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Evaporation effect on the contact angle and
contact line dynamics

Vadim S. Nikolayev

Abstract This chapter shows how the evaporation and condensation can modify the
wetting conditions. First, we review the microscopic-scale phenomena acting near
the contact line: Kelvin effect, hydrodynamic slip, vapor recoil, surface forces, and
interfacial resistance. Then we address the theory of liquid flow in the wedge under
evaporation at partial wetting conditions, more common in practice than complete
wetting. The importance of the correct formulation of the boundary conditions at
the contact line is shown. Two main evaporation regimes are addressed next. First,
the evaporation into pure vapor atmosphere is considered (like in bubble growth
in boiling). It is controlled by the flow in the liquid. In the presence of contact
line receding, this problem is solved by asymptotic matching of the three liquid
regions: (i) the microregion near the contact line controlled by the phenomena
described above, (ii) the intermediate region where the surface tension competes
with the viscous effects (iii) macroregion controlled by the liquid bulk effects. The
asymptotic matching results in an expression for the apparent contact angle that
depends both on the evaporation rate and on the contact line velocity. From such an
analysis, the contact line receding dynamics caused by evaporation can be found.
The theory is then compared to the available experimental data. Finally, we consider
another regime of the wedge evaporation, that in the atmosphere of the neutral gas,
controlled by the vapor diffusion in the diffusion boundary layer. As the evaporation
is weaker in this case, its effect on the apparent contact angle is smaller. However we
show how it depends on the key parameters of evaporation, like e.g. the boundary
layer thickness.
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1 Introduction

Evaporation and condensation phenomena are met widely both in everyday life and
in various industrial processes. The some evident everyday examples are the water
boiling in one’s kitchen, linen drying on open air or the morning dew disappearance
on the windshield of a car. As industrial examples, one can list the steam generation
for turbines used in power plants and the two-phase cooling of micro-processors with
heat pipes used now in every laptop computer and mobile phone. One can recall also
the spray cooling in high-power heat exchangers or the drying of solvent during thin
film coating based on the colloidal solutions. In all these cases, a solid surface in
contact with the liquid can be partially dried so triple liquid-gas-solid contact lines
appear.

The experimental studies of evaporation effect on the wetting are difficult and
thus quite rare; for this reason this chapter is mainly theoretical. Some experimental
data are however discussed in sec. 2.5 below.

The contact line problem is a particular case of the free-interface problem, which
can be theoretically considered thanks to the Laplace equation

Δ𝑝 = 𝐾𝜎 (1)

that defines the local interfacial pressure jump

𝑝𝑉 − 𝑝𝐿 = Δ𝑝, (2)

in terms of the surface tension 𝜎 and its curvature 𝐾; the pressures at the interface
on both sides of it are denoted 𝑝𝑉 (vapor) and 𝑝𝐿 (liquid).

Note that the physical phenomena presented in this chapter remain invariant with
respect to the sign of the mass exchange so the presentation below applies to the
condensation case as well.

The mass exchange rate is always limited by the slowest dynamic phenomenon. For
this reason, the physics of evaporation differs depending on the gas composition. One
can consider two limit cases. In the first, the gas is air (or another non-condensible
gas) with a relatively small vapor density. This is a case of drying on open air in
the absence of substrate heating. The slowest dynamic phenomenon is the vapor
diffusion necessary to evacuate the vapor from the gas-liquid interface to the gas
bulk. The diffusion occurs in a boundary layer that forms near the interface. Farther
away, the convection takes over.

In the second case, the gas is a pure vapor of the evaporating liquid and the
evaporation occurs because of the substrate heating. The diffusion is not relevant
here and the evaporation is limited only by the heat supply rate. Evidently, the mass
exchange is much stronger in the second case. This is the case e.g. of bubble growth
in boiling.

In a tiny vicinity of the contact line called microregion hereafter, the liquid forms
a curved wedge. Such a geometric singularity causes a strong increase of evaporation
in the microregion, which is one of the motivation for the studies of the contact lines
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in presence of phase change. There is another, perhaps even more important reason
for the interest to the microregion. As will be discussed in sec. 1.1, the singularity of
the mass transfer causes a strong curvature that leads to a large apparent contact angle
(i.e. the slope of the gas-liquid interface at a macroscopically measurable scale). In
other words, evaporation can lead to a non-negligible change in wetting conditions.
This change is ruled out by effects that act at the microscopic scale. The objective of
this chapter is to show how this apparent angle can be determined theoretically and
to analyze its dependence on the system parameters.

The two-dimensional geometry is considered below. This is justified by a much
stronger curvature of the gas-liquid interface in the plane perpendicular to the solid
than in the plane parallel to the solid.

This chapter is structured as follows. In the following sections we consider the
microscopic phenomena that are important in the microregion but negligible on
the macroscopic scale. Next, we address two limit cases of evaporation: first, the
evaporation to the pure vapor and next, the isothermal liquid drying the open air or
another gas. But first of all, we give a qualitative picture explaining the evaporation
impact on the contact angle.

1.1 How evaporation can modify the wetting conditions?

First of all one should mention that the evaporation cannot influence the static contact
angle because it is provided by the balance of intermolecular forces that are in most
cases attractive and thus tend to prevent evaporation (see Potash and Wayner [45] for
an extended discussion). Evaporation can only impact the apparent contact angle,
i.e. that observed macroscopically. To understand this impact, let us begin with a
qualitative consideration of the microregion. There are two physical reasons for the
difference between the apparent and microscopic contact angles. Both reasons are
linked to the strong evaporation in the microregion. The first is related to the viscous
pressure drop caused by the hydrodynamic flow. The second is the vapor recoil effect.
We discuss here only flow-induced apparent contact angle. The vapor recoil will be
discussed in sec. 1.2.4.

vapor

solid
θmicro

liquid

θappA

B

𝑝௅஺
𝑝௅஻
𝑝௏

J

Fig. 1 Liquid wedge at evaporation. The fluid flow is shown by the blue arrows.

Consider two points A and B on the vapor-liquid interface of the wedge at
evaporation, with the point B closer to the contact line than the point A (Fig. 1).
Evaporation is the strongest in the contact line vicinity so there is a liquid flow toward
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the contact line to replenish the liquid loss. Because of the viscosity, a pressure drop
appears, so there is a difference between the liquid pressures at the points A and B:

𝑝𝐴𝐿 > 𝑝𝐵𝐿 .

On the other hand, the vapor flow is much quicker, so the vapor pressures at the
vapor side of the interface are both equal to 𝑝𝑉 . From Eqs. (1-2), one concludes
that 𝐾𝐵 > 𝐾𝐴, so the interfacial curvature grows toward the contact line. Note that
the curvature is a rate of change of the interface slope along the interface (it is its
geometrical definition). This means that the slope varies sharply near the contact
line, which can cause a strong difference between the microscopic contact angle
𝜃𝑚𝑖𝑐𝑟𝑜 and the macroscopic (apparent) contact angle 𝜃𝑎𝑝𝑝 . This effect has first been
discovered by Wayner et al. [58] and studied by many other researchers. Initially, it
was however incorrectly attributed to the impact of the surface forces discussed in
sec. 1.2.3.

1.2 Relevant microscopic phenomena

Evidently, near the contact line, the distance between the liquid-vapor interface and
the solid is very small. This is why several effects otherwise completely negligible,
become important in this region.

1.2.1 Hydrodynamic slip
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Fig. 2 Variation of the tangential component of the liquid velocity in the close vicinity of the solid
in case of the (a) no-slip boundary condition and (b) in case of slip. The slip length definition is
shown.

For a hydrodynamic problem, one needs to define the boundary conditions, in
particular on the solid surface. One evident condition is the non-penetration of the
liquid into the solid. The normal to the surface component of the liquid velocity 𝑣𝑧
is thus zero (cf. Fig. 2a for the reference system). Usually one considers that the
liquid molecules stick to the solid so the tangential to the surface component 𝑣𝑥 of
the liquid velocity is zero on it, which is referred as the no-slip condition (Fig. 2a).
When the surface is non-wettable, the statistical physics of liquids [21] shows that the



8 Contents

liquid can slide along the solid when the tangential hydrodynamic stress is large. This
phenomenon is characterized by the slip length 𝑙𝑠 defined with the Navier boundary
condition (Fig. 2b)

𝑣𝑥 = 𝑙𝑠
𝜕𝑣𝑥

𝜕𝑧
. (3)

One needs to mention that the slip of liquid along the solid substrate is well confirmed
experimentally [43], and measurements permit to determine the slip length within
10 nm accuracy [6]. The slip length can also be obtained with the molecular dynamic
simulations. More detailed discussion on this phenomenon may be found in the
review articles [30, 32]. The characteristic value of 𝑙𝑠 is of the order of 20 nm. The
slip effect is expected to be important at a distance ℓ𝑠 ∼ 𝑙𝑠/𝜃𝑚𝑖𝑐𝑟𝑜 from the CL
where 𝜃𝑚𝑖𝑐𝑟𝑜 is a contact angle assumed to be small here. It is in the denominator
because the slip length is measured on the 𝑧 axis. For small 𝜃𝑚𝑖𝑐𝑟𝑜, ℓ𝑠 ≫ 𝑙𝑠 .

1.2.2 Kelvin effect

The Kelvin effect, sometimes called the Gibbs-Thomson effect [31], provides a
dependence of the local temperature 𝑇𝑖 of the vapor-liquid interface on the local
interfacial pressure jump Δ𝑝 that, apart from the interface curvature (cf. Eq. 1) can
depend on several other factors discussed in the next sections. Consider a portion
of the liquid-vapor interface that may globally be out of equilibrium. The portion is
however assumed to be at local equilibrium, so the following equality holds for the
chemical potentials of the phases:

𝜇𝑉 (𝑝𝑉 , 𝑇 𝑖) = 𝜇𝐿 (𝑝𝐿 , 𝑇 𝑖) (4)

A similar expression can be written for a flat liquid-vapor interface at equilibrium at
the temperature𝑇 𝑖 , where both liquid and vapor pressures are equal to 𝑝0 = 𝑝𝑠𝑎𝑡 (𝑇𝑖):

𝜇𝑉 (𝑝0, 𝑇
𝑖) = 𝜇𝐿 (𝑝0, 𝑇

𝑖). (5)

Let us develop now both sides of Eq. (4) into the Taylor series around 𝑝0 by using
the thermodynamic relation (

𝜕𝜇

𝜕𝑝

)
𝑇

=
1
𝜌
,

where 𝜌 is the density. With the help of Eq. (5), one readily obtains

𝑝𝑉 − 𝑝0
𝜌𝑉

=
𝑝𝐿 − 𝑝0
𝜌𝐿

. (6)

By using Eqs. (2, 6), one gets

𝑝𝑉 = 𝑝0 − Δ𝑝
𝜌𝑉

𝜌𝐿 − 𝜌𝑉
. (7)



Contents 9

In what follows, we assume the smallness of the difference |𝑝𝑉 − 𝑝0 | ≪ 𝑝0.
For the pure vapor case, one can make use of the Clausius-Clapeyron equation

𝑑𝑝

𝑑𝑇

����
𝑠𝑎𝑡

=
L𝜌𝐿𝜌𝑉

𝑇𝑠𝑎𝑡 (𝜌𝐿 − 𝜌𝑉 )
, (8)

where L is the latent heat and 𝑇𝑠𝑎𝑡 = 𝑇𝑠𝑎𝑡 (𝑝𝑉 ). With the relations

𝑑𝑝

𝑑𝑇

����
𝑠𝑎𝑡

=
𝑝0 − 𝑝𝑉
𝑇 𝑖 − 𝑇𝑠𝑎𝑡

and (7), one gets the final expression for the local equilibrium interface temperature
as a function of pressure jump

𝑇 𝑖 = 𝑇𝑠𝑎𝑡

(
1 + Δ𝑝

L𝜌𝐿

)
. (9)

For the evaporation into the open air, one can use the ideal gas equation for the
vapor:

𝑝𝑉 = 𝜌𝑖𝑉
𝑅𝑔𝑇

𝑀
, (10)

𝑝0 = 𝜌0
𝑅𝑔𝑇

𝑀
, (11)

where 𝜌0 is the saturation vapor density in the air over the flat interface at equilibrium,
𝑅𝑔 is the gas constant and 𝑀 , vapor molar weight. By using these expressions in
Eq. (7), one finally obtains the local equilibrium interfacial vapor density 𝜌𝑖

𝑉
as a

function of pressure jump under the assumption 𝜌𝑖
𝑉
≪ 𝜌𝐿:

𝜌𝑖𝑉 = 𝜌0 − Δ𝑝
𝑀𝜌0
𝜌𝐿𝑅𝑔𝑇

, (12)

Note that only local (and not global) equilibrium hypothesis was used. This means
that the quantities 𝑇 𝑖 , 𝜌𝑖

𝑉
are allowed to vary along the interface while following the

variation of Δ𝑝.

1.2.3 Surface forces

Consider a thin liquid film of a homogeneous thickness ℎ on a solid substrate at
equilibrium (Fig. 3). The liquid is surrounded by its vapor and the system is at the
saturation temperature 𝑇𝑠𝑎𝑡 given by the bulk vapor pressure. The excess free energy
𝑊 (appearing due to the interaction of interfaces) per unit area is

𝑊 (ℎ) = 𝜎𝑆𝐿 + 𝜎 + 𝑃(ℎ), (13)
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Fig. 3 Thin liquid film on a solid substrate.

where the first two terms in the right side are the tensions of the solid-liquid and
vapor-liquid interfaces, respectively. The term 𝑃(ℎ) is the energy of the surface (or
thin film) forces [22] that appear because of the molecules of the solid “feel” the
vapor-liquid interface. It is a differential contribution (proportional to the difference
of liquid and vapor densities) of the interactions of the liquid and vapor molecules
with those of the solid. Evidently, the ℎ scale at which 𝑃(ℎ) matters is defined by the
range of intermolecular interaction. Usually, this distance does not exceed several
tens of nm. Obviously, 𝑃(ℎ → ∞) = 0.

The limit ℎ → 0 may be attained at partial wetting. It is evident that 𝑊 (ℎ → 0)
has to be finite in this case. It has been postulated by [8] that

𝑊 (ℎ → 0) = 𝜎𝑆𝐺 , (14)

which corresponds to the energy of the dry (bare) solid-gas interface. Equations
(13,14) then lead to the constraint 𝑃(ℎ → 0) = 𝑆, where

𝑆 = 𝜎𝑆𝐺 − 𝜎𝑆𝐿 − 𝜎 (15)

is the spreading coefficient. A more general case [59, 60] 𝑃(ℎ → 0) ≥ 𝑆 is adopted
here. The inequality can be justified by the existence of a monolayer of fluid molecules
that may modify the surface energy so𝑊 (ℎ → 0) > 𝜎𝑆𝐺 .

