. Rej, Y. Ano, N. Chatani Chem. Rev. 2020, 120, 1788-1887; I) H.-Y. Huang, A. Benzai, X. Shi, H. Doucet, Chem. Rec. 2021, 21, 343-356.
[3] W. Hagui, H. Doucet, J.-F. Soulé, Chem 2019, 5, 2006-2078.
[4] For the preparation of π-extended polyheteroaromatics via Pdcatalyzed C-H bond functionalization of pyrrolo[2,3-d]pyrimidines or indoles: a) C. Baik, D. Kim, M.-S. Kang, K. Song, S. O. Kang, J. Ko, Tetrahedron 2009, 65, 5302-5307; b) D. Takeda, K. Hirano, T. Satoh, M. Miura, Heterocycles 2012, 86, 487-496; c) J. Dodonova, S. Tumkevicius, Synthesis 2017, 49, 2523-2534; d) L. Kong, Q. Yao, M. Wang, R. Sun, Y. Li, ChemistrySelect 2018, 3, 456-460.
[5] For selected Pd-catalyzed intermolecular direct arylations of pyrroles: a) B. B. Toure, B. S. Lane, D. Sames, Org. Lett. 2006, 8, 1979-1982; b) D. T. Gryko, O. Vakuliuk, D. Gryko, B. Koszarna, J. Org. Chem. 2009, 74, 9517-9520; c) Y. Xu, L. Zhao, Y. Li, H. Doucet, Adv. Synth. Catal. 2013, 355, 1423-1432; d) P. Ehlers, A. Petrosyan, J. Baumgard, S. Jopp, N. Steinfeld, T. V. Ghochikyan,
A. S. Saghyan, C. Fischer, P. Langer, ChemCatChem 2013, 5, 2504-2511; e) H. Kitano, W. Matsuoka, H. Ito, K. Itami, Chem. Sci. 2018, 9, 7556-7561.
[6] For the preparation of pyrrolo[1,2-f]phenanthridine via Pdcatalyzed C-H bond functionalization: a) Z. Liu, R. C. Larock, J. Org. Chem. 2007, 72, 223-232; b) L. Yan, D. Zhao, J. Lan, Y. Cheng, Q. Guo, X. Li, N. Wu, J. You, Org. Biomol. Chem. 2013, 11, 7966-7977; c) W. Hagui, K. Yuan, N. Besbes, E. Srasra, J.-F. Soule, H. Doucet, ChemCatChem 2015, 7, 3544-3554.
[7] For an example of preparation of pyrrolo[1,2-f]phenanthridine via Pd-catalyzed Decarboxylative Annulation: Z. Ye, Y. Li, K. Xu, N. Chen, F. Zhang, Org. Lett. 2019, 21, 9869-9873.
[8] J. Roger, H. Doucet, Adv. Synth. Catal. 2009, 351, 1977-1990.
[9] a) D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066-1067; b) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 10848-10849.
[10] T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365-376.
[11] N. Yasukawa, M. Kuwata, T. Imai, Y. Monguchi, H. Sajiki, Y. Sawama, Green Chem. 2018, 20, 4409-4413.

Entry for the Table of Contents

From commercially available compounds using only 2 mol\% of easily available $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst precursor and KOAc as inexpensive base, a wide variety of pyrrolo[1,2-ffphenanthridines can be obtained. With this synthetic scheme, the introduction of desired functional groups at positions $5,6,7,8,10$ and 11 of pyrrolo[1,2-f]phenanthridines is possible.

