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Compound 21e 
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Compound 22a 
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Compound 22b
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Compound 22c 
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Compound 22d 
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Compound 22e 
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Compound 22f 
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Compound 22g 
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Compound 23 
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Compound 24 
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Compound 25 
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Compound 26 
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Compound 27 
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Compound 28 
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Compound 29 
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Compound 30 
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Compound 31 
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Compound 32
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Compound 33
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Compound 34 
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Compound 35 
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Compound 2 (MIM1 studies) 

 

Supporting Information Figure 3: Dynamic Effect of 1H NMR experiments with variations of temperature 
(step 10K) 
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Supporting Information Figure 4: FT-IR of Compound 2 
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NOESY Experiment correlations: Me and H5, Me and H1’, H2’’/2’ cyclohexyl (hidden by DMSO -6d) and 
H2’/H2’’ (from cyclohexyl), Himine and Haromatic 
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Correlation between H1’ and H2’/H2’’ cyclohexyl hidden by DMSO-6d. (second proof)  
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Compound 11 (analogue of MIM1 x OMe) 

 

Supporting Information Figure 3: H imine proton of MIM1 (OMe x 3) relaxation upon temperature 
variation (copy of juxtaposition of 1H NMR spectra) 

 

 

 

 

Supporting Information Figure 4: FT-IR compound 11 
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Supporting Information biological studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supporting Information Figure 5: Effect of ABT-737 and S63845 combination on IGROV1-R10 

chemoresistant ovarian cancer cell line. Cellular morphology, DNA content and nuclear morphology 

were assessed after 24h exposure. 
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Supporting Information for Fluorescence Polarization Assays  

 
 

  

  

  

Supporting Information, Table 1. Competitive inhibition binding curves of MIM1 analogues. 
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Supporting Information for molecular docking  

 

Determination of Bcl-xL binding site by molecular modelling 

The structure of our compounds is, to our knowledge, completely new in the Bcl-xL area. So, their 

binding site had to be deciphered. To this end, we investigated the 82 Bcl-xL complexes available in the 

PDB to find the most similar ligand to our molecules. We found a diphenyl-pyrrole derivative with a 

somewhat similarity to our diphenyl-thiazole compounds (PDB: 3SPF)  

 
 

Supporting Information, Fig. 6. (A) Chemical structure of the closest Bcl-xL inhibitor found in the PDB. 

(B) Fragments docking at the surface of Bcl-xL. Methyl-triphenol was mostly clustered in a cavity above 

R139/D133, with the highest calculated interaction energy: -44 kcal/mol. (C) Benzene was scattered on 

the protein surface, but much enriched in three cavities, one between F97 and L150 (-15.7 kcal/mol), 

the second beneath R103 (-14 kcal/mol), and the last near L112 (-11.6 kcal/mol). (D) Cyclohexane 

occupied essentially two deep cavities, the same as benzene (respectively -16.5 and -13.5 kcal/mol). 

The thickness of the fragments chemical bonds relates to the calculated interaction energy (the 

thickest, the highest). 
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To probe the possible binding sites and orientations of our ligands in this protein conformer, we first 

performed a multiple copy simultaneous search (MCSS) of different fragments: a triphenol and a 

benzene, directly related to our molecules, and a cyclohexane to identify the most hydrophobic binding 

site (more precisely, the site most prone to Van der Waals interactions). Clustering of the docked 

fragments and calculated interaction energy suggested that the triphenol might bind to a rather flat 

surface above L130, near the ionic pairs R139/D133 and R132/E129 (Fig. 6B). Benzene had more 

scattered binding sites, but the two most populated and highest affinity cavities were around F97, L150 

and L112 (Fig. 6C). The cyclohexyl fragment predominated in the two central cavities (Fig. 6D). 

Interestingly, the predicted triphenol binding site corresponded to that of a co-crystallized glycerol (a 

trihydroxylated molecule), and the most favourable cyclohexane site to that of chlorophenyl of the co-

crystallized inhibitor. 

Independently of the MCSS experiment, we performed a flexible docking of compound 30. The pose 

with the highest score suggests a binding mode where the triphenol forms extensive hydrogen bonds 

with ionic pairs R139/D133 and/or R132/E129 (Supporting Information Fig. 7). The thiazole is above 

V126, while the phenyl interacts with L108, V126 and L112, overhangs by Q111. The ethyl-benzyl is 

buried in the deep cavity, interacting with F146, L108, A104, Y101 and F97. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supporting Information Fig. 7(left). Proposed binding mode of 30 in Bcl-xL. (B) (right) 32 docked in the same protein. 
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Computational studies of compound 35 onto Mcl-1 and Bcl-xL 

As already observed for Mcl-1, the ligand is able to flip in the binding site in order to minimize the 

solvent exposition of most hydrophobic parts. This was confirmed by molecular dynamics, showing 

that 35 is more solvated in Mcl-1 binding site than is Bcl-xL (Supp. Info. Fig. 8), and explaining why 35 

is selective for Mcl-1 in spite of a similar binding mode in both proteins.  

This was confirmed by molecular dynamics, showing that 35 is more solvated in Mcl-1 binding site than 

is Bcl-xL (Supporting Information Fig. 8), and explaining why 35 is selective for Mcl-1 in spite of a similar 

binding mode in both proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supporting Information, Fig. 8. (top) Compound 35 docked onto Mcl-1 (left) and Bcl-xL (right). One can 

observe that the pyridine is much more solvent-exposed in the former. Radial distribution function g(r) 

of water measured during molecular dynamics of full molecule 35 (bottom left) in Mcl-1 (blue) and Bcl-

xL (red), and only pyridine of 35 (bottom right). 
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Structure of 11 established by X-Ray analysis: 

 

 

 

 

 

 

 

 

The details of X-Ray structural analysis of 11 have been deposited at CDDC with the number 2006656.  
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NMR spectra of 14a 
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Structure of 14a established by X-Ray analysis: 

 

 

 

 

 

 

 

 

The details of X-Ray structural analysis of 14a have been deposited at CDDC with the number 2006657. 
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NMR spectra of 14b 
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Structure of 14b established by X-Ray analysis: 

 

 

 

 

 

 

 

 

 

 

 

The details of X-Ray structural analysis of 14b have been deposited at CDDC with the number 2006655.  
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