With the account of the surface forces, the Laplace equation (1) becomes

Δ𝑝 = 𝐾𝜎 + Π(ℎ), (16)

where Π is called the disjoining pressure related to 𝑃 via

Π = −𝜕𝑃
𝜕ℎ
. (17)

In general, the disjoining pressure includes contributions from dispersion, electrical
double layers, electrostatic and structural forces [22]. Within a conventional for the
contact line problem approach suggested by Wayner et al. [45], only the dispersion
component (neglecting the retardation effect) is accounted for. This is justified for
ℎ ≳ 10 nm,

Π(ℎ) = 𝐴/(6𝜋ℎ3). (18)

The Hamaker constant 𝐴 is positive for conventional couples of solid surfaces and
fluids. For the “high-energy” metal or oxidized surfaces, its value is 𝐴 ∼ 10−20 −
10−19 J.
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𝜃𝑚𝑖𝑐𝑟𝑜 ℎ𝑎𝑑 

𝜃𝑌 

Fig. 4 Wedge shape in the microregion: (a) for the complete wetting; (b) for complete wetting and
strong evaporation (with the dried wetting film); the interface shape is defined by the de Gennes
solution; (c) for the partial wetting.

Because of singularity of Eq. (18) at ℎ → 0, such a Π dependence results in a
configuration where the solid is covered with a continuous (wetting or adsorption)
film, generally of nanometric thickness ℎ𝑎𝑑 so the vapor contact with the bare solid
is nonexistent. Such a situation corresponds to the complete wetting case. When a
liquid wedge configuration is forced by the macroscopic liquid shape, the wedge
ends by the film (Fig. 4a). Another solution [17], where the contact line exists even
for the complete wetting case, prevails when the evaporation rate is higher than a
threshold [48] so the film dries out (Fig. 4b) and ℎ(𝑥) ∼

√
𝑥 near the contact line

𝑥 = 0.
At equilibrium, the wedge geometry appears at partial wetting (Fig. 4c), where

𝑆 < 0. At a distance from the contact line, where the surface forces vanish (where
ℎ ≲ 100 nm), the meniscus slope is 𝜃𝑌 defined by the Young formula cos 𝜃𝑌 =

1 + 𝑆/𝜎. At a smaller scale (ℎ ∼ 1 nm), the meniscus forms a contact angle 𝜃𝑚𝑖𝑐𝑟𝑜
linked to 𝜃𝑌 via the expression [60]

cos 𝜃𝑚𝑖𝑐𝑟𝑜 = 1 + 𝑆 − 𝑃(ℎ → 0)
𝜎

= cos 𝜃𝑌 − 𝑃(ℎ → 0)
𝜎

. (19)

Note that the assumption (14) results in 𝜃𝑚𝑖𝑐𝑟𝑜 = 0; a more general case is considered
here.

To describe the partial wetting configuration at equilibrium, the disjoining pres-
sure must be regularized at small ℎ, e.g. [26]:

Π(ℎ) =
{
𝐶1ℎ + 𝐶2, ℎ ∈ (0, ℎ𝑚)
𝐴/(6𝜋ℎ3), ℎ ∈ (ℎ𝑚,∞) (20)

Indeed, Π(ℎ) needs to be integrable at ℎ → 0; 𝑃(ℎ) would be infinite otherwise. The
constant ℎ𝑚 is of the order of several nm and defines the position of the maximum
of the Π(ℎ) function; 𝐶1,2 are the constants defined from the continuity of Π(ℎ) at
ℎ = ℎ𝑚 as

𝐶1 = (𝐴 − 4𝜋ℎ2
𝑚𝑃(ℎ → 0)/(2𝜋ℎ4

𝑚),
𝐶2 = (6ℎ2

𝑚𝜋𝑃(ℎ → 0) − 𝐴)/(3𝜋ℎ3
𝑚),

where 𝑃(ℎ → 0) can be determined from 𝜃𝑚𝑖𝑐𝑟𝑜 and 𝜃𝑌 via Eq. (19).
At ℎ ≥ ℎ𝑚 but still in the contact line vicinity, the interface follows the

√
𝑥 law,

which cross-overs to the straight wedge shapes both at ℎ < ℎ𝑚 and at larger ℎ
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(Fig. 4c) but of different slopes. The slope near the contact line is 𝜃𝑚𝑖𝑐𝑟𝑜. Farther
away, it is equal to 𝜃𝑌 at equilibrium (cf. Eq. 19) and is different from it when the
phase change occurs.

The above approach has been developed in the “local” approximation, where
𝑃 is assumed to be independent of the spatial variation of ℎ (i.e., on its spatial
derivatives). A more adequate but also more complicated non-local approach [51]
(where 𝑃 is considered to be a functional of ℎ(𝑥)) gives a correction to (19) at large
𝜃𝑌 . In particular, 𝜃𝑚𝑖𝑐𝑟𝑜 ≠ 0 even for 𝑃(ℎ → 0) = 𝑆. For small angles, the results of
the local and non-local approaches are essentially the same.

1.2.4 Vapor recoil

Let us consider now a portion of the liquid-vapor interface of area 𝐴 at evaporation
conditions, see Fig. 5a. Every fluid molecule evaporated from the liquid interface
causes a recoil force analogous to that created by the gas emitted by a rocket engine.
It pushes the interface towards the liquid side in the normal direction. This force
appears because the fluid necessarily expands while transforming from liquid to gas
phase. Obviously, the stronger the evaporation rate, the larger is the vapor recoil
force.

During the time d𝑡, the fluid mass d𝑚𝑉 changes state from liquid to vapor. This
mass can be expressed as

d𝑚𝑉 = 𝜌𝑉d𝑉𝑉 = −𝜌𝐿d𝑉𝐿 , (21)

where d𝑉𝐿 (d𝑉𝑉 ) is the volume change of the liquid (vapor). As a consequence, the
interface displacement is dl = −nd𝑉𝐿/𝐴, where n is the unit vector normal to the
interface and directed into the liquid.

The conservation of momentum for the control volume shown in Fig. 5a reads

(v𝑉 + v𝑖)d𝑚𝑉 + p𝑟d𝑡𝐴 = 0, (22)

where p𝑟 is the vapor recoil force per unit area, v𝑖 = dl/d𝑡 is the velocity of interface
and v𝑉 = −nd𝑉𝑉/(𝐴d𝑡) is the velocity of vapor with respect to the interface. By
using this expression together with Eq. (21), the equation (22) can be rewritten as

p𝑟 = n𝐽2
(

1
𝜌𝑉

− 1
𝜌𝐿

)
, (23)

where
𝐽 =

1
𝐴

d𝑚𝑉
d𝑡

(24)

is the mass evaporation flux. Note that p𝑟 is directed towards the liquid both for
evaporation (𝐽 > 0) and condensation (𝐽 < 0) cases. The vapor recoil pressure
enters the pressure balance equation as [38]
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Fig. 5 (a) Vapor recoil force. (b) Effect of the vapor recoil on the apparent contact angle.

𝐾𝜎 = Δ𝑝 + 𝑝𝑟 , (25)

where 𝑝𝑟 = |p𝑟 |. In addition to the Kelvin term (9), a vapor recoil term appears in
the interface temperature expression [4]

𝑇 𝑖 = 𝑇𝑠𝑎𝑡

[(
1 + Δ𝑝

L𝜌𝐿

)
+ 𝐽2

2L

(
1
𝜌2
𝑉

− 1
𝜌2
𝐿

)]
. (26)

The vapor recoil effect causes an increase of the apparent contact angle just like
the viscous pressure drop discussed in sec. 1.1. Indeed, the vapor recoil is the largest
near the contact line (where 𝐽 is very large, cf. Fig. 5b). As the curvature 𝐾 is
proportional to 𝑝𝑟 according to Eq. (25), the slope changes strongly in the contact
line vicinity [38], which causes a difference between 𝜃𝑎𝑝𝑝 and 𝜃𝑚𝑖𝑐𝑟𝑜, just like in the
pressure-drop-caused effect described in sec. 1.1. The relative contribution of this
effect is especially strong near the liquid-vapor critical point [39], where it causes
the boiling crisis: the apparent contact angle growth induces the growth of dry area
under the bubbles, which in its turn triggers the complete heater dewetting.

1.2.5 Interfacial kinetic resistance

Up to now we considered the interface at a local equilibrium. This assumption holds
when phase change rates are smaller than some generally quite high value. Even for
moderate average evaporation rates, high local evaporation rates can be attained in
the contact line vicinity.

The non-equilibrium effects can be analyzed with the Schrage molecular-kinetic
theory of evaporation [9] by using the ideal gas assumption for the vapor. According
to this theory, the statistical distribution of the velocities of molecules is the Maxwell
distribution. If the average vapor velocity is zero and the vapor is at temperature 𝑇𝑉 ,
the mass flux perpendicular to a plane is

𝑝𝑉

√︄
𝑀

2𝜋𝑅𝑔𝑇𝑉
.
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When the vapor flows with a velocity 𝑣𝑉 perpendicularly to a plane, it is evident
that the mass fluxes 𝐽+ along v𝑉 and 𝐽− against to v𝑉 should differ and depend on
𝑣𝑉 because the velocity distribution becomes asymmetric. The expressions for them
read

𝐽+ = Γ(𝑎)𝑝𝑉

√︄
𝑀

2𝜋𝑅𝑔𝑇𝑉
, (27)

𝐽− = Γ(−𝑎)𝑝𝑉

√︄
𝑀

2𝜋𝑅𝑔𝑇𝑉
, (28)

where
Γ(𝑎) = exp(−𝑎2) + 𝑎

√
𝜋[1 + erf (𝑎)] ≃ 1 + 𝑎

√
𝜋

for a small

𝑎 =
𝑣𝑉√︁

2𝑅𝑔𝑇𝑉/𝑀
=

𝐽

𝑝𝑉

√︂
𝑅𝑔𝑇𝑉

2𝑀
.

The latter equality is obtained by using the vapor mass flux expression 𝐽 = 𝑣𝑉 𝜌𝑉
and the ideal gas equation.

Consider now the liquid-vapor interface at evaporation. It is assumed that a part
of molecules that come to the interface can be reflected by it so the actual incoming
flux arriving back to the liquid is smaller than 𝐽−

𝐽𝐿 = 𝑓 𝐽− = 𝑓 Γ(−𝑎)𝑝𝑉

√︄
𝑀

2𝜋𝑅𝑔𝑇𝑉
, (29)

where 𝑓 is called the evaporation coefficient. At equilibrium (𝐽 = 0), the incoming
flux would be equal to the outgoing flux

𝐽𝑉 = 𝑓 𝑝0

√︄
𝑀

2𝜋𝑅𝑔𝑇 𝑖
. (30)

The case 𝐽 > 0 differs from the case 𝐽 = 0 only by a smaller value of 𝐽𝐿 (given
by Eq. 29) while 𝐽𝑉 remains to be given by Eq. (30). Evidently, 𝑇 𝑖 = 𝑇𝑠𝑎𝑡 (𝑝0). By
writing 𝐽 = 𝐽𝐿 + 𝐽𝑉 one obtains

𝐽 =
2 𝑓

2 − 𝑓

√︄
𝑀

2𝜋𝑅𝑔

(
𝑝0√
𝑇 𝑖

− 𝑝𝑉√
𝑇𝑉

)
. (31)

The temperature is assumed to be continuous (𝑇 𝑖 = 𝑇𝑉 ) so the small interfacial
temperature jump [16] that may exist in some particular cases (like strong evaporation
into vacuum) is neglected so Eq. (31) becomes finally
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𝐽 =
2 𝑓

2 − 𝑓

√︄
𝑀

2𝜋𝑅𝑔𝑇 𝑖
(𝑝0 − 𝑝𝑉 ). (32)

For the (isothermal) evaporation into the open air, one can again use Eqs. (10-11) to
obtain

𝜌𝑖𝑉 = 𝜌0 − 𝐽𝑅𝑖𝑑𝑖 𝑓 𝑓 , (33)

where 𝜌𝑖
𝑉

is the interfacial vapor density; 𝑅𝑖
𝑑𝑖 𝑓 𝑓

is called the interfacial kinetic
resistance and is defined as

𝑅𝑖𝑑𝑖 𝑓 𝑓 =
2 − 𝑓

2 𝑓

√︄
2𝜋𝑀
𝑅𝑔𝑇𝑠𝑎𝑡

. (34)

The value of evaporation coefficient can be set to unity which is verified experimen-
tally [33].

For the pure vapor case, thanks to Eq. (8), one can linearize Eq. (32) by writing

𝑝0 − 𝑝𝑉 =
L𝜌𝐿𝜌𝑉

𝑇𝑠𝑎𝑡 (𝜌𝐿 − 𝜌𝑉 )
(𝑇 𝑖 − 𝑇𝑠𝑎𝑡 ),

that results in the expression

𝑇 𝑖 = 𝑇𝑠𝑎𝑡 + 𝑅𝑖𝐽L, (35)

where 𝑅𝑖 is the interfacial thermal resistance:

𝑅𝑖 =
2 − 𝑓

2 𝑓
𝑇𝑠𝑎𝑡

√︁
2𝜋𝑅𝑔𝑇𝑠𝑎𝑡/𝑀 (𝜌𝐿 − 𝜌𝑉 )

L2𝜌𝐿𝜌𝑉
. (36)

By combining the above expression with Eq. (26), one can write the final expres-
sion for the local temperature of the vapor-liquid interface

𝑇 𝑖 = 𝑇𝑠𝑎𝑡

[(
1 + Δ𝑝

L𝜌𝐿

)
+ 𝐽2

2L

(
1
𝜌2
𝑉

− 1
𝜌2
𝐿

)]
+ 𝑅𝑖𝐽L. (37)

as a function of Δ𝑝 and 𝐽 that can also vary along the interface.
One should note that 𝑅𝑖 is typically is a tiny quantity so its effect is notable only

at extremely high heat fluxes that can occur in the microregion.

1.3 Liquid flow in the wedge

The full Navier-Stokes equations in a wedge with a free curved boundary (i.e.
the gas-liquid interface) are quite complex to solve. In particular, no analytical
approach is possible in a general case so the only possible approach is numerical.
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However the numerical algorithms describing such a problem are still insufficiently
developed. The rare existing studies [1, 55] concern mainly the moving contact
line problem with no phase change. Fortunately, there is a powerful tool for such
studies: the lubrication approximation developed independently by Petroff [40] and
Reynolds [50] to study the thin film hydrodynamics. It is based on the smallness
of the Reynolds number (because of the small film thickness). The inertial terms
in the Navier-Stokes equations are thus unimportant and the hydrodynamics can be
described by the Stokes equations in 3D,

∇𝑝𝐿 = Δv,
∇ · v = 0,

(38)

where v is the liquid velocity and ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧) is the 3D differential
operator. As described in the following sections, these equations can be further
simplified by considering the liquid layer in the thin film approximation.

Note the essential role of the viscosity in the contact line region (sec. 1.1). For
this reason, the theoretical approaches based on the inviscid flow approximation are
not relevant and will not be considered here.

