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Primary foam Secondary foam

I Energetic efficiency ;

I Wear of the process.
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1. Industrial context

Purpose of the work :

Bubble dynamics in molten nuclear glass doped in cerium
oxide

1 bubble bubble population

I What are the main mechanics of the bubble formation ?

I What are the nature and sizes of bubbles ?

I What is the dynamics of the bubble population ?
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2. Bubble formation in crucible

I Melting of granular material composed by a borosilicate glass
+ 0.1wt % of CeO2.

I Post morten observation of a crucible section.

Figure 1 – Cross section of the crucible a room temperature.
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Figure 2 – Optical microscope sample at T =800 ◦C and after 20 min in
the furnace.
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2. Bubble formation in crucible

Figure 3 – Optical microscope images of samples at various temperatures
and times.
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2. Bubble formation in crucible

Figure 4 – Bubble size distribution at T =1000 ◦C after 20 minutes of
melting.
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2. Bubble formation in crucible

According to Reboul et al. 1, void volumes in a granular media are
log-normal distributed.

(a) (b)

Figure 5 – Voids in a granular media (a) and PDF of void volumes (b)
according to Reboul et al. (2008).

1. N. Reboul/E. Vincens/B. Cambou : A statistical analysis of void size
distribution in a simulated narrowly graded packing of spheres, in : Granular
Matter 10.6 (2008), p. 457-468.
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Figure 6 – Gas composition of bubble at T =900 ◦C.

ø Population of bubbles created by air entrapment.
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Figure 7 – Nb (cm−2) vs. t. Figure 8 – 〈D〉 (µm) vs. t.
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tη =
Hη(T )

ρg〈D〉20
; (2)

(a) (b)

Figure 9 – (a) Nb (/cm2) vs. t/tη & (b) 〈D〉 (µm) vs. t/tη.
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Figure 9 – (a) Nb (/cm2) vs. t/tη & (b) 〈D〉 (µm) vs. t/tη.
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3. Numerical predictions

I Development of numerical model based on a population
balance equation 2 :

∂n

∂t
= (3)

2. D. L. Marchisio/R. O. Fox : Computational models for polydisperse
particulate and multiphase systems, 2013.
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∂(ȧn)

∂a
+

Ng−1∑
i=1

∂($̇in)

∂$i
= − ρga2

3η(T )
n (3)

mass transfer ;
bubble release from the free surface ;

2. Marchisio/Fox : Computational models for polydisperse particulate and
multiphase systems (cf. note 2).



14
3. Numerical predictions

I Development of numerical model based on a population
balance equation 2 :

∂n

∂t
+
∂(ȧn)

∂a
+

Ng−1∑
i=1

∂($̇in)

∂$i
= − ρga2

3η(T )
n + h(x, t; a,$). (3)

mass transfer ;
bubble release from the free surface ;
binary coalescence due to bubble rising 3 :

h(x, t; a) =
1
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n(x, t; a′)da′. (4)

2. Marchisio/Fox : Computational models for polydisperse particulate and
multiphase systems (cf. note 2).

3. D. Ramkrishna : Population balances. Theory and application to
particulate systems in engineering, San Diego 2000.
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3. Numerical predictions

Figure 10 – µ0 = Nb/Nb(0) vs. t/tη with and without coalescence at
T = 1000◦C.
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3. Numerical predictions

Figure 11 – µ0 = Nb/Nb(0) vs. t/tη with and without coalescence at
T = 1100◦C.
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4. Synthesis

I Initial bubbles are due to the atmosphere entrapment during
the melting ;

I The size distributions are log-normal distributed ;

I The dynamics is strongly thermal activated (scaled by the
viscosity) ;

I The bubble coalescence is main phenomenon at short times
(confirm the assertion of Cable 4).

See the poster !

4. M. Cable : A study of refining. Part 2 : Mechanisms of refining, in : Glass
Technol. 2 (1961), p. 60-70.
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