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Abstract. In fault-tree analysis, probabilities of failure of components
are often assumed to be precise and the events are assumed to be inde-
pendent, but this is not always verified in practice. By giving up some
of these assumptions, results can still be computed, even though it may
require more expensive algorithms, or provide more imprecise results.
Once compared to those obtained with the simplified model, the impact
of these assumptions can be evaluated. This paper investigates the case
when probability intervals of atomic propositions come from independent
sources of information. In this case, the problem is solved by means of
belief functions. We provide the general framework, discuss computation
methods, and compare this setting with other approaches to evaluating
the uncertainty of formulas.
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1 Introduction

One of the objectives of safety analysis is to evaluate the probabilities of dreadful
events. In an analytical approach, this dreadful event is described as a Boolean
function F of some atomic events, that represent the failures of the components
of a system, or possibly some of its configuration states. This method requires
that all probabilities of elementary component failures or configuration states
be known and independent, in order to compute the probability of the dread-
ful event. But in real life scenarios, those assumptions are not always verified.
This study takes place in the context of maintenance and dependability studies
(Airbus project @MOST) in aviation business.

In this paper, we first investigate different approaches using interval computa-
tions in order to compute the probability of a Boolean expression in terms of the
probabilities of its literals, a problem of direct relevance in fault-tree analysis.
The usual assumptions that probabilities of literals are known and the corre-
sponding events are independent are removed. We consider the situation when
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knowledge about probabilities is incomplete (only probability intervals are avail-
able), and envisage two assumptions about independence: first the case when no
assumption is made about dependence between events represented by atoms, and
then the case when the probability intervals come from independent sources of
information. We more specifically investigate the use of belief functions to model
the latter case, taking advantage of the fact that imprecise probabilities on a bi-
nary set are belief functions. We give results on the form of the global belief
function resulting from applying Dempster rule of combination to atomic belief
functions. We provide results on the computation of belief and plausibility of
various kinds of propositional formulas, as found in the application to fault tree
analysis. We compare the obtained results with those obtained in other scenarios
(stochastic independence between atoms, and the no independence assumption).

2 Evaluation of the Probability of a Boolean Expression

Let X be a set of Boolean variables x1, . . . , xn such that xi ∈ Ωi = {Ai,¬Ai};
A1, . . . , An denote atomic symbols associated to elementary faults or configura-

tion states of a system. We denote by Ω =

n∏

i=1

{Ai,¬Ai} the set of interpretations

X → {0, 1}. An element ω ∈ Ω is also called minterm, and it corresponds to a
stochastic elementary event. It can also be interpreted as describing the state of
the world at a given time. It can be written both as a maximal conjunction of
literals or denoted by the set of its positive literals (it is Herbrand’s notation).
Let F be a Boolean formula expressed by means of the variables xi: its models
form a subset [F ] of Ω, the set of states of the world where F is true; also called
the set of minterms of F . Hence, the probability of F, P (F ), can be written as
the sum:

P (F ) =
∑

ω∈[F ]

p(ω) (1)

where p(ω) stands for P ({ω}). When the independence of the xi’s is assumed
(i.e. Ai independent of Aj , ∀i �= j), this sum becomes:

P (F ) =
∑

ω∈[F ]

[
∏

Ai∈L+
ω

P (Ai)
∏

Ai∈L−
ω

(1− P (Ai))] (2)

where L+
ω is the set of positive literals of ω and L−

ω the set of its negative literals.
In the case where P (Ai) is only known to lie in an interval, i.e. P (Ai) ∈

[li, ui], i = 1 . . . n, the problem is to compute the tightest range [lF , uF ] contain-
ing the probability P (F ). Let P be the convex probability family {P, ∀i P (Ai) ∈
[li, ui]} on Ω. In the following, we shall formally express this problem under var-
ious assumptions concerning independence.