In general, the contact line problem should be considered as transient: evaporation
causes the progressive drying of the substrate. However a stationary regime where the
contact line is pinned by a defect on the solid is equally possible: the liquid is supplied
to the microregion from the liquid bulk to compensate exactly the evaporation losses.

 

CL x 

z 

solid  

micro 

gas  

liquid 

𝑛ሬԦ h 

Fig. 6 Geometry of the general contact line problem. The chosen direction of the normal to the
interface is shown.

To consider the apparent contact angle, a 2D geometry in the 𝑥 − 𝑧 plane (Fig. 6)
is sufficient. For thin fluid layers, the fluid is supposed to move mainly along 𝑥 axis,
i.e. 𝑣𝑥 ≫ 𝑣𝑧 , where v = (𝑣𝑥 , 0, 𝑣𝑧). In addition, the 𝑣𝑥 variation across the layer is
assumed to be much larger than along it: 𝜕𝑣𝑥/𝜕𝑧 ≫ 𝜕𝑣𝑥/𝜕𝑥. The Stokes equations
then reduce to:

𝜕𝑝𝐿

𝜕𝑥
= 𝜇

𝜕2𝑣𝑥

𝜕𝑧2 , (39)

𝜕𝑝𝐿

𝜕𝑧
= 0. (40)
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By taking the 𝑧 derivative of (39) and using (40) one arrives at the equation
𝜕3𝑣𝑥/𝜕𝑧3 = 0, the solution of which is

𝑣𝑥 = 𝐶1 + 𝐶2𝑧 + 𝐶3𝑧
2, (41)

where 𝐶1,2,3 are independent of 𝑧. They are to be determined from the boundary
conditions. The first of them defines the tangential stress at the free vapor-liquid
interface 𝑧 = ℎ(𝑥) to be equal to the surface tension gradient induced (Marangoni)
stress

𝜇
𝜕𝑣𝑥

𝜕𝑧
=
𝜕𝜎

𝜕𝑥
. (42)

The volume flux Φ flowing through the film at a given position 𝑥

Φ =

∫ ℎ

0
𝑣𝑥 (𝑧)d𝑧 (43)

serves as the second equation. The third condition is given by Eq. (3). The back
substitution of the solution into Eq. (39) written at the vapor-liquid interface results
in

𝜇Φ =
𝜕𝜎

𝜕𝑥

(
ℎ2

2
+ ℎ𝑙𝑠

)
+

(
ℎ3

3
+ ℎ2𝑙𝑠

)
𝜕Δ𝑝

𝜕𝑥
, (44)

where the equality 𝜕Δ𝑝/𝜕𝑥 = −𝜕𝑝𝐿/𝜕𝑥 has been used. It assumes the constant gas
pressure which can be justified by the small gas viscosity and density with respect
to those of the liquid, so the gas pressure gradient is much smaller.

By using the fluid mass conservation, Φ can also be expressed via the component
𝑣𝑛 = v · n of the liquid velocity normal to the vapor-liquid interface (positive when
directed along n, see Fig. 6):

Φ ≃
∫ 𝑥

𝑥𝐶𝐿

𝑣𝑛 (𝑥)d𝑥. (45)

Eq. (45) can thus be rewritten as

𝑣𝑛 =
𝜕Φ

𝜕𝑥
, (46)

where 𝑣𝑛 is related to the evaporation flux 𝐽 (24) at the interface via the mass
conservation law

𝐽 = (𝑣𝑖 − 𝑣𝑛)𝜌𝐿 . (47)

The normal interface velocity

𝑣𝑖 = −𝜕ℎ
𝜕𝑡

[
1 +

(
𝜕ℎ

𝜕𝑥

)2
]−1/2

≃ −𝜕ℎ
𝜕𝑡
, (48)

is considered to be positive if directed inside the liquid (as the vector n in Fig. 6).
Here the small slope approximation is applied.
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By injecting (44,47), and (48) into (46), one arrives finally at the expression [37]

𝜕

𝜕𝑥

[
ℎ

(
ℎ

2
+ 𝑙𝑠

)
𝜕𝜎

𝜕𝑥
+ ℎ2

(
ℎ

3
+ 𝑙𝑠

)
𝜕Δ𝑝

𝜕𝑥

]
= −𝜇

(
𝜕ℎ

𝜕𝑡
+ 𝐽

𝜌𝐿

)
. (49)

In the same, small slope approximation, the curvature

𝐾 =
𝜕2ℎ

𝜕𝑥2

[
1 +

(
𝜕ℎ

𝜕𝑥

)2
]−3/2

(50)

can be approximated as 𝐾 ≃ 𝜕2ℎ/𝜕𝑥2, and Eq. (25) reduces to

𝜎
𝜕2ℎ

𝜕𝑥2 = Δ𝑝 + 𝑝𝑟 . (51)

If both the slip, Marangoni and vapor recoil effects are neglected, Eq. (49) takes a
simpler form

𝜎
𝜕

𝜕𝑥

(
ℎ3

3
𝜕3ℎ

𝜕𝑥3

)
= −𝜇

(
𝜕ℎ

𝜕𝑡
+ 𝐽

𝜌𝐿

)
. (52)

The theory can be generalized to the 3D case by writing

𝜎∇ ·
[
ℎ3

3
∇(∇2ℎ)

]
= −𝜇

(
𝜕ℎ

𝜕𝑡
+ 𝐽

𝜌𝐿

)
, (53)

where ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦) is the 2D differential operator and ℎ = ℎ(𝑥, 𝑦, 𝑡).
One can distinguish several cases related to the CL motion. When the wedge is

immobile and stationary, 𝜕ℎ/𝜕𝑡 = 0. On the other hand, the CL motion is convenient
to consider in the reference where CL is immobile, in which, instead of the 𝜕ℎ/𝜕𝑡
term, one has

𝜕ℎ

𝜕𝑡
− 𝑣𝐶𝐿

𝜕ℎ

𝜕𝑥
, (54)

where the CL velocity 𝑣𝐶𝐿 is assumed to be positive at liquid receding. The 𝜕ℎ/𝜕𝑡
term describes now only the slope change. For a large liquid volume, this term is
much smaller with respect to the second, at least in the CL vicinity. This is why in
the next section it is neglected.

1.4 Boundary conditions

Eq. (49) is the fourth order differential equation. To solve it, one needs four boundary
conditions. In the partial wetting case considered here, two of them are geometrical
constraints defined at the CL,
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ℎ(𝑥 → 0) = 0,
𝜕ℎ/𝜕𝑥 |𝑥→0 = 𝜃𝑚𝑖𝑐𝑟𝑜 .

(55)

They are sufficient to describe the macroscopic liquid shape. However in the mi-
croscopic and intermediate regions (i.e. for the wedge geometry) other conditions
need to be imposed. The third boundary condition is given by the matching of the
pressure to its macroregion value, i.e. at 𝑥 → ∞. The interfacial pressure jump in
macroregion is expected to be much smaller than in other regions because of much
smaller 𝐾 and 𝐽. For this reason, the condition

Δ𝑝(𝑥 → ∞) = 0 (56)

is applied.
The fourth boundary condition is not straightforward. It comes form the regularity

of all the variables at the contact line. Indeed, from the physical point of view, the
measurable quantities cannot be infinite. It can be proven mathematically (cf. the
online supplementary material to the work of Janeček et al. [28]) that a regular
solution indeed exists for the case of the pure vapor.

The fourth boundary condition is specific to each mode of evaporation. However
some general features can be determined, in particular the 𝐽 asymptotics. We start
from Eq. (49), in which 𝜕ℎ/𝜕𝑡 is replaced by −𝑣𝐶𝐿𝜕ℎ/𝜕𝑥 as discussed in sec. 1.3. To
comply to the evaporation in the open air with no substrate heating, the Marangoni
term is omitted for this derivation (a more complete derivation can be found in sec.
2.1 below). One can integrate Eq. (49) (with the substitution of from 0 to 𝑥 and tend
𝑥 to 0 by assuming the finiteness of 𝐽 (𝑥 → 0). One readily obtains

𝑥
𝜕Δ𝑝

𝜕𝑥
=

𝜇

𝑙𝑠𝜃𝑚𝑖𝑐𝑟𝑜

[
𝑣𝐶𝐿 −

𝐽

𝜌𝐿𝜃𝑚𝑖𝑐𝑟𝑜

]
. (57)

If the pressure does not diverge at CL (i.e. Δ𝑝 saturates at 𝑥 → 0), the left hand
side is zero, so

𝐽 (𝑥 → 0) = 𝜃𝑚𝑖𝑐𝑟𝑜𝜌𝐿𝑣𝐶𝐿 . (58)

In the important particular case of immobile contact line, 𝐽 (𝑥 → 0) = 0.
Eq. (58) shows that a regular solution can be obtained at the contact line, in

spite of the no-slip boundary condition imposed at the solid-liquid interface: at
the microscopic scale, the interface advances (𝑣𝐶𝐿 < 0) by the curvature driven
condensation (𝐽 < 0) or recedes (𝑣𝐶𝐿 > 0) by evaporation (𝐽 > 0). Eq. (58) is easy
to interpret: in the reference of the fluid wedge, the whole amount of the fluid flow
created by the entrainment by the moving substrate is spent as a mass exchange at
the liquid-vapor interface.

Consider now the case of the isothermal CL motion with no overall mass exchange.
When the contact line advances (𝑣𝐶𝐿 < 0), the mass flux at the CL is negative so
condensation occurs in the vicinity of the CL. It means that 𝐽 (𝑠) should change sign
farther away from the CL so evaporation occurs there. It should exactly compensate
the condensed mass. A possibility of such an effect was already discussed by Pomeau
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[44], Reyes and Wayner [49]. Such an effect is discussed in detail by Janeček et al.
[29].

As the fourth boundary condition, one can use the finiteness of pressure at the
CL. Eq. (57) suggests a form [25, 37]

𝑥
𝜕Δ𝑝

𝜕𝑥

����
𝑥→0

= 0. (59)

Note the role of the Kelvin effect that is responsible for the explicit form of the
fourth boundary condition. If the Kelvin effect is neglected, the pressure jump at
the contact line cannot be identified explicitly thus forcing application of asymptotic
methods of solution instead of a generally simpler numerical treatment. The finiteness
of pressure and of evaporation flux clearly shows that the Kelvin effect alone is
sufficient to regularize all the physical quantities at the contact line.

2 Evaporation into pure vapor

Now that all the basic “bricks” of the microscale phenomena are explained, one
can consider two most important regimes of evaporation listed in sec. 1. First, the
evaporation of liquid into the atmosphere of its pure vapor is discussed. It is the
important case met in numerous industrial applications oriented to cooling, like
growth of bubbles in boiling, heat pipes, and sessile drop evaporation during the
spray cooling.

Near the contact line, the interfacial temperature 𝑇 𝑖 can vary along the interface
according to Eq. (37), so the Marangoni stress

𝜕𝜎

𝜕𝑥
= −𝛾 𝜕𝑇

𝑖

𝜕𝑥
, (60)

can be important. Here 𝛾 = −d𝜎/d𝑇 is positive for pure fluids.
A large amount of work has been done by many researchers to understand this

regime. One can cite the works by Anderson and Davis [2], Hocking [19], Moosman
and Homsy [34], Morris [35], Potash and Wayner [45], Rednikov and Colinet [48],
Stephan and Hammer [54] as the main milestones.

Since the vapor heat conductivity is much smaller than that of the liquid, the heat
flux into the vapor can be neglected, and the interfacial energy balance reads

𝑞𝑖𝐿 = L𝐽. (61)

One can see now that, in this regime, the mass evaporation flux is completely
defined by the heat transfer in the liquid: the liquid heat flux is spent to compensate
the latent heat of vaporization.

Similarly to the above hydrodynamics approach, one can use the thin film ap-
proximation to simplify the heat transfer problem in the contact line vicinity. First,
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the thermal inertia of the thin film is small and can be neglected so the problem to
solve is stationary. Second, the heat convection can be neglected at small scales with
respect to the heat conduction, so the temperature distribution in the liquid obeys the
equation

∇2𝑇𝐿 = 0. (62)

The boundary conditions are the fixed temperature both on the solid (where the
superheating Δ𝑇 is fixed) and on the free interface:

𝑇𝐿 (𝑧 = 0) = 𝑇𝑠𝑎𝑡 + Δ𝑇,

𝑇𝐿 (𝑧 = ℎ) = 𝑇 𝑖 .
(63)

One can use the small-slope approximation to solve this problem. The solution that
satisfies the boundary conditions (63) results in the heat flux

𝑞𝑖𝐿 = 𝑘𝐿
𝑇𝑠𝑎𝑡 + Δ𝑇 − 𝑇 𝑖

ℎ
. (64)

at the free interface.
By comparing Eqs. (61) and (64), one can see that in this regime the problem

is local: the mass flux at coordinate 𝑥 depends on the substrate and interfacial
temperatures at the same point.

By combining Eq. (64) with Eqs. (37,61), one obtains the flux

𝐽 =
Δ𝑇 − Δ𝑝𝑇𝑠𝑎𝑡/(L𝜌𝐿)

L(𝑅𝑖 + ℎ/𝑘𝐿)
− 𝑇𝑠𝑎𝑡

2L4𝜌2
𝑉

(Δ𝑇 − Δ𝑝𝑇𝑠𝑎𝑡/(L𝜌𝐿))2

(𝑅𝑖 + ℎ/𝑘𝐿)3 . (65)

under an assumption that the vapor recoil term in Eq. (37) is small (which is true in
most cases).

All the terms of the fourth order set of differential equations (49, 51) for the
unknown functions ℎ(𝑥) and Δ𝑝(𝑥) are now completely defined.

2.1 Fourth boundary condition for the case of pure vapor

To provide the temperature continuity, the interfacial temperature should be equal to
that of the solid at the contact line. Eq. (37) thus results in

Δ𝑝(𝑥 → 0) = L𝜌𝐿
𝑇𝑠𝑎𝑡

(Δ𝑇 − 𝑅𝑖𝐽 (𝑥 → 0)L) − 𝐽 (𝑥 → 0)2𝜌𝐿
2

(
1
𝜌2
𝑉

− 1
𝜌2
𝐿

)
. (66)

Similarly to sec. 1.4, to obtain 𝐽 (𝑥 → 0), Eq. (49) (now containing the Marangoni
term) is integrated from 0 to 𝑥, where 𝑥 is infinitesimally small. This results in

−𝛾 𝜕𝑇
𝑖

𝜕𝑥
+ 𝜃𝑚𝑖𝑐𝑟𝑜𝑥

𝜕Δ𝑝

𝜕𝑥
=

𝜇

𝑙𝑠𝜃𝑚𝑖𝑐𝑟𝑜

[
𝜃𝑚𝑖𝑐𝑟𝑜𝑣𝐶𝐿 −

𝐽)
𝜌𝐿

]
. (67)
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The 𝑇 𝑖 derivative can be obtained by developing Eq. (64) into the Taylor series
around ℎ = 0:

𝜕𝑇 𝑖

𝜕𝑥
= −L𝜃𝑚𝑖𝑐𝑟𝑜

𝑘𝐿
𝐽, (68)

where Eq. (61) is accounted for. The substitution into Eq. (67) results in the expression

𝑥
𝜕Δ𝑝

𝜕𝑥
=

𝜇

𝑙𝑠𝜃𝑚𝑖𝑐𝑟𝑜

[
𝑣𝐶𝐿 − 𝐽

(
1

𝜃𝑚𝑖𝑐𝑟𝑜𝜌𝐿
+ 𝑙𝑠L𝜃𝑚𝑖𝑐𝑟𝑜

𝜇𝑘𝐿
𝛾

)]
. (69)

By injecting the value of 𝐽 from Eq. (65) into Eq. (69) one obtains a differential
equation for Δ𝑝. Its solution [25] is quite straightforward and for this reason is not
detailed here. From it, one obtains explicitly that Δ𝑝 saturates at 𝑥 → 0 so Eq. (59)
indeed holds. Note that such a behavior is different from the CL dynamics [18] for
nonvolatile liquids, where the pressure boundary condition cannot be written and
the limit (59) is nonzero.

Finally, Eqs. (59, 69) result in

𝐽 (𝑥 → 0) = 𝑣𝐶𝐿
(

1
𝜃𝑚𝑖𝑐𝑟𝑜𝜌𝐿

+ 𝑙𝑠L𝜃𝑚𝑖𝑐𝑟𝑜
𝜇𝑘𝐿

𝛾

)−1
. (70)

The pressure boundary condition is easily obtained by substitution of Eq. (70) into
Eq. (66).

In the particular case of the immobile contact line, 𝐽 (𝑥 → 0) and

Δ𝑝(𝑥 → 0) = L𝜌𝐿Δ𝑇
𝑇𝑠𝑎𝑡

. (71)

This formula is similar to the complete wetting case [47]. In such a situation, 𝐽 also
vanishes at the left domain border (which corresponds to the flat film at 𝑥 → −∞,
cf. Fig. 4a). In this case, the boundary condition exactly coincides with the condition
(71) written however for 𝑥 → −∞. Note that for 𝑅𝑖 = 0 and when the vapor recoil
effect is neglected, Eq. (71) describes also the moving CL case, cf. Eq. (66).

The evaporation flux (70) is proportional to 𝑣𝐶𝐿 . When the contact line advances
(𝑣𝐶𝐿 < 0), the heat flux at the CL becomes negative. It means that 𝐽 (𝑥) changes
sign and condensation occurs in an extremely small vicinity of the CL.

As the fourth boundary condition, one can use either the pressure derivative (59)
or directly the pressure value (66) with the substitution of the mass flux (70).

2.2 Asymptotic analysis for immobile contact line

The asymptotic analysis is helpful to provide some general idea of the behavior of
the apparent contact angle because it results in analytical expressions. It is possible
for some simple problem statements, by neglecting most physical effects.
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2.2.1 Partial wetting and small superheating

One of the main goals of a microregion model is the apparent contact angle. It turns
out to be possible to obtain an analytic result for its variation with Δ𝑇 when it is
small enough. This result is possible to be obtained for the “minimal complexity”
problem, while accounting only for the Kelvin effect, which is auto-sufficient to relax
the contact line singularity mentioned in sec. 1.1. The set of equations to be solved
is the following:

𝜎
𝜕2ℎ

𝜕𝑥2 = Δ𝑝, (72a)

𝜕

𝜕𝑥

(
ℎ3

3
𝜕Δ𝑝

𝜕𝑥

)
= 𝜇

𝑘𝐿𝑇𝑠𝑎𝑡

L2𝜌2
𝐿

Δ𝑝 − L𝜌𝐿Δ𝑇/𝑇𝑠𝑎𝑡
ℎ

(72b)

with the boundary conditions (55, 56, 71). The scales 𝜎/(L𝜌𝐿), L𝜌𝐿 and 𝑇𝑠𝑎𝑡 are
used to make the lengths, the pressure jump and the superheating dimensionless,
respectively. The dimensionless counterparts of Eqs. (72) read

𝜕2 ℎ̃

𝜕𝑥2 = Δ𝑝,
𝜕

𝜕𝑥

(
ℎ̃3

3
𝜕Δ𝑝

𝜕𝑥

)
= 𝑁

Δ𝑝 − 𝜀
ℎ̃

, (73a)

Δ𝑝(𝑥 → ∞) = 0, (73b)
ℎ̃(𝑥 = 0) = 0, Δ𝑝(𝑥 = 0) = 𝜀, (73c)
𝜕ℎ̃/𝜕𝑥 | 𝑥̃=0 = 𝜃𝑚𝑖𝑐𝑟𝑜, (73d)

where 𝑁 = 𝜇𝑘𝐿𝑇𝑠𝑎𝑡/𝜎2 and 𝜀 = Δ𝑇/𝑇𝑠𝑎𝑡 .
We seek a solution by expanding the pressure jump Δ𝑝 and shape ℎ̃ in a regular

perturbation series in 𝜀 [25]:

Δ𝑝 = 𝑝0 + 𝜀𝑝1 + O(𝜀2), ℎ̃ = ℎ̃0 + 𝜀ℎ̃1 + O(𝜀2). (74)

One needs to substitute (74) into the set (73) and collect terms of the same order in
𝜀. In the zeroth order one obtains 𝑝0 = 0 and ℎ̃0 = 𝜃𝑚𝑖𝑐𝑟𝑜𝑥.

The equation for 𝑝1

ℎ̃0
𝜕

𝜕𝑥

(
ℎ̃3

0
𝜕𝑝1
𝜕𝑥

)
=𝛼2 (𝑝1 − 1), (75a)

𝑝1 (𝑥 = 0) =1, (75b)
𝑝1 (𝑥 → ∞) =0, (75c)

where 𝛼 =
√

3𝑁/𝜃2
𝑚𝑖𝑐𝑟𝑜

, does not contain ℎ̃1. One can easily obtain its solution (e.g.
with the Wolfram Mathematica software) in terms of the modified Bessel functions
𝐼1, 𝐾1 of the first order

𝑝1 (𝑥) = 1 + 𝐶1
𝐾1 (𝛼/𝑥)

𝑥
+ 𝐶2

𝐼1 (𝛼/𝑥)
𝑥

. (76)
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where 𝐶1, 𝐶2 are integration constants. Since 𝐼1 (·) diverges at infinity, the boundary
condition (75b) requires 𝐶2 = 0. Since 𝐾1 (𝑧 → 0) ∼ 𝑧−1, the second constant
𝐶1 = 𝛼 is determined from (75c); the solution for Δ𝑝(𝑥) is thus

Δ𝑝 = 𝜀 − 𝜀 𝛼
𝑥
𝐾1

(𝛼
𝑥

)
+ O(𝜀2). (77)

The condition (75b) turns out to be satisfied automatically since 𝐾1 (𝑧 → ∞) →
0 exponentially. According to Eqs. (73a), the slope at infinity can be found by
integrating Δ𝑝,

𝜃𝑎𝑝𝑝 = 𝜃𝑚𝑖𝑐𝑟𝑜 + 𝛼𝜀
∫ ∞

0

[
1
𝑧2 − 1

𝑧
𝐾1 (𝑧)

]
d𝑧 = 𝜃𝑚𝑖𝑐𝑟𝑜 +

𝛼𝜀𝜋

2
.

By returning to the dimensional variables, one obtains the final expression for
the apparent contact angle in terms of the microscopic contact angle within the first
order approximation:

𝜃𝑎𝑝𝑝 = 𝜃𝑚𝑖𝑐𝑟𝑜 +
𝜋Δ𝑇

2𝜎𝜃2
𝑚𝑖𝑐𝑟𝑜

√︄
3𝜇𝑘𝐿
𝑇𝑠𝑎𝑡

. (78)

One can see that 𝜃𝑎𝑝𝑝 varies linearly with the superheating. Note that the slope
diverges for 𝜃𝑚𝑖𝑐𝑟𝑜 → 0, i.e. the complete wetting, which is a well-known behavior
[47]. The asymptote (78) is shown in Fig. 10c below.

A similar result can be obtained in the framework of another approach where the
Kelvin effect is neglected but both the hydrodynamic slip (sec. 1.2.1) and interfacial
thermal resistance (sec. 1.2.5) are accounted for [24]:

𝜃𝑎𝑝𝑝 = 𝜃𝑚𝑖𝑐𝑟𝑜 +
3𝜇Δ𝑇

𝜌𝐿L𝜎𝜃3
𝑚𝑖𝑐𝑟𝑜

𝑅𝑖
𝑓

(
𝑙𝑠

𝑅𝑖𝑘𝐿

)
,

where 𝑓 (·) is a function of the order one. Note that the simultaneous introduction of
both these effects is necessary to relax the contact line singularity. It is even possible
to extend this result for larger Δ𝑇 [3, 19]:

𝜃4
𝑎𝑝𝑝 = 𝜃4

𝑚𝑖𝑐𝑟𝑜 +
12𝜇Δ𝑇
𝜌𝐿L𝜎𝑅𝑖

log
(
𝑒𝜃𝑚𝑖𝑐𝑟𝑜𝑙𝑠

𝜃𝑎𝑝𝑝𝑅
𝑖𝑘𝐿

)
. (79)

However, a practical implementation of this model is more complex than the approach
based on the Kelvin effect.

2.2.2 Partial wetting and large superheating

We consider again the set (72) but use a different scaling of variables [28]. To find it,
one introduces 𝜃𝑎𝑝𝑝ℓ𝐾 as a reference value for ℎ, where ℓ𝐾 is a reference value for 𝑥.
By balancing two Δ𝑝-containing terms in Eq. (72b) (the third term is not meaningful
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as it can be easily eliminated by shifting of Δ𝑝 by Δ𝑝(𝑥 → 0)), one gets

ℓ𝐾 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜃2
𝑎𝑝𝑝𝜌𝐿L

. (80)

We therefore make the solution dimensionless using

ℎ = 𝜃𝑎𝑝𝑝ℓ𝐾 ℎ̃(𝑥) , 𝑥 = 𝑥/ℓ𝐾 ,

The dimensionless governing equations have the same form as (73a-73c), where 𝑁
is now replaced by 1, and the superheating parameter becomes

𝜀 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜎𝜃3

𝑎𝑝𝑝

Δ𝑇

𝑇𝑠𝑎𝑡
(81)

The boundary condition (73d) is replaced by

𝜕ℎ̃/𝜕𝑥 | 𝑥̃=0 = 𝜃𝑚𝑖𝑐𝑟𝑜/𝜃𝑎𝑝𝑝 . (82)

Like in the previous section, one can proceed by expanding bothΔ𝑝 and ℎ̃ in a regular
perturbation series in 𝜀. The solution for Δ𝑝 is just like in the previous section:

One mentions that, with the present scaling, the boundary condition (73b) is
equivalent to ℎ̃′ (𝑥 → ∞) = 1. Therefore, by using this expression to define a
background solution, the asymptotic expansions are

Δ𝑝 = 𝜀𝑝1 + O(𝜀2), ℎ̃ = 𝑥 + 𝜀ℎ̃1 + O(𝜀2). (83)

The solution is exactly like (77) but with 𝛼 = 1. It can be integrated from ∞ to 0,
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Fig. 7 Ratio of the microscopic and apparent contact angles as a function of the superheating
parameter. Numerical solution: solid line; asymptotic expansion (84): dashed line.

which results in
𝜃𝑚𝑖𝑐𝑟𝑜

𝜃𝑎𝑝𝑝
= 1 − 𝜋

2
𝜀 + O(𝜀2), (84)

shown as a dashed line in Fig. 7.
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The most important feature of the curve 𝜃𝑚𝑖𝑐𝑟𝑜/𝜃𝑎𝑝𝑝 (𝜀) is the existence of a
terminal point 𝜀𝑐 ≃ 0.297; note that the linear approximation (84) overestimates
𝜀𝑐 by a factor ≃ 2. When 𝜀 approaches 𝜀𝑐, 𝜃𝑎𝑝𝑝 ≫ 𝜃𝑚𝑖𝑐𝑟𝑜, which means that the
terminal point can be interpreted as corresponding to the large Δ𝑇 asymptotics. If
one fixes 𝜀 = 𝜀𝑐 in Eq. (81), the asymptotic expression for large Δ𝑇 follows:

𝜃𝑎𝑝𝑝 =

(√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜀𝑐𝜎

Δ𝑇

𝑇𝑠𝑎𝑡

)1/3

. (85)

It is natural that at large Δ𝑇 , 𝜃𝑎𝑝𝑝 becomes independent of 𝜃𝑚𝑖𝑐𝑟𝑜, i.e. of its value
at Δ𝑇 = 0. This asymptote is shown in Fig. 10c below.

From Fig. 7, the terminal point corresponds to 𝜃𝑚𝑖𝑐𝑟𝑜 = 0, which means that
Eq. (85) is the exact solution corresponding to this case. Since 𝜃𝑎𝑝𝑝 is an increasing
function of 𝜃𝑚𝑖𝑐𝑟𝑜 at a fixed Δ𝑇 , Eq. (85) provides the precise lower bound for 𝜃𝑎𝑝𝑝
for a given Δ𝑇 .

It should be stressed that the specific asymptotic expressions for 𝜃𝑎𝑝𝑝 may be
invalid when other microscopic effects are accounted for. However the general ten-
dency suggested by the asymptotic formulas remains valid. Among such general
features one can list

• fast growth with Δ𝑇 for small Δ𝑇 and much weaker growth at large Δ𝑇 ,
• strong dependence on 𝜃𝑚𝑖𝑐𝑟𝑜 for small Δ𝑇 and a weaker dependence for large Δ𝑇 ,
• increase of the difference 𝜃𝑎𝑝𝑝 − 𝜃𝑚𝑖𝑐𝑟𝑜 with 𝜇 and decrease with 𝜎.

2.3 Parametric study of the apparent contact angle

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40

ΔΤ (K)

θ ap
p (

°)

θ
micro

=60°

50°

20°

θ
micro

=5°

40°

30°

10°

Fig. 8 Variation of the apparent contact angle with Δ𝑇 for different microscopic contact angle
𝜃𝑚𝑖𝑐𝑟𝑜 for water at 1 atm and 𝑙𝑠 = 10 nm.
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In addition to what was mentioned above, in this section we discuss the impact
of other parameters on the apparent contact angle for the case of the immobile
CL (in which case the apparent and Voinov angles coincide, see sec. 2.4 below).
In general all the fluid parameters impact the apparent contact angle. But some
influence stronger than others. The following study has been conducted to show their
impact and explain what it is.