2.1 Without Any Independence Hypothesis

Without knowledge about the dependency between the xi, i = 1 . . . n, finding the
tightest interval for the range [lF , uF ] of P (F ) boils down to a linear optimization



problem under constraints. This goal is achieved by solving the two following
problems:

lF = min(
∑

ω�F
p(ω)) and uF = max(

∑

ω�F
p(ω))

under the constraints li ≤
∑

ω�Ai

p(ω) ≤ ui, i = 1 . . . n and
∑

p(ω) = 1.

Solving each of those problems can be done by linear programming with 2n

unknown variables p(ω). It is a particular case of the probabilistic satisfiability
problem studied in [3], where known probabilities are attached to sentences
instead of just atoms.

2.2 When Variables xi Are Stochastically Independent

In the case where the independence of the xi, i = 1 . . . n, is assumed,

p(ω) =
n∏

i=1

P (xi(ω)) (3)

where: xi(ω) =

{
Ai if ω |= Ai

¬Ai otherwise
. The corresponding probability family PI =

{
n∏

i=1

Pi | Pi({Ai}) ∈ [li, ui]}, where Pi is a probability measure on Ωi, is not

convex. Indeed, take two probability measures P , P ′ ∈ PI , P =
n∏

i=1

Pi and

P ′ =
n∏

i=1

P ′
i . For λ ∈ [0, 1], the sum λ

n∏

i=1

Pi+(1−λ)

n∏

i=1

P ′
i �=

n∏

i=1

(λPi+(1−λ)P ′
i ),

so it is not an element of PI .
This assumption introduces some non-linear constraints in the previous for-

mulation, hence the previous methods (section 2.1) cannot be applied. Instead
of a linear problem with 2n variables, we now have a non-linear optimization
problem with n variables. Interval Analysis can be used to solve it [1].

3 The Case of Independent Sources of Information

When there is no knowledge about the dependency between the xi’s, but the
information about P (Ai) comes from independent sources, belief functions can
be used to solve the problem of probability evaluation. The information P (Ai) ∈
[li, ui] is totally linked to its source. li can be seen as the degree of belief of Ai

and ui as its plausibility: li = Bel(Ai) and ui = Pl(Ai) in the sense of Shafer.

Proposition 1. The interval [li, ui] defines a unique belief function on Ωi.



Proof: To see it we must find a unique mass assignment and the solution is:

• Bel({Ai}) = li = mi({Ai});
• Pl({Ai}) = 1−Bel({¬Ai}) = ui =⇒ mi({¬Ai}) = Bel({¬Ai}) = 1− ui;
• The sum of masses is mi({Ai})+mi({¬Ai})+mi(Ωi) = 1, so mi(Ωi) = ui− li.

We call such mi atomic mass functions. In order to combine two independent
mass functions, Dempster rule of combination should be used.

Definition 1 (Dempster-Shafer rule)
For two masses m1 and m2, the joint mass m1,2 can be computed as follows:
• m1,2(∅) = 0

• m1,2(S) =

∑

B∩C=S

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
, ∀S ⊆ Ω

In our problem, each source gives an atomic mass function, and there are n
sources, so the mass function over all Ω is : mΩ = m1 ⊕ · · · ⊕ mn. To find
this mΩ for n atomic mass functions, we can use the associativity of Dempster
rule of combination. Here, Ai, i = 1, . . . , n are atomic symbols, they are always
compatible, i.e. Ai ∧ Aj �= ∅ for all Ai, Aj , i �= j. So the denominator is one in
the above equation.

A focal element of mΩ is made of a conjunction of terms of the form Ai, ¬Aj

and Ωk (which is the tautology), for i �= j �= k. Hence it is a partial model. Let
P(F ) bet the set of partial models φ of a Boolean formula F , that are under
the form of conjunction of elements λi ∈ {Ai,¬Ai, Ωi}: φ = ∧

i=1,...,n
λi . Then,

P(F ) = {φ = ∧
Ai∈L+

φ

Ai ∧
¬Ai∈L−

φ

¬Ai |= F}, with L+
φ (resp. L−

φ ) the set of positive

(resp. negative) literals of φ.