The influence of two most important parameters, namely the solid superheating
Δ𝑇 and the microscopic contact angle 𝜃𝑚𝑖𝑐𝑟𝑜 is shown in Fig. 8. These curves have
been calculated with the above model for the fluid parameters assumed constant. The
situation shown in Fig. 8 is quite common: 𝜃𝑎𝑝𝑝 grows with both 𝜃𝑚𝑖𝑐𝑟𝑜 and Δ𝑇 .

In the following, we discuss the impact of various microscopic-scale physical
phenomena on the behavior of various parameters in the microregion, including the
most important of them, the apparent contact angle. Unless mentioned specifically,
the numerical calculations discussed here [23] are performed for water at 10 MPa,
𝜃𝑌 = 15◦, 𝑙𝑠 = 10 nm. We use the equations (72) as a reference and add various
effects to study their impact.

2.3.1 Impact of surface forces for partial wetting

The surface forces can be introduced into the partial wetting theory as explained
in sec. 1.2.3, with the regularized at ℎ → 0 disjoining pressure (20). Note that,
as mentioned in sec. 1.2.3, the disjoining pressure leads to the difference between
𝜃𝑚𝑖𝑐𝑟𝑜, i. e. the slope at a scale smaller than that of the surface forces, and 𝜃𝑌 , i.e.
the static equilibrium contact angle at a larger (but still nanometer) scale.

The numerical calculations discussed here [26] use the following values related
to the surface forces: 𝜃𝑚𝑖𝑐𝑟𝑜 = 1◦, ℎ𝑚 = 1 nm and 𝐴 = 3.7 · 10−20 J.

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

h 
(n

m
)

x (nm)

ΔT = 0.5 K

ΔT = 0

15°

Π≠0

Π=0

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

h 
(n

m
)

x (nm)

ΔT = 0.5 K

ΔT = 0

15°

Π≠0

Π=0

(b)(a)

Fig. 9 Wedge shape computed for 𝜃𝑌 = 15◦ with and without the impact of surface forces. (a)
Close nanometric vicinity of the contact line. (b) Large scale view [23].
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Examples of the computed shape of the liquid-vapor interface with and without
accounting for the disjoining pressure effect are shown in Fig. 9. One can see that
the macroscopic shapes in Fig. 9b for the cases Π = 0 and Π ≠ 0 are very close.
The curves corresponding to Π = 0 and Π ≠ 0 are indistinguishable at this scale
for Δ𝑇 = 0. The impact of the surface forces is visible (Fig. 9a) only on a scale
comparable to the characteristic scale (cf. sec. 2.2.2)

ℓ𝑚𝑖𝑐𝑟𝑜𝐾 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡

𝜃2
𝑚𝑖𝑐𝑟𝑜

𝜌𝐿L
, (86)

which is ≃ 7.2 nm here. The wedge shape follows the trend schematized in Fig. 4.
One can check that the variation of the parameters 𝐴, ℎ𝑚 and 𝜃𝑚𝑖𝑐𝑟𝑜 at a fixed 𝜃𝑌 do
not impact the apparent contact angle either [23]. For this reason, in the remaining
part of this chapter we neglect the surface forces, so 𝜃𝑚𝑖𝑐𝑟𝑜 = 𝜃𝑌 according to
Eq. (19).

2.3.2 Impact of the slip length

When using the scaling based on ℓ𝑚𝑖𝑐𝑟𝑜
𝐾

(86), the governing equation including the
slip length can be reduced to the following form using an approach like in sec. 2.2.2:

( ℎ̃ + R) 𝜕
𝜕𝑥

[(
𝛽ℎ̃2 + ℎ̃3

) 𝜕3 ℎ̃

𝜕𝑥3

]
=
𝜕2 ℎ̃

𝜕𝑥2 − 𝜀𝑚𝑖𝑐𝑟𝑜,

where the slip parameter is

𝛽 = 3𝑙𝑠/(𝜃𝑚𝑖𝑐𝑟𝑜ℓ𝑚𝑖𝑐𝑟𝑜𝐾 ).

𝜀𝑚𝑖𝑐𝑟𝑜 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜎𝜃3

𝑚𝑖𝑐𝑟𝑜

Δ𝑇

𝑇𝑠𝑎𝑡

is the dimensionless superheating, and

R =
𝑙𝑅

𝜃𝑚𝑖𝑐𝑟𝑜ℓ
𝑚𝑖𝑐𝑟𝑜
𝐾

. (87)

is the dimensionless interfacial resistance (cf. sec. 1.2.5). The scale 𝑙𝑅 = 𝑅𝑖𝑘𝐿 is an
equivalent thickness of the liquid layer of the thermal resistance 𝑅𝑖 . As an example,
𝑙𝑅 = 2 nm for water at 10 MPa, with 𝑅𝑖 given by Eq. (36). The constraint R = 0 is
artificially imposed here to show the impact of the slip length alone; the impact of 𝑅𝑖
is considered in the next section. Consequently, 𝜀𝑚𝑖𝑐𝑟𝑜 and 𝛽 are the only parameters
defining the behavior of the system.

One can argue that the scales considered in Fig. 10a are too small to be physically
reasonable within a continuum medium approach. The resolving such small scales
is however necessary to find a correct solution at a larger 𝑥.
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Fig. 10 Pressure and heat flux spatial variations and the apparent contact angle as a function of
superheating for different slip lengths; R = 0 [23].

The hydrodynamic slip is well-known to remove the CL singularity for moving
contact line (in the absence of the Kelvin effect). In case of its implementation
for the evaporation with immobile CL [19, 24], similarly to the moving CL case,
one obtains the logarithmically divergent Δ𝑝(𝑥 → 0). While such a divergence is
integrable (it does not case the divergence of integral properties like viscous energy
dissipation) this is still nonphysical as the pressure, being a measurable quantity,
cannot be infinite. The Kelvin effect causes the finite pressure at CL, which is more
coherent from the physical viewpoint. With 𝑙𝑠 increase, Δ𝑝 decays slower along the
wedge (Fig. 10a) so in the limit 𝛽 → ∞ the dependence Δ𝑝(𝑥) approaches a straight
line in the semi-logarithmic scale (indicating the logarithmic pressure divergence)
and the pressure saturation at 𝑥 → 0 eventually disappears in the limit 𝛽 → ∞.
For a fixed 𝑥, the pressure jump thus reduces with the 𝑙𝑠 increase. Since 𝜃𝑎𝑝𝑝 is
proportional to

∫ ∞
0 Δ𝑝(𝑥)𝑑𝑥, it decreases with 𝑙𝑠 (Fig. 10c).

The liquid-vapor interface heat flux variation along the liquid wedge (Fig. 10b)
shows huge heat fluxes localized however in a tiny CL vicinity. The maximum of
the local heat flux increases with the slip length. This is due to the fact that pressure
jump (and thus the interface temperature) both saturate at a smaller scale, where
the liquid thickness (and thus the conductive thermal resistance) are smaller so the
flux is larger. However such flux increase is not strong enough to cause the pressure
increase. In Fig. 10c the curves 𝜃𝑎𝑝𝑝/𝜃𝑚𝑖𝑐𝑟𝑜 − 1 vs. 𝜀𝑚𝑖𝑐𝑟𝑜 are compared for three
values of 𝛽 = 0, 0.53 and 2.7. The slopes of the curves for small and large 𝜀𝑚𝑖𝑐𝑟𝑜
are close to those for the case 𝛽 = 0 described by Eqs. (78, 85). It is evident that the
apparent contact angle decreases with the slip length, however the impact of the slip
length is weak for 𝛽 < 1. This is an expected behavior as the crossover to the regime
controlled by the slip rather than Kelvin effect is expected at 𝛽 ∼ 1, cf. Fig. 11c
below.
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2.3.3 Impact of the interface thermal resistance

The impact of the interface thermal resistance 𝑅𝑖 (see section 1.2.5) is studied here.
Fig. 11a shows the interfacial heat flux variation along the liquid wedge for four
different 𝑙𝑅 values. The length scale at which the flux maximum is attained, remains
nearly unaffected by 𝑅𝑖 . As expected, the interfacial resistance causes the heat flux
reduction. Consequently, the pressure drop becomes smaller, which leads to a smaller
apparent contact angle (see Figs. 11b, 11c).
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Fig. 11 Impact of the interfacial kinetic resistance on the microregion parameters for water at
10 MPa and Δ𝑇 = 0.5 K [23].

In Fig. 11b the variation of the parameter 𝜃𝑎𝑝𝑝/𝜃𝑚𝑖𝑐𝑟𝑜−1 with the dimensionless
superheating 𝜀𝑚𝑖𝑐𝑟𝑜 is shown for three values of R = 0, 0.01 and 1 (which correspond
to 𝑙𝑅 = 0, 1 nm and 10 nm for water at 10 MPa and 𝜃𝑚𝑖𝑐𝑟𝑜 = 5◦). It is evident that the
apparent contact angle decreases with R, however the variation is weak. Similarly
to Fig. 10c, the curves for R ≠ 0 look shifted with respect to the curve R = 0. The
slopes for small and large 𝜀𝑚𝑖𝑐𝑟𝑜 seem to be the same as for the case 𝑅𝑖 = 0. As for
simultaneous account of 𝑅𝑖 and 𝑙𝑠 , they both lead to the 𝜃𝑎𝑝𝑝 reduction (Fig. 11c).
An especially fast 𝜃𝑎𝑝𝑝 decrease starts from 𝛽 = 1.

2.4 Simultaneous contact line motion and evaporation

The contact line receding is quite common at evaporation; its impact on the apparent
contact angle thus needs to be investigated. The moving contact line problem is more
complex than its static counterpart. The difficulty comes from the flow caused by the
contact line motion that is not limited to close contact line vicinity. This becomes
evident if one considers a liquid wedge moving along a solid, or rather solid moving
with respect to the liquid wedge (which is equivalent). Because of the viscous forces,
the liquid is drugged by the moving solid not only near the contact line, but all along
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Fig. 12 Hierarchy of length scales in the moving CL problem with phase change.

the wedge. Thanks to the change of liquid thickness, the hydrodynamic stress caused
by this motion appears to be large only in some vicinity of the contact line, which is
however larger than the vicinity where the evaporation effects are important. One can
show that, in general, three scales can be identified (Fig. 12) in the hierarchy. At the
smallest scale, the mass exchange defines the interfacial curvature and the impact of
the contact line motion is negligible. Therefore this region can be assimilated to the
microregion considered for the immobile contact line (Fig. 12a). Its characteristic
size will be called the Voinov length ℓ𝑉 ∼ 100 nm for the reasons that will be evident
later on. The macroscopic length scale 𝐿 is governed by the capillarity and gravity
forces, and possibly the macroscopic fluid motion around the drop or the bubble
(Fig. 12c). Typically, 𝐿 ∼ 1 mm, but it depends on the problem. In between these
two scales lies an intermediate region (Fig. 12b) where the impact of mass exchange
is negligible and the interfacial profile is defined by the flow caused by the contact
line motion; the relevant phenomena here are the surface tension and viscosity.

Eq. (49) can describe all the above scales (of course, within the limits of appli-
cability of the lubrication approximation). If the gravity or other external forces are
important, they should be included into the equation. There are two possible ways
of solving such a problem. In principle, one can calculate it straightforwardly by
numerics. However this is not easy as one needs to resolve both small and large
scales, which requires application of heterogeneous adaptive grids that are often
cause numerical instabilities for these nonlinear differential equations. Alternatively,
thanks to the strong scale difference between small and large scales, one can apply
a multi-scale approach. It consist in using a mathematical method called asymptotic
matching two times. First, one couples the micro and intermediate regions and then
intermediate and macro regions to obtain the full solution.
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2.4.1 Matching of microscopic and intermediate regions

The impact of the CL motion will be considered with the “minimal complexity” set
of equations, where among all the microscopic phenomena, only the Kelvin effect
is accounted for [28]. This means that the fluid flow in the wedge is described by
Eq. (52) in the reference, where CL is immobile; the 𝜕ℎ/𝜕𝑡 term is replaced by two
terms (54). As the macroregion is not considered, the transient term can be neglected
and only the 𝑣𝐶𝐿-containing term remains:

𝜕

𝜕𝑥

(
ℎ3

3
𝜕Δ𝑝

𝜕𝑥

)
= 𝜇𝑣𝐶𝐿

𝜕ℎ

𝜕𝑥
+ 𝜇 𝑘𝐿𝑇𝑠𝑎𝑡

L2𝜌2
𝐿

Δ𝑝 − L𝜌𝐿Δ𝑇/𝑇𝑠𝑎𝑡
ℎ

, (88)

where Δ𝑝 is defined by Eq. (72a), with the boundary conditions (55, 56, 71). While
comparing two terms in the r.h.s. of Eq. (88), one can see that, at large ℎ, the mass
exchange term is small so the contact line motion term defines the wedge curvature.
Inversely, near the contact line, the contact line motion term is smaller. This kind of
behavior is typical for the multi-scale problems.

The asymptotic matching consists in solving two separate problems. The first is in
the “inner” region (microregion in the first problem), and the second, in the “outer”
region (intermediate region in the first problem). As discussed above, in the inner
region, the problem (72) should be solved (i.e. Eq. (88) with no 𝑣𝐶𝐿 term), while in
the outer, the equation

𝜎
𝜕

𝜕𝑥

(
ℎ3

3
𝜕3ℎ

𝜕𝑥3

)
= 𝜇𝑣𝐶𝐿

𝜕ℎ

𝜕𝑥
(89)

satisfying the boundary condition (56). This problem describes the moving contact
line with no phase change [17]. According to the asymptotic matching technique,
the boundary conditions at 𝑥 → ∞ in the inner region should match to 𝑥 → 0 in the
outer. They should be found during the solution.

After integrating once, Eq. (89) reduces to

𝜎
𝜕3ℎ

𝜕𝑥3 =
3𝜇𝑣𝐶𝐿
ℎ2 . (90)

Such a problem has an asymptotic (Cox-Voinov) solution first found by Voinov [57]
far from the contact line: (

𝜕ℎ

𝜕𝑥

)3
= 𝜃3

𝑉 − 9𝐶𝑎 log
𝑥

ℓ𝑉
(91)

where 𝐶𝑎 = 𝜇𝑣𝐶𝐿/𝜎 is the capillary number. For the receding case (𝐶𝑎 > 0),
the situation is more complex; Eq. (91) is valid when the second term on the right
hand side is sufficiently smaller than the first (below the dynamic wetting transition
[13, 52]) because otherwise it cannot be matched to the macroscopic region.

It is evident now that the Voinov contact angle 𝜃𝑉 is the slope at 𝑥 → ∞ for the
micoregion problem, i.e. at 𝐶𝑎 = 0. In our case, the slope given by the micoregion
problem saturates at 𝑥 → ∞, i.e. corresponds to the apparent contact angle discussed
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above. From now on, it is called 𝜃𝑉 as the apparent contact angle is a result of not
only the evaporation but also the contact line motion (Fig. 12c).

2.4.2 Matching between microscopic and intermediate regions

The scaling

ℓ𝐾 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜃2
𝑉
𝜌𝐿L

,

ℎ = 𝜃𝑉ℓ𝐾 ℎ̃(𝑥) , 𝑥 = 𝑥/ℓ𝐾 ,

is similar to that defined in Eq. (80) (with 𝜃𝑉 equivalent to 𝜃𝑎𝑝𝑝 of sec. 2.2.2). The
dimensionless governing equation reads

( ℎ̃′′′ ℎ̃3)′ = 𝛿 ℎ̃′ + ℎ̃
′′ − 𝜀
ℎ̃

, (92)

where

𝜀 =

√︁
3𝜇𝑘𝐿𝑇𝑠𝑎𝑡
𝜎𝜃3

𝑉

Δ𝑇

𝑇𝑠𝑎𝑡

and
𝛿 =

3𝐶𝑎
𝜃3
𝑉

.

To solve this problem, we use an expansion

ℎ̃ = ℎ̃0 + 𝛿 ℎ̃𝛿 + O(𝛿2).

The zeroth order corresponds to the equations considered in sec. 2.2.2. The first
order equation solved in the outer region results in the linearized version

ℎ̃′ = 1 − 𝛿 log(𝑥ℓ𝐾/ℓ𝑉 ). (93)

of Eq. (91). The full numerical solution is the solid line in Fig. 13a. The full solution
is shown here together with the inner and outer solutions. The curves are shown in
semi-logarithmic scale, in which the outer solution (93) is a straight line. This line
can be obtained as a fit of the full solution for large 𝑥. According to Eq. (93), the
abscissa of the outer solution for ℎ̃′ = 1 gives the Voinov length ℓ𝑉 . Its dependence
on 𝜀 is shown in Fig. 13b.

The multi-scale approach developed above for the case of the Kelvin effect can
be generalized for any microregion description. As shown above (cf. Snoeijer and
Andreotti [52] for a review) the hydrodynamic flow generated at the intermediate
length scale (say, in between 100 nm and 10 𝜇m from CL, Fig. 12b) is independent
of the specific details of the microregion and the relative contribution of different
microscale effects discussed in sec. 1. In fact they influence the intermediate re-



34 Contents

0.85

0.9

0.95

1

10-3 10-2 10-1 100 101 102 103

h'
 

~

θ
micro

/θ
V

x /  
K

V
 /  

K

outer

inner

(a) Solution for 𝜀 = 0.08 and 𝛿 = −0.07.
The dash dotted line corresponds to the in-
ner solution (𝛿 = 0). The dashed line corre-
sponds to the outer solution (93).

0

0.5

1

1.5

2

2.5

3

3.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

V
 / 

 K
 

ε
ε

c

(b) The Voinov length ℓ𝑉 as a function of
the dimensionless superheating of the solid.

Fig. 13 Matching of the micro and intermediate regions [28].

gion through only two parameters, the Voinov length ℓV corresponding to the size
of microregion and Voinov angle. The specific expression ℓV depends on the mi-
croregion model. For example, for the hydrodynamic slip model in isothermal case,
ℓ𝑉 = ℓ𝑠 = 3𝑙𝑠/(𝑒 𝜃𝑉 ) [13]. The complete wetting case is different because ℓ𝑉
depends on the CL velocity: ℓV = 0.63(𝐴/6𝜋𝜎)1/2/𝐶𝑎2/3 [42].

Δ

θ

θ

Fig. 14 𝜃𝑎𝑝𝑝 as a function of the wall superheating Δ𝑇 and the CL velocity (𝑣𝐶𝐿 > 0 at receding)
calculated for water at atmospheric pressure; 𝑥𝑚𝑎𝑥 = 10 𝜇m and 𝜃𝑚𝑖𝑐𝑟𝑜 = 40◦.
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Instead of using the above asymptotic matching approach, the set of equations
(49, 51, 65) with the boundary conditions (55, 56, 66, 70) can be solved numerically
for the system of interest. However, as Eq. (91) shows, the slope depends (although
weakly) on the scale at which it is defined. As a macroscopic scale, one can use a
fixed right boundary 𝑥𝑚𝑎𝑥 of the integration domain so that the boundary condition
(56) is imposed at 𝑥 = 𝑥𝑚𝑎𝑥 . An example of such a calculation is shown in Fig. 14.
It can be checked [26] that it obeys the Cox-Voinov law.

2.4.3 Matching to macroscopic region: drop retraction

The Cox-Voinov law (91) is an extremely important result of matching of the micro-
scopic and intermediate regions (cf. Fig. 12). However a definition of the apparent
contact angle as a slope at a coordinate 𝑥 is still vague as it depends (although
weakly) on an unknown variable 𝑥. For practical applications, 𝜃𝑎𝑝𝑝 should thus be
determined at a macroscopic scale. This means that the second matching procedure,
between intermediate and macroscopic regions, should be applied. We discuss next
an example of such a matching for the case of the drop geometry. It was first done
by Pismen and Eggers [42] for the complete wetting case, with no mass exchange.
We generalize it here for any microregion model, and show that it can be applied for
the evaporation case (under an assumption).

2R

app

Fig. 15 Sessile drop on a flat substrate.

Consider a drop on a flat substrate (Fig. 15), small enough so the gravity does not
impact its shape. Let it be out of equilibrium slowly spreading or retracting to gain
an equilibrium shape, possibly due to the evaporation effect in the microregion. In
the case of cylindrical symmetry, ℎ = ℎ(𝑟, 𝑡) (where 𝑟 =

√︁
𝑥2 + 𝑦2), the evaporation

loss in the macroregion is neglected, and Eq. (53) reduces to

−3
𝜇

𝜎

𝜕ℎ

𝜕𝑡
=

1
𝑟

𝜕

𝜕𝑟

{
𝑟ℎ3 𝜕

𝜕𝑟

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕ℎ

𝜕𝑟

)]}
. (94)

As previously, ℎ is developed for small 𝐶𝑎,

ℎ = ℎ0 + 𝐶𝑎ℎ1 + O(𝐶𝑎2). (95)
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𝐶𝑎 = 𝜇𝑣𝐶𝐿/𝜎 is defined by using

𝑣𝐶𝐿 = −d𝑅/d𝑡 (96)

in agreement with the adopted sign convention, where 𝑅 is the radius of CL. As
the drop dynamics is driven by the CL motion, it is evident that in the zeroth order,
Eq. (94) reduces to

1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕ℎ0
𝜕𝑟

)
= const,

thus describing the spherical cap in a small-slope approximation:

ℎ0 =
2𝑉
𝜋𝑅2

(
1 − 𝑟2

𝑅2

)
. (97)

The drop volume

𝑉 = 2𝜋
∫ 𝑅

0
ℎ𝑟d𝑟 (98)

is assumed to remain constant throughout CL motion, which means that the evapo-
ration losses are small with respect to the drop mass. The apparent contact angle can
now be clearly defined from this spherical cap shape as

𝜃𝑎𝑝𝑝 = − 𝜕ℎ0
𝜕𝑟

����
𝑟=𝑅

=
4𝑉
𝜋𝑅3 . (99)

One mentions that to the first order in 𝐶𝑎,

− 𝜇
𝜎

𝜕ℎ

𝜕𝑡
= 𝐶𝑎

𝜕ℎ0
𝜕𝑅

,

and Eq. (94) reduces to

3𝜃𝑎𝑝𝑝
(
1 − 2

𝑟2

𝑅2

)
=

1
𝑟

𝜕

𝜕𝑟

{
𝑟ℎ3

0
𝜕

𝜕𝑟

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕ℎ1
𝜕𝑟

)]}
. (100)

Instead of using the method of Pismen and Eggers [42], it is much simpler to
integrate it directly by applying the boundary conditions at the contact line, the
symmetry conditions at 𝑟 = 0 and the mass conservation that follows from Eq. (98):

ℎ1 (𝑟 = 𝑅) = 0,
𝜕ℎ1/𝜕𝑟 |𝑟=0 = 0,

𝜕3ℎ1/𝜕𝑟3 |𝑟=0 = 0,∫ 𝑅

0
ℎ1𝑟d𝑟 = 0.

The result for the interface slope is
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𝜕ℎ1
𝜕𝑟

= − 3𝑅
𝑟𝜃2
𝑎𝑝𝑝

[
2
𝑟2

𝑅2 + log
(
1 − 𝑟2

𝑅2

)]
. (101)

For matching of this solution to the intermediate region, one needs to find its asymp-
totics at 𝑥 ≃ 𝑅 − 𝑟 → 0: (

𝜕ℎ

𝜕𝑥

)3
= 𝜃3

𝑎𝑝𝑝 − 9𝐶𝑎 log
(

2𝑒2𝑥

𝑅

)
. (102)

By equalizing this expression to Eq. (91) (which is the 𝑥 → ∞ asymptotics coming
from the intermediate region), one obtains the final expression

𝜃3
𝑎𝑝𝑝 = 𝜃3

𝑉 − 9𝐶𝑎 log
(
𝐿

ℓ𝑉

)
, (103)

for the apparent contact angle, where the macroscopic scale 𝐿 = 𝑅/(2𝑒2) is now
uniquely defined. Eq. (103) represents the final result of the multi-scale approach
for the drop geometry; 𝜃𝑎𝑝𝑝 is now uniquely defined as a function of the system
parameters.

Note that Eq. (103) can be used to describe the drop dynamics. The most well-
known example is the drop spreading in the complete wetting case with no mass
exchange, where 𝜃𝑉 = 𝜃𝑚𝑖𝑐𝑟𝑜 = 0. By using the definitions (96, 99) one obtains
from Eq. (103) the scaling

d𝑅
d𝑡

∼ 𝑅−9,

that results in the Tanner law [17] 𝑅 ∼ 𝑡1/10.
Eq. (103) clearly shows how the microregion impacts the macroscopic behavior.

Two parameters come from the microregion, the Voinov angle 𝜃𝑉 and length ℓ𝑉 .
When Δ𝑇 = 0 (no mass exchange), they are constant; 𝜃𝑉 = 𝜃𝑚𝑖𝑐𝑟𝑜. When Δ𝑇 ≠ 0,
both these parameters depend onΔ𝑇 . The dependence 𝜃𝑉 (Δ𝑇) is the most important,
cf. sec. 2.3. An example for the dependence of ℓ𝑉 (Δ𝑇) provided by the Kelvin effect
is shown in Fig. 13b.

2.4.4 Dewetting

hr

vCL

vr hfθapp

φ

2w

Fig. 16 2D Dewetting ridge.
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In this section we briefly consider the dewetting phenomenon. Imagine a classical
(isothermal) case of a liquid film with a straight contact line that forms on a flat surface
e.g. during a receding of a liquid plug from a capillary slot. If the equilibrium contact
angle is large, the CL moves thus leading to the reduction of the film interface energy.
However the liquid cannot flow into the film because of the high viscous friction.
The receding liquid forms thus a ridge (called also rim) at the film edge (Fig. 16).
As the evaporation impacts the apparent contact angle, it is expected to impact the
macroscopic ridge dynamics discussed next.

Brochard-Wyart et al. [7] have been first to develop a dewetting theory. Originally
it was based on the phenomenological approach to the contact line motion [17]. For
uniformity, it is presented here by using the above hydrodynamic theory that results
in

𝜃3
𝑎𝑝𝑝 = 𝜃3

𝑉 − 𝑣𝐶𝐿

𝑣∗
, (104)

where 𝑣∗ is a constant (logarithmic) term. The theory is developed in the approxi-
mation of the small 𝜃𝑎𝑝𝑝 ≪ 1, so the slope 𝜙 of the rear edge of the ridge (Fig. 16)
is equally small. It obeys a law similar to (104) but accounting for the fact that the
equilibrium 𝜙 value is zero:

𝜙3 =
𝑣𝑟

𝑣∗
, (105)

where 𝑣𝑟 is the velocity of the rear ridge edge. As mentioned above, all the liquid
from the film of the thickness ℎ 𝑓 is gathered in the ridge so its area 𝐴 (in the plane
of Fig. 16) growth obeys the law ¤𝐴 = 𝑣𝑟 ℎ 𝑓 . Consider the late stages of the ridge
growth, where its height ℎ𝑟 ≫ ℎ 𝑓 . The area is defined as 𝐴 ∼ ℎ𝑟𝑤, where 𝑤 is the
ridge half-width, so ¤𝐴 ∼ ℎ𝑟 ¤𝑤 for small 𝜃𝑎𝑝𝑝 . This means that

¤𝑤
𝑣𝑟

∼
ℎ 𝑓

ℎ𝑟
≪ 1,

which justifies that 𝑣𝐶𝐿 = 𝑣𝑟 − 2 ¤𝑤 ≃ 𝑣𝑟 . Since ℎ 𝑓 ≪ ℎ𝑟 , 𝜃𝑎𝑝𝑝 ≃ 𝜙. With two latter
equalities, Eqs. (104, 105) reduce to 𝜃3

𝑎𝑝𝑝 ≃ 𝜃3
𝑉
/2 and

𝑣𝐶𝐿 ≃ 𝜃3
𝑉

𝑣∗

2
. (106)

Eq. (106) is the central result of this phenomenological approach, which shows the
𝑣𝐶𝐿 ∝ 𝜃3

𝑉
proportionality but is not able to predict the prefactor.

To obtain the prefactor, one needs a more sophisticated multi-scale theoretical
approach [53] based on the asymptotic matching technique similar to that described
for the drop case (sec. 2.4.3). An additional complication of the dewetting ridge
geometry is its dissymmetry: one needs to match the ridge with the film of a finite
(typically ∼ 50 𝜇m) thickness. The matching is possible to do asymptotically under
the above assumption ℎ 𝑓 ≪ ℎ𝑟 . The asymptotic model of Snoeijer and Eggers has
been initially developed for the microregion model based on the hydrodynamic slip.
Its main result can easily be generalized to a general microregion description as
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𝐶𝑎 =
𝜃3
𝑉

9

[
log

(
𝑎𝐶𝑎1/3 𝑤2

𝑙𝑉 ℎ 𝑓

)]−1

, (107)

where 𝑎 ≈ 0.15 is a matching constant. Eq. (107) defines the CL velocity. One can
see its 𝜃3

𝑉
behavior (106) predicted by the phenomenological theory. The apparent

contact angle obeys Eq. (103), where the expression 𝐿 = 𝑤/𝑒 holds for the ridge
case.

2.5 Comparison with experimental data

Some typical dependencies of 𝜃𝑉 on the wall superheating are shown in Fig. 17.
Note that a strong change of the apparent contact angle for a reasonable superheating
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Fig. 17 The calculated dependency of 𝜃𝑉 on the wall superheating Δ𝑇 [27] calculated for the
static contact angle for FC-72 at 0.04 MPa and 𝜃𝑚𝑖𝑐𝑟 = 8◦ (dotted line) compared to the theoretical
results for complete wetting Raj et al. [47], black solid line. Their experimental data (where 𝜃 = 8◦)
are shown with circles.

of several tens of Kelvin characteristic to the boiling conditions. The agreement with
the experimental data of Raj et al. [47] is reasonably good. The discrepancy between
the experimental and theoretical data can probably be attributed to the neglect of
the CL velocity (i.e. of the second term in Eq. (103)). The CL was moving in the
experiment; the motion was not quantified by the authors and thus cannot be properly
modeled.