Proposition 2 (Combination of n atomic mass functions)
For n atomic masses mi, i = 1, . . . , n on Ωi, the joint mass mΩ on Ω can be
computed as follows for any partial model φ:

mΩ(φ) =
∏

i∈L+
φ

li
∏

i∈L−
φ

(1− ui)
∏

i/∈Lφ

(ui − li) (4)

This modeling framework differs from the usual one when atomic variables are
supposed to be stochastically independent. Here, the independence assumption
pertains to the sources of information, not the physical variables.

4 The Belief and Plausibility of a Boolean Formula

The belief of a Boolean formula F , of the form Bel(F ) =
∑

φ�F
mΩ(φ), theoreti-

cally requires 3n computations due to the necessity of enumerating the partial



models for n atomic variables. Indeed, all conjunctions φ = ∧
i=1,...,n

λi must be

checked for each λi ∈ {Ai,¬Ai, Ωi}. Verifying that a partial model implies F
also requires 2n computations. Plausibility computation, given by the equation

Pl(F ) =
∑

S∧φ �=∅

mΩ(φ) requires to determine partial models not incompatible

with F . From the partial models, it will need at most 2n computation. But it
can also be computed by using the duality of belief and plausibility given by:

Pl(F ) = 1−Bel(¬F ) (5)

Example 1. Belief functions of the disjunction F = A1 ∨A2

A1 ¬A1 Ω1

A2 A1 ∧A2 ¬A1 ∧A2 A2

l1l2 (1− u1)l2 (u1 − l1)l2
¬A2 A1 ∧ ¬A2 ¬A1 ∧ ¬A2 ¬A2

l1(1 − u2) (1− u1)(1− u2) (u1 − l1)(1 − u2)
Ω2 A1 ¬A1 Ω

l1(u2 − l2) (1− u1)(u2 − l2) (u1 − l1)(u2 − l2)

Partial models that imply F are {A1, A2, A1 ∧ ¬A2, A2 ∧ ¬A1, A1 ∧A2}, so:
Bel(F ) = (u1 − l1)l2 + l1(u2 − l2) + l1l2 + l1(1− u2) + l2(1− u1) = l1 + l2 − l1l2,
that also reads 1− (1− l1)(1− l2). Likewise, partial models that are compatible
with F are {A1 ∧A2, Ω,A1, A2,¬A1,¬A2, A1 ∧¬A2, A2 ∧¬A1}, hence Pl(F ) =
u1 + u2 − u1u2 = 1− (1− u1)(1− u2).

4.1 Conjunctions and Disjunctions of Literals

In the more general case, we can compute the belief and plausibility of conjunc-
tions and disjunctions of literals indexed by K ⊆ {1, . . . , n}.
Proposition 3. The belief of a conjunction C, and that of a disjunction D of
literals xi, i ∈ K are respectively given by:

Bel(C) =
∏

i∈L+
C

li
∏

i∈L−
C

(1− ui); Bel(D) = 1−
∏

i∈L+
D

(1 − li)
∏

i∈L−
D

ui.

We can deduce the plausibility of conjunctions and disjunctions of literals, notic-
ing that

Bel(∨i∈L+Ai ∨ ∨i∈L−¬Ai) = 1− Pl(∧i∈L+¬Ai ∧ ∧i∈L−Ai)

.

Proposition 4. The plausibility of a conjunction C, and that of a disjunction
D of literals xi, i ∈ K are respectively given by:

Pl(C) =
∏

i∈L+
C

(1− li)
∏

i∈L−
C

ui; Pl(D) = 1−
∏

i∈L+
D

li
∏

i∈L−
D

(1− ui)



4.2 Application to Fault-Trees

Definition 2 (Fault-tree). A fault-tree is a graphical representation of chains
of events leading to a dreadful event (failure).