The simultaneous phase change and CL motion was experimentally observed by
Fourgeaud et al. [15] in a closed transparent sapphire capillary slot (Hele-Shaw cell)
filled with pure ethanol. The sapphire substrate was heated by the electric current
passed through a transparent indium-tin oxide film deposited on the back sapphire
surface. A 60 𝜇m thick ethanol film was laid down by a receding liquid. While the
ethanol wets completely the sapphire at equilibrium, the dewetting phenomenon was
observed at evaporation (Fig. 18a). The ridge shape was well-approximated by a
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circular arc (except at late times where gravity played a role), from which 𝜃𝑎𝑝𝑝 and
𝑤 were obtained.
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(a) The dewetting ridge dynamics caused by evaporation. The ridge
shape is obtained with the optical methods.
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Fig. 18 Evaporation-caused dewetting phenomenon. The dewetting theory results compared to
experimental data on the ethanol film on sapphire [15].

The 𝜃𝑉 values (Fig. 18b) were calculated via Eq. (103) with 𝐿 = 𝑤/𝑒. According
to estimations, ℓ𝑠 ≫ ℓ𝐾 for the ethanol, where the slip length 𝑙𝑠 = 20 nm was
used. For this reason, the hydrodynamic slip prevails over the Kelvin effect in the
microregion and ℓ𝑉 = ℓ𝑠 was assumed. The line in Fig. 18b is a theoretical curve
similar to those of Fig. 8 calculated for the same parameters (including the same 𝑙𝑠).
The agreement is very good, which shows the validity of the above theory. Fig. 18b
shows that the 𝜃𝑉 values can be high in spite of nearly zero equilibrium contact
angle. Such high 𝜃V values are at the origin of the solid wall dewetting.
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Once a liquid film is deposited by the moving liquid meniscus, its CL is expected
to recede because of two phenomena. First, according to the theory discussed above,
the contact angle grows, and the substrate dewetting occurs. Second, the liquid in
the CL vicinity vaporizes; there is no flow in the film so its length decreases; in
other words, CL recedes because of the evaporative mass loss. Let us consider
now the relative contribution of evaporative mass loss at the CL. Fig. 18c presents
the experimental CL receding velocity together with the result of Eq. (107), which
describes only the first (dewetting) contribution. One can see that in this particular
experiment CL recedes mainly because of the contact angle growth via dewetting;
the evaporative mass loss is responsible only for 14% of the CL velocity.

3 Diffusion-controlled evaporation

It has been shown experimentally [56] that the increase of apparent contact angle
with evaporation rate exists in the case of isothermal drying in the atmosphere of a
neutral gas. On can compare this case to the regime of evaporation to the pure vapor
atmosphere induced by heating considered above. The theoretical description of
drying is more complex as the mass exchange is controlled by the phenomena in the
gas domain, which is generally much larger than the liquid domain that controls the
pure vapor case so natural or forced convection is often important. Another reason
of the increased complexity is the non-locality of evaporation flux: the evaporation
rate at one point of the interface depends not only on the local vapor density, but on
its distribution over the whole liquid-vapor interface. As the mass exchange rates are
generally much smaller at drying, it is expected to be much weaker than in the pure
vapor case. For this reason we consider this regime more briefly than the pure vapor
case.

There are many theoretical approaches to the drying description. Early approaches
neglect the impact of evaporation on the interface shape (and thus on the impact on
contact angle). One of the first important steps was achieved by Deegan et al.
[10] who have obtained the stationary diffusion problem solution in the half-space
above a spherical-cap-shaped sessile liquid droplet posed on a solid substrate with
a fixed contact angle. The success of this solution is due to the integrability of the
resulting local evaporation flux so that the total evaporation rate can be calculated
and compared to the experiment. The integrability of the background solution for the
mass flux (i.e. a weaker divergence) is another reason of weaker effect of evaporation
on the apparent contact angle in this regime comparing to the regime discussed in
sec. 2.

In earlier theoretical approaches [5, 20, 41, 46], the evaporation flux distribution
along the interface was imposed independently of the interface shape. The full
coupling of the problems in the vapor and liquid phases through the Kelvin effect
is studied in more recent works [11, 12, 14, 29, 36]. The Kelvin effect is important
as it makes the evaporation flux to be finite at the contact line, cf. Eq. (58). It also
causes the impact of evaporation on the apparent contact angle.
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Fig. 19 Hierarchy of scales considered in the article and geometries for the vapor diffusion (a) and
hydrodynamic (b-d) problems. Note that the radius of curvature in (b) is assumed to be much larger
than the diffusive boundary layer width Λ shown in (a).

3.1 Problem statement

Consider a diffusion boundary layer of thickness Λ above the thin liquid wedge-like
film. The value of Λ depends on the gas dynamics in the remaining part of the space
(typically, natural or forced convection). The film is placed on a flat and homogeneous
substrate in a situation of partial wetting. Its contact line is pinned; the problem of
contact line motion under saturation conditions has been solved by Janeček et al.
[29]. The atmosphere of a non-condensable inert gas surrounds the substrate and the
condensation or evaporation mass exchange with it is controlled by the vapor transfer
in the gas. The gas supersaturation with vapor causes condensation onto the film,
and under-saturation causes its evaporation. The fluid is assumed to be isothermal,
which may be justified when the substrate has a good thermal conductivity and is
maintained at room temperature. For this reason, the temperature 𝑇 is equivalent to
𝑇𝑠𝑎𝑡 used above.

First, some assumptions about the characteristic scale hierarchy need to be made.
One can identify a macroscopic length scale 𝐿 of the liquid phase. It is related to the
macroscopic-level interface curvature, e.g. the interface curvature radius. Another
macroscopic length scale concerns the gas phase description. It is the diffusion
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boundary layer thickness Λ. It is millimetric (for natural convection) or smaller,
for forced convection. For simplicity, we consider the diffusion boundary layer of
homogeneous thickness (band-like). The idea is to find a stationary solution for the
vapor diffusion that can be representative of real microscopic situation. For this we
assume that

𝐿 ≫ Λ ≫ ℎ (108)

where ℎ is the wedge thickness, see Fig. 19a,b. It is evident that the inequality (108)
is violated far enough from the wedge apex (contact line) for any wedge slope.
However, if the slope is small, the region of validity of such a geometry is large.
As for the pure vapor case, the hydrodynamic singularity related to the evaporation
flow is solved at the microscopic scale that we call ℓ𝐾 which is typically nanometric
(Fig. 19d). An intermediate region (Fig. 19c) is needed to match micro and macro
regions. We will see later that, generally, in this case two intermediate regions need
to be introduced.

The equation governing the liquid flow in the wedge is the stationary version of
Eq. (52):

𝜕

𝜕𝑥

(
ℎ3

3
𝜕Δ𝑝

𝜕𝑥

)
= −𝜇 𝐽

𝜌𝐿
, where Δ𝑝 = 𝜎𝐾 = 𝜎

𝜕2ℎ

𝜕𝑥2 . (109)

The interfacial mass flux 𝐽 is controlled by the vapor diffusion,

𝐽 = −𝐷 𝜕𝜌𝑉
𝜕𝑧

����
𝑧=0

, (110)

where 𝜌𝑉 = 𝜌𝑉 (𝑥, 𝑧) now varies in space and 𝐷 is the coefficient of the vapor
diffusion in the ambient gas. The vapor diffusion equation reads

𝜕2𝜌𝑉

𝜕𝑥2 + 𝜕
2𝜌𝑉

𝜕𝑧2 = 0. (111)

The boundary conditions for the liquid phase are as discussed in sec. 1.4: ℎ(𝑥 →
0) = 0 and 𝜕ℎ/𝜕𝑥 |𝑥→0 = 𝜃𝑚𝑖𝑐𝑟𝑜 at the CL, the vanishing curvature for from
CL, 𝐾 (𝑥 → ∞) = 0, and the regularity of all hydrodynamic quantities at the CL
equivalent to 𝐽 (𝑥 → 0) = 0.

Within the small wedge slope approximation, the liquid-gas interface seen from
the large scale of the gas atmosphere is assumed to coincide with the line 𝑧 = 0, 𝑥 ≥ 0,
as shown in Fig. 19a. This assumption is valid for a liquid height much lower than
the boundary layer thickness, i.e. for 𝑥 ≪ Λ/𝜃𝑚𝑖𝑐𝑟𝑜. As 𝜃𝑚𝑖𝑐𝑟𝑜 is a small angle, the
model is valid over a distance to the contact line much larger than Λ. The boundary
conditions for the diffusion equation are defined at the upper and lower boundaries
of the diffusion layer. At the upper boundary 𝑧 = Λ,

𝜌𝑉 (𝑥, 𝑧 = Λ) = 𝜌0 + Δ𝜌, (112)

where 𝜌0 is the vapor density at thermodynamic equilibrium for a flat liquid-gas
interface,Δ𝜌 is the deviation from the equilibrium vapor density;Δ𝜌 < 0 corresponds
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to evaporation. The vapor cannot penetrate into the solid boundary (𝑧 = 0 and 𝑥 < 0),

𝜕𝜌𝑉

𝜕𝑧
= 0. (113)

The vapor density at the liquid-gas interface can deviate from 𝜌0 because of two
reasons: (i) the interfacial pressure jump (Kelvin effect) and, (ii) because of the
interfacial kinetic resistance 𝑅𝑖

𝑑𝑖 𝑓 𝑓
defined by Eq. (34), so Eqs. (12, 32) can be

combined so the boundary condition

𝜌𝑉 (𝑥, 𝑧 = 0) = 𝜌0 − Δ𝑝
𝑀𝜌0
𝜌𝐿𝑅𝑔𝑇

− 𝐽𝑅𝑖𝑑𝑖 𝑓 𝑓 , (114)

is valid for 𝑥 ≥ 0. In the following sections we focus on the diffusion controlled
regime; the impact of the kinetic interfacial resistance is analyzed by Doumenc et al.
[12].

3.2 Kelvin effect and dimensionless formulation

The microregion size (Fig. 19) for the case of the singularity relaxation with the
Kelvin effect can be easily obtained with a scaling analysis [29], that results in

ℓ𝐾 =
1
𝜌𝐿

√︄
3𝜇𝑀𝜌0𝐷

𝜃3
𝑚𝑖𝑐𝑟𝑜

𝑅𝑔𝑇
. (115)

For the analysis below, the dimensionless abscissa is 𝑥 = 𝑥/ℓ𝐾 . The liquid height
is scaled as ℎ̃ = ℎ/(𝜃𝑚𝑖𝑐𝑟𝑜ℓ𝐾 ), and the dimensionless flux is 𝐽 = 3𝜇𝐽/(𝜃4

𝑚𝑖𝑐𝑟𝑜
𝜎𝜌𝐿).

The dimensionless lubrication equation reads

𝜕

𝜕𝑥

(
ℎ̃3 𝜕

3 ℎ̃

𝜕𝑥3

)
= −𝐽. (116)

Density deviation is reduced as 𝜌̃ = (𝜌𝑉 − 𝜌0)/C, with

C =
𝜌𝐿𝜎𝜃

4
𝑚𝑖𝑐𝑟𝑜

ℓ𝐾

3𝜇𝐷
. (117)

The 𝑧 andΛ variables are reduced with ℓ𝐾 and the dimensionless boundary conditions
for the diffusion problem for 𝑧 = 0, 𝑥 ≥ 0 are

𝜕𝜌̃

𝜕𝑧
= −𝐽, (118)

𝜌̃ = −ℎ̃′′. (119)

The trivial boundary condition (113) is valid for 𝑧 = 0, 𝑥 < 0.
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3.3 Weak evaporation approximation

The deviation from equilibrium 𝜀 = Δ𝜌/C is assumed to be small; the variables are
expanded in a regular perturbation series. At the zero order corresponding to the
straight wedge in thermodynamic equilibrium, ℎ̃0 = 𝑥, 𝐽0 = 0 and 𝜌̃0 = 0;

ℎ̃ = 𝑥 + 𝜀ℎ̃1 + O(𝜀2), 𝐽 = 𝜀𝐽1 + O(𝜀2), 𝜌̃ = 𝜀𝜌̃1 + O(𝜀2).

Note that 𝜀 is negative during evaporation and positive during condensation so 𝐽1
and ℎ̃1 are always negative.

The first order problem is described by the fluid flow equation

𝜕

𝜕𝑥

(
𝑥3 𝜕

3 ℎ̃1

𝜕𝑥3

)
= −𝐽1, (120)

with the boundary conditions 𝐽1 = ℎ̃1 = ℎ̃′1 = 0 at 𝑥 = 0 and ℎ̃′′1 = 0 at 𝑥 → ∞. The
diffusion part of the first order problem remains as above.

There is no analytical solution and the problem should be solved numerically. A
direct numerical solution of the problem would be complicated as a nonlinear 1D
fluid flow equation needs to be coupled to the 2D vapor diffusion problem in a stripe.
For this reason, it is more convenient to solve the 2D problem analytically by using
the boundary integral method. It consists in reducing the 2D differential equation
(111) to the integral over the domain boundary by using the Green function [12]. By
redefining the density variable as 𝜌̃1 − 1, all the boundary conditions except those at
𝑧 = 0, 𝑥 ≥ 0 become trivial; only the integral over this portion involves the boundary
condition (118). The interfacial density 𝜌̃1 (𝑥, 𝑧 = 0) over it can be expressed as a
function of the mass flux as

𝜌̃1 (𝑥, 𝑧 = 0) = 1 −
∫ ∞

0
𝐺0 (𝑥 − 𝑥′)𝐽1 (𝑥′)d𝑥′, (121)

where

𝐺0 (𝑥) =
1
𝜋

log

��������
exp

(
𝜋𝑥

2Λ̃

)
− 1

exp
(
𝜋𝑥

2Λ̃

)
+ 1

��������
is the Green function.

By combining Eqs. (119-121), one gets a governing integral equation

𝑥3
∫ ∞

0

𝜕𝐺0 (𝑥 − 𝑥′)
𝜕𝑥

𝐽1 (𝑥′)𝜕𝑥′ = −
∫ 𝑥̃

0
𝐽1 (𝑥′)𝜕𝑥′ (122)

that can be solved numerically [12]. Once 𝐽1 is known, the slope can be computed
with Eq. (120) integrated once.
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3.4 Impact of the thickness of diffusion boundary layer

One of the most important parameters that impacts the evaporation rate and thus the
apparent contact angle is the thickness Λ of the diffusion boundary layer; its impact
is studied here.