Classical fault-trees are a graphical representation dedicated to Boolean func-
tions that are representable by means of two operators ∨(OR) and ∧(AND).

Only few applications of Dempster-Shafer theory to fault-Tree Analysis are
reported in literature. Limbourg et al. [2] created a Matlab toolbox where each
probability is modeled by a random interval on [0,1]. Instead of Dempster rule,
they use Weighted average [4] for the aggregation of the belief functions of dif-
ferent variables. Murtha [5] uses the same method in an application to small
unmanned aerial vehicles. Another method using 3-valued logic proposed by
Guth [6] is compared by Cheng to interval computation, over small examples of
Fault-trees [7]. The above results can be specialized to fault trees.

A path in a fault tree links the top (dreadful) event to the leaves of the tree:
it is called a cut. When this path has a minimal number of steps, it is said to
be a minimal cut. Each cut is a conjunction of atoms. As a consequence of the
above results we can compute the belief and plausibility of conjunctions and
disjunction of k atoms A1, . . . Ak:

Bel(C) =

k∏

i=1

li, P l(C) =

k∏

i=1

ui (6)

Bel(D) = 1−
k∏

i=1

(1− li), P l(D) = 1−
k∏

i=1

(1 − ui). (7)

From a Fault-tree F , an approximation can be obtained by means of minimal
cuts. For a given order (maximal number of atoms in conjunctions), appropriate
software can find the set of all Minimal Cuts that lead to the top event. The
disjunction of all those Minimal Cuts will give us a partial Fault-tree which will
be an approximation of F . Fig. 1 is an example of such a Partial Fault-tree.

The Boolean formula F ′ represented by this tree will always be under the form
of a disjunction of conjunctions of atoms C1∨ ...∨Cm. The formula written in this
form will be referred to as a Disjunctive Atomic Normal Form (DANF) (excluding

Fig. 1. Example of Partial Fault Tree



negative literals). In order to compute the Belief function of such a formula, we
should generalize the computation of the belief of a disjunction of k atoms.

Proposition 5. [Belief of a disjunctive atomic normal form (DANF)]

Bel(C1 ∨ ... ∨ Cm) =

m∑

i=1

Bel(Ci)−
m−1∑

i=1

m∑

j=i+1

Bel(Ci ∧ Cj)

+
m−2∑

i=1

m−1∑

j=i+1

m∑

k=j+1

Bel(Ci ∧ Cj ∧Ck)− ...+ (−1)m+1Bel(C1 ∧ ... ∧Cm),

where Ci are conjunctions of atoms.

During the computation, the conjunctions of conjunctions, such as Ci ∧Cj ∧Ck

must be simplified, deleting redundant atoms. Note that this apparent additivity
of a generally non-additive function is due to the specific shape of focal elements
(partial models). In general, for S and T Boolean formulas, we cannot write
Bel(S ∨ T ) = Bel(S) + Bel(T )− Bel(S ∧ T ), because there are focal elements
in S ∨ T that are subsets of neither S nor T nor S ∧ T . Here due to the DANF
form, all partial models of C1 ∨ ...∨Cm are conjunctions of literals appearing in
the conjunctions.

A similar result holds for computing the plausibility of a DNF.

Proposition 6 (Pl of a disjunctive atomic normal form (DANF)).

Pl(C1 ∨ ... ∨ Cm) =
m∑

i=1

Pl(Ci)−
m−1∑

i=1

m∑

j=i+1

Pl(Ci ∧ Cj)

+

m−2∑

i=1

m−1∑

j=i+1

m∑

k=j+1

Pl(Ci ∧ Cj ∧Ck)− ...+ (−1)m+1Pl(C1 ∧ ... ∧ Cm),

where Ci are conjunctions of literals.