Because of the presence of the length scale Λ ≫ ℓ𝐾 , one identifies two interme-
diate regimes of different asymptotic behavior. The first intermediate region ranges
from ℓ𝐾 to Λ, while the second goes from Λ to 𝐿. As we do not discuss here the
coupling to the macroregion, 𝐿 is considered to be infinitely large.

Within both intermediate regions, the Kelvin effect can be neglected, which means
that 𝜌𝑉 at the interface is constant and equal to the saturation density 𝜌0; 𝜌̃ = 0.
This is a ”Deegan et al.-like” diffusion problem in the 2D boundary layer geometry
admits an analytical solution [12]:

𝐽1 (𝑥) = − 1
Λ̃
√

2

√︄
1 + coth

(
𝜋𝑥

2Λ̃

)
. (123)

Unfortunately, the fluid flow part of the problem, Eq. (120), cannot be solved an-
alytically. For this reason the asymptotic solutions are considered. The asymptotic
expressions for the flux are different for two intermediate regions. The limit 𝑥 ≪ Λ̃

𝐽1 (𝑥) ≃ − 1√︁
𝜋Λ̃𝑥

. (124)

describes the first intermediate region, while the limit 𝑥 ≫ Λ̃

𝐽1 (𝑥) ≃ − 1
Λ̃
, (125)

describes the second intermediate region. The scaling (124) was obtained by Deegan
et al. [10] for the thin 3D axisymmetric drop and infinite boundary layer. However the
present solution is different because the geometry is 2D, so the asymptotic solutions
are always Λ-dependent (the solution for the stationary diffusion problem in 2D
does not exist in the infinite domain). Instead of Λ, the solution of Deegan et al. is
controlled by the drop diameter. The flux diverges at the contact line, as expected: it
cannot describe the microregion dominated by the Kelvin effect.

One can get the curvature and the slope after successive integrations of Eq. (120)
with the above asymptotic expressions for 𝐽1 and by applying the boundary conditions
to determine some of the integration constants [12].

Consider the first intermediate region 1 ≪ 𝑥 ≪ Λ̃. The asymptotic solution for
the curvature is

𝜕2 ℎ̃1

𝜕𝑥2 ≃ −4
3

1√︁
𝜋Λ̃𝑥3

. (126)

while the slope is
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𝜕ℎ̃1
𝜕𝑥

≃ 8
3

1√︁
𝜋Λ̃

(
1
√
𝑥
− 1
√
𝐶1

)
, (127)

where 𝐶1 corresponds to the dimensionless size of the microregion, so 𝐶1 ∼ 1 is
expected. For the second intermediate region Λ̃ ≪ 𝑥 ≪ 𝐿, by integrating Eq. (125),
one gets

𝜕2 ℎ̃1

𝜕𝑥2 ≃ − 1
Λ̃𝑥

(128)

for the curvature and
𝜕ℎ̃1
𝜕𝑥

≃ − 1
Λ̃

[
log

(
𝑥

Λ̃

)
+ 𝐶2

]
, (129)

for the slope, with an integration constant𝐶2. At Λ̃ ≫ 𝐶1, the slopes (127) and (129)
should match at 𝑥 ∼ Λ̃. This results in

𝐶2 = 𝐶3

√︃
Λ̃/𝐶1 (130)

with a constant 𝐶3 ∼ 8/(3
√
𝜋) ≃ 1.5. Its exact value and those of the other constants

can be determined by matching to the microregion model.
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Fig. 20 Matching of microregion and first intermediate region [12] for different Λ̃.

The microregion asymptotic solution cannot be obtained analytically. Instead, the
constants𝐶1 and𝐶2 that enter Eqs. (127, 129) are determined by solving numerically
Eq. (122) valid in microscopic and both intermediate regions.

The numerics shows that in the microregion, 𝜕ℎ̃1/𝜕𝑥 ∼ −𝑥/
√
Λ̃ (Fig. 20a). The

Λ̃−1/2 scaling is important to match the asymptotics (127) in the first intermediate
region. The departure from the linear behavior corresponds to the end of microregion.

The first intermediate region is described by Eq. (127) that involves a characteristic
length 𝐶1. It can be obtained numerically by plotting (Fig. 20b) the quantity
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Γ = 3/8(𝜋Λ̃)1/2 𝜕ℎ̃1
𝜕𝑥

− 𝑥−1/2

that is expected to be constant (Γ = −𝐶−1/2
1 ) in the first intermediate region, cf.

Eq. (127). Fig. 20b shows the 𝑥-independent region only for Λ̃ ≫ 1, which is
exactly the criterion of existence of the first intermediate region. From the numerical
value Γ ≃ −1.37, one gets 𝐶1 ≃ 0.53 so the precise microregion size is 0.53ℓ𝐾 .

To analyze the large scale behavior (in the second intermediate region) one needs
to renormalize the slope data of Fig. 20. It is done in Fig. 21a. Note that the
microregion behavior cannot be seen on these curves (the scale is too large).

A logarithmic variation of 𝜕ℎ̃1/𝜕𝑥 is observed for 𝑥 > Λ, as predicted by
Eq. (129). The integration constant 𝐶2 = −Λ̃ 𝜕ℎ̃1

𝜕𝑥̃
(𝑥 = Λ̃) is obtained by fitting

Eq. (129) to the numerical results (see dashed lines in Fig. 21a) and taking the
intersection of each fit with the dash-dotted line 𝑥 = Λ̃. The parameter 𝐶2 is given
in Fig. 21b as a function of Λ̃. For Λ̃ ≫ 1, the law (130) indeed holds, 𝐶2 = 𝜒

√
Λ̃,

where 𝜒 = 𝐶3/
√
𝐶1 ≃ 2 is a constant. By using 𝐶1 ≃ 0.53 obtained above, one gets

𝐶3 ≃ 1.46.
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Fig. 21 Behavior of the interface slope in the intermediate regions: matching of the first and second
intermediate regions [12].

3.5 Apparent contact angle

The main result of such a model is the behavior of the interface slope observed at
the macroscopic length scale 𝐿. According to Eq. (129), the slope depends on the
distance 𝑥 from the CL:



Contents 49

𝜕ℎ

𝜕𝑥
≃ 𝜃𝑚𝑖𝑐𝑟𝑜 −
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𝜌𝐿𝜎𝜃

3
𝑚𝑖𝑐𝑟𝑜

Λ

[
𝜒

√︂
Λ

ℓ𝐾
+ log

( 𝑥
Λ

)]
. (131)

This expression means that the apparent contact angle that should be obtained as a
result of the matching to the macroregion (sec. 2.4.3), logarithmically depends on the
macroscopic scale 𝐿 (i.e. the interfacial curvature radius), similarly to the moving
contact line problem.

Suppose that the logarithmic term in Eq. (131) can be neglected. One then obtains
an approximate expression of the slope that is independent of the scale 𝐿 and can
thus be associated with the apparent contact angle,

𝜃𝑎𝑝𝑝 ≃ 𝜃𝑚𝑖𝑐𝑟𝑜 −
3𝜒
√
ℓ𝐾

𝜇𝐷

𝜌𝐿𝜎𝜃
3
𝑚𝑖𝑐𝑟𝑜

Δ𝜌
√
Λ
. (132)

On the other hand, Eq. (132) can also be obtained by tending 𝑥 → ∞ in Eq. (127),
i.e. within the first intermediate region because it is the “in-between” result. In this
case one gets instead of 3𝜒 ≃ 6 the coefficient 8/

√
𝜋𝐶1 ≃ 6.2. Two values are very

close, which is not surprising because both intermediate regions are matched (in the
asymptotic sense) for 𝑥 → ∞ for the first and 𝑥 → Λ̃ for the second. The agreement
shows simply that the matching has been performed correctly.

Note that Eq. (132) is the result of the intermediate regions where microscopic
effects are negligible. Therefore, its form is independent of the microscopic singu-
larity relaxation mechanism. Similarly to the pure vapor case and moving CL, the
microscopic details impact only the microregion length scale ℓ𝐾 .

Eq. (132) is very close to the result of Berteloot et al. [5] (one needs to drop the
independent Cox-Voinov term in their Eq. (13) since they considered the moving CL
case. The boundary layer thickness Λ is included in their parameter 𝐽0. Unlike the
approach presented here, Berteloot et al. introduced a microscopic scale phenomeno-
logically, and found the numerical prefactor 3𝜒 = 8. In the present approach, the
scales are matched rigorously, and a more precise value of 3𝜒 ≃ 6 is obtained. Note
that Berteloot et al. considered only the first intermediate region 𝑥 ≪ Λ. The ap-
proach described here reveals another logarithmic term that was implicitly neglected
by them.

4 Conclusions

While not impacting the contact angles at the nanoscale, evaporation or condensation
causes an increase of the apparent (experimentally measurable at the macroscale)
contact angle that leads to a change in the wetting properties (both dynamic and
static) as if this change were induced by a surface modification. The control of this
phenomenon is possible via the control of the local evaporation rate in a tiny vicinity
of the contact line via controlling the degree of non-equilibrium of the system. The
specific way of control depends on the evaporation regime. Two limiting regimes has



50 Contents

been considered above. Strong evaporation (and, accordingly, a strong change of the
wetting properties) can be achieved at evaporation into the atmosphere of pure vapor.
It is controlled by the superheating Δ𝑇 of the heater with respect to the saturation
temperature for the system pressure, like e.g. in boiling. The contact angle depends
on many system parameters but the most important dependence is on Δ𝑇 and on the
equilibrium contact angle (i.e. that at Δ𝑇 = 0). Another limiting regime, that of slow
evaporation, achieved at isothermal drop drying in the under-saturated atmosphere
of a non-condensible gas. It is controlled by the vapor diffusion within the diffusion
boundary layer. The main control parameters here are the super-saturation Δ𝜌 (with
respect to the saturation vapor density for the system temperature), the thickness of
the diffusion boundary layer, and of course the equilibrium contact angle.

Because many reasons, it is difficult to measure the contact angles at evaporation
conditions. Some of these reasons are the continuous change of the contact angle, the
optical aberrations in the presence of thermal gradients, the simultaneous thermal
control and optical observations.

It is however possible to predict the contact angles theoretically. The hydrody-
namic flow caused by evaporation induce a contact line singularity similar to that
caused by the well-studied contact line motion problem. For this reason, the contact
angle calculation is a delicate issue and calculation error can be high if the problem is
approached incorrectly. Like in the contact line motion problem, several approaches
are possible to relax the singularity. At complete wetting, the continuous wetting film
approach is possible so the actual triple contact is absent. At much more common
case of partial wetting, one can use a model based on the simultaneous action of two
effects: the hydrodynamic slip and the kinetic resistance. Another approach consists
in the account of the Kelvin effect that is self-sufficient to relax the singularity. The
Kelvin effect can be used alone or in any combination with other effects. The models
based on the Kelvin effect present an evident advantage of providing the finite values
of the evaporation flux and liquid pressure that can be defined a priori and serve as
boundary conditions for calculations.

The multi-scale approach is a powerful tool for the accurate and numerically
efficient contact angle calculation that is necessary to describe the evaporation (in
some cases) for the static and always to describe the contact line motion that is often
caused by evaporation. By using the multi-scale approach, one can explicitly define
all the parameters (both microscopic and macroscopic) to find the apparent contact
angle that is a function of the specific geometry of wetting (drop, bubble, tube, ridge,
etc).

5 Acknowledgements

The author would like to express his gratitude to all his coauthors, without whose
contribution this work would not be possible. The author would like to thank the
European Space Agency for the support through the MAP TOPDESS and CNES for
the support in the framework of the GdR MFA.



Nomenclature

ℓ characteristic length scale [m]
n normal vector to the interface
𝐴 Hamaker constant [J], area (sec. 1.2.4, sec. 2.4.4) [m2]
𝐶 arbitrary constant
𝐶𝑎 capillary number
𝐷 diffusion coefficient of vapor in the non-condensible gas, [m2/s]
𝑒 Euler number ≃ 2.71
𝑓 accommodation coefficient
ℎ liquid layer thickness [m]
𝐼𝑛 modified Bessel function of the first kind of the order 𝑛
𝐽 mass evaporation flux, [kg/(m2·s)]
𝐾 curvature, [m−1]
𝑘 heat conductivity [W/(m·K)]
𝐾𝑛 modified Bessel function of the second kind of the order 𝑛
𝐿 macroscopic length scale, [m]
𝑙 length [m]
𝑀 molar mass [kg/mol]
𝑚 mass [kg]
𝑃 surface force energy [J/m2]
𝑝 pressure [Pa]
𝑞 heat flux [W/m2]
𝑅 radius of drop base, [m]
𝑟 radial distance, [m]
𝑅𝑖 interfacial thermal resistance, [(K·m2)/W]
𝑅𝑖
𝑑𝑖 𝑓 𝑓

interfacial kinetic resistance, [s/m]
𝑅𝑔 universal gas constant [J/(mol·K)]
𝑆 spreading coefficient, [N/m]
𝑇 temperature [K]
𝑡 time [s]
𝑉 volume, [m3]
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𝑣 liquid velocity [m/s]
𝑊 interfacial energy [J/m2]
𝑤 width of dewetting ridge [m]
𝑥, 𝑦, 𝑧 cartesian coordinates, [m]
L latent heat, [J/kg]
R dimensionless interfacial resistance

Abbreviations
CL Contact Line

Greek symbols
𝛽 dimensionless slip length
Δ difference
𝛿 modified capillary number
𝛾 Marangoni coefficient, [N/(m·K)]
Λ thickness of diffusion boundary layer, [m]
𝜇 liquid shear viscosity, [Pa·s]; chemical potential, [J/kg] (in sec. 1.2.2 only)
𝜈 liquid kinematic viscosity [m2/s]
Φ liquid 1D flux [m2/s]
𝜙 interface slope
Π disjoining pressure, [Pa]
𝜌 density [kg/m3]
𝜎 interface tension [N/m]
𝜃 contact angle
𝜀 dimensionless deviation from equilibrium

Superscripts
𝑖 interfacial

Subscripts
𝑎𝑑 adsorption
𝑎𝑝𝑝 apparent
𝐶𝐿 contact line
𝐾 Kelvin
𝐿 liquid
𝑚𝑖𝑐𝑟𝑜 microscopic
𝑆 solid heater or substrate
𝑠 slip
𝑠𝑎𝑡 saturation
𝑉 Voinov or vapor
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[43] Pit R, Hervet H, Léger L (2000) Direct experimental evidence of slip in hexade-
cane: solid interfaces. Phys Rev Lett 85:980 – 983, DOI 10.1103/PhysRevLett.
85.980

[44] Pomeau Y (2000) Representation of the moving contact line in the equations
of fluid mechanics. C R Acad Sci, Ser IIb 238:411 – 416, DOI 10.1016/
S1620-7742(00)00043-X, (in French)

[45] Potash M, Wayner PC (1972) Evaporation from a two-dimensional ex-
tended meniscus. Int J Heat Mass Transfer 15(10):1851 – 1863, DOI
10.1016/0017-9310(72)90058-0
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