Thanks to the duality between Belief and Plausibility, both computations are
quite similar, hence the time complexity does not increase. It is also much less
time consuming than an exhaustive computation as presented in section 3.

4.3 General Case

The general case of a Boolean formula with positive and negative literals is
more tricky. Such a formula can appear, for example, in fault-trees representing
different modes in a system, or representing exclusive failures [1]. Of course
we can assume the formula is in DNF format. But it will be a conjunction of
literals, and it is no longer possible to apply the two previous propositions.
Indeed when conjunctions contain opposite literals, they have disjoint sets of



models but their disjunctions may be implied by partial models (focal elements)
that imply none of the conjuncts. For instance consider A ∨ (¬A ∧ B) (which
is just the disjunction A ∨ B we know how to deal with). It does not hold
that Bel(A ∨ (¬A ∧ B) = Bel(A) + Bel(¬A ∧B), since the latter sum neglects
m(B), where B is a focal element that implies neither A nor ¬A ∧ B. However
if C1 ∨ ... ∨ Cm are pairwise mutually inconsistent partial models such that no
disjunction of Ci and Cj contains a partial model implying neither Ci nor Cj ,
the computation can be simplified since then Bel(C1∨ ...∨Cm) =

∑m
i=1 Bel(Ci).

For instance, the belief in an exclusive OR Bel((A1 ∧ ¬A2) ∨ (A2 ∧ ¬A1)) is of
this form. More work is needed in the general case.

5 Comparison between Interval Analysis and
Dempster-Shafer Theory

Table 1 summarizes the results obtained using the two methods seen in section
2.2 and 3 applied to Boolean formulas: (i) the belief functions method with the
assumption that the probability values come from independent sources of infor-
mation, and (ii) the full-fledged interval analysis method under the assumption
that all atomic events are independent [1]. These two assumptions do not reflect
the same kind of situations. In particular the independence between sources
of information may be justified if elementary components in the device under
study are different from one another, which often implies that the sources of
information about them will be distinct. However the fact that such elementary
components interact within a device tends to go against the statistical indepen-
dence of their respective behaviors.

Those results are given for the basic Boolean operators with variables A, B,
C and D. The probability interval used for those computations are: P (A) ∈
[0.3, 0.8], P (B) ∈ [0.4, 0.6], P (C) ∈ [0.2, 0.4], and P (D) ∈ [0.1, 0.5].

Table 1. Comparison between Interval Analysis and Dempster-Shafer Theory

ConnectiveFormulaBelief Functions (i) Interval Analysis (ii)

OR A ∨B lF = lA + lB − lAlB = 0.58 lF = lA + lB − lAlB = 0.58
uF = uA + uB − uAuB = 0.92 uF = uA + uB − uAuB = 0.92

AND A ∧B lF = lAlB = 0.12 lF = lAlB = 0.12
uF = uAuB = 0.48 uF = uAuB = 0.48

IMPLIES A ⇒ B lF = lA + (1− uA)(1− uB) = 0.48 lF = 1− uA + lBuA = 0.52
uF = 1− lA(uB − lA) = 0.94 uF = 1− lA + uB lA = 0.88

ExOR A�B lF = lA(1− uB) + lB(1− uA) [0.44,0.56]
uF = uA + uB − lAlB − uAuB

[lF , uF ] = [0.2, 0.8]

Fault-tree
(Fig. 1)

F lF = lAlB + lBlC lD + lAlC lD −
2lAlB lC lD

lF = lAlB+(1−lA)lB lC lD+(1−
lB)lAlC lD

uF = uAuB+uBuCuD+uAuCuD−
2uAuBuCuD

lF = uAuB+(1−uA)uBuCuD+
(1− uB)uAuCuD

[lF , uF ] = [0.1292, 0.568] [lF , uF ] = [0.1292, 0.568]



In Interval Analysis, knowing the monotonicity of a formula makes the de-
termination of its range straightforward. A Boolean formula is monotonic with
respect to a variable when we can find an expression of the formula where this
variable appears only in a positive or negative way. It is the case for the formulas
And, Or, and Implies.

But when the monotonicity is not easy to study, an exhaustive computation
for all intervals boundaries must be carried out, like for the Equivalence and
the Exclusive Or [1].

The difference between the results varies a lot with the formula under study.
Sometimes, using the Dempster-Shafer theory give the same results as interval
analysis, hence, in those cases, the dependency assumption does not have a
big influence on the output value; e.g in case of conjunction and disjunction
of literals, but also disjunction of conjunctions of atoms (as shown in table
1). This is not surprising as focal elements also take the form of conjunctions
of literals, and their masses are products of marginals. The fact that in such
cases the same results are obtained does not make the belief function analysis
redundant: it shows that the results induced by the stochastic independence
assumption are valid even when this assumption is relaxed, for some kinds of
Boolean formulas. For more general kinds of Boolean formulas, the intervals
computed by using belief functions are in contrast wider than when stochastic
independence is assumed.

In general, the probability family induced by the stochastic independence
assumption will be included in the probability family induced by the belief func-
tions. This proposition can be proved using the results of Fetz [9] and Couso
and Moral [10]. Any probability measure in P(m) = {P ≥ Bel} dominating
a belief function induced by a mass function m can be written in the form:

P =
∑

E⊆Ω

m(E) · PE where PE is a probability measure such that PE(E) = 1

that shares the mass m(E) among elements of E. For a function of two Boolean
variables x1 and x2, with two ill-known probability values P1(A1) = p1 and
P1(A2) = p2, p1 is of the form l1 +α(u1 − l1) for some α ∈ [0, 1] and p2 is of the
form l2 + β(u2 − l2) for some β ∈ [0, 1]. The explicit sharing, among interpreta-
tions, of the masses m(E), induced by probability intervals [l1, u1] and [l2, u2],
that enables P = P1P2 to be recovered is:

1. The masses on interpretations bear on singletons, hence do not need to be
shared.

2. The masses on partial models are shared as follows

– m(A1)β is assigned to A1A2, m(A1)(1− β) to A1¬A2.

– m(A2)α is assigned to A1A2, m(A2)(1 − α) to ¬A1A2.

– m(¬A1)β is assigned to ¬A1A2, m(¬A1)(1 − β) to ¬A1¬A2.

– m(¬A2)α is assigned to A1¬A2, m(A2)(1− α) to ¬A1¬A2.

3. m(Ω) is shared as follows: αβm(Ω) to A1A2, (1 − α)βm(Ω) to ¬A1A2,
α(1 − β)m() to A1¬A2, (1− α)(1 − β)m() to A1A2.



It can be checked that the joint probability P1P2 is the form
∑

E⊆Ω

m(E)·PE using

this sharing of masses. This result can be extended to more than 2 variables.
It indicates that the assumptions of source independence is weaker than the
one of stochastic independence, and is of course stronger than no independence
assumption at all. So the belief function approach offers a useful and tractable
approach to evaluate the impact of stochastic independence assumptions on the
knowledge of the probability of dreadful events in fault-tree analysis.

6 Conclusion

The more faithful models are to the actual world, the more their complexity
increases. When assumptions are made to simplify the model, then it is im-
portant to know how far the results stand away from reality in order to use
them as appropriately as possible. Having a means to compare different kinds
of models and different kinds of assumptions can be a good asset in order to
make best decisions out of the models. In this paper, we have laid bare three
kinds of assumptions for the calculation of the probability of some risky event
in terms of probability of basic atomic formulas. We have focused on the belief
function approach that assumes independence between sources of information
proving imprecise probabilistic information. We did also gave a formal solution
for an application to fault-tree analysis based on a DNF conversion. A practical
scalable solution for handling general Boolean formulas is a topic for further
research.
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