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Abstract

The lead-free halide double perovskite Cs2InAgCl6 was recently designed in silico

and subsequently synthesized in the lab. This perovskite is a wide-gap semiconductor

with a direct band gap, and exhibits extraordinary photoluminescence in the visible

range upon Na doping. The light emission properties of Cs2InAgCl6 have successfully

been exploited to fabricate stable single-emitter-based white light LEDs with near

unity quantum efficiency. An intriguing puzzle in the photophysics of this compound

is that the onset of optical absorption is around 3 eV, but the luminescence peak is

found around 2 eV. As a first step toward elucidating this mismatch and clarifying

the atomic scale mechanisms underpinning the observed luminescence, here we report

a detailed investigation of the quasiparticle band structure of Cs2InAgCl6 as well as

the phonon-induced renormalization of the band structure. We perform calculations of

bang gaps and effective masses using the GW method, and we calculate the phonon-

induced band structure renormalization using the special displacement method. We

find that GW calculations are rather sensitive to the functional used in the density

functional theory calculations, and that self-consistency on the eigenvalues is necessary

to achieve quantitative agreement with experiments. Our most accurate band gap at

room temperature is in the range 3.1-3.2 eV, and includes a phonon-induced gap renor-

malization of 0.2 eV. By computing the phonon-induced mass enhancement, we find

that the electron carriers are in the weak polaronic coupling regime, while hole carri-

ers are in the intermediate coupling regime as a result of the localized and directional

nature of the Ag eg 4d states at the valence band top.
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2 Introduction

The ABX3 perovskite lattice is one of the most commonly occurring crystal structures.1 Per-

ovskites and perovskite-related materials find applications as ferroelectrics,2,3 ferromagnets,4

multiferroics,5,6 semiconductors,7–9 superconductors,10,11 and solar absorbers.12–17 Among

the many families of perovskites, lead-based halide perovskites have attracted considerable

interest owing to their extraordinary optoelectronic properties, leading to solar cells with en-

ergy conversion efficiencies as high as 25.5%.17,18 Furthermore, the presence of a potentially

toxic element in these compounds and their tendency to degrade in humid environments19,20

prompted the search for alternative, lead-free materials with the perovskite structure.21,22

One class of lead-free perovskites that has gained significant attention are the ordered

halide double perovskites (HDP) or ‘elpasolites’.21 The first HDPs with band gaps in the

visible range, Cs2BiAgCl6 and Cs2BiAgBr6, have been designed and synthesized in early

2016.23–25 Subsequent work along this direction led to the discovery of additional new HDPs

such as Cs2SbAgCl6, Cs2SbAgBr6, Cs2InAgCl6, Cs2AgTlCl6, Cs2AgTlBr6, and even the

oxide Ba2AgIO6.26–31 Many of these new compounds have since been employed in a range

of applications, including solar cells, photocatalysts, light emitters, and photodetectors.32–45

Of these HDPs, Cs2InAgCl6
26 turned out to be an exceptionally efficient emitter of warm

white light.46

At room temperature Cs2InAgCl6 crystallizes in a face-centered cubic lattice with space

group Fm3m. The unit cell contains 10 atoms arranged in two corner-sharing octahedra

centered on the Ag and In cations, respectively, with the Cl anions at the vertices and the

Cs cation in the cuboctahedral cages, as shown in Fig. 1. The first optical measurements

on this compound were performed on powder samples, and revealed an absorption onset at

380 nm (3.26 eV) and a broad photoluminescence (PL) peak centered at 608 nm (2.04 eV)

with full width at half maximum (FWHM) of 0.4 eV.26 These observations were subsequently

confirmed by UV-Vis spectra on single-crystal samples.47 In Ref. 46 it was found that this PL

signal can dramatically be enhanced by doping Cs2InAgCl6 with Na. This discovery enabled
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the fabrication of single-emitter-based white-light LEDs with a record-high quantum yield of

86% and lifetimes up to 1000 hours.46 Further work confirmed that Na and/or Bi doping lead

to strong and broad PL,46,48–53 thus establishing Cs2InAgCl6 as a new HDP with exceptional

promise for LED applications.

Based on the large mismatch between the optical absorption onset (> 3 eV) and the PL

peak (∼2 eV), and the observation of photo-chromism, Ref. 26 tentatively attributed the

PL signal to the formation of photo-induced defects. On the other hand, Ref. 46 proposed

that the PL originates from the formation of self-trapped excitons driven by strong electron-

phonon coupling in the form of Jahn-Teller distortions. A definitive assignment is further

complicated by the fact that the magnitude of the band gap is not fully settled. For example,

ab initio calculations using hybrid HSE or PBE0 functionals yield gaps ranging from 2.1 to

3.3 eV,26 while GW calculations indicate gaps ranging from 3.1 to 3.3 eV.46,54 All these

previous calculations do not include the effect of electron-phonon coupling, which could

significantly renormalize the band gap.55–78 On the experimental front the optical gap is

better understood, but quantitative differences remain. For example, UV-Vis spectra from

different research groups yield optical gaps between 3.17 and 3.53 eV depending on sample

morphology.26,28,33,47,49,51,79–81

In this work, as a first step toward elucidating the origin of the strong PL in Cs2InAgCl6

and related materials, we focus on the accurate determination of the band structure of this

compound by employing GW calculations and including the electron-phonon renormalization

of the bands via the special displacement method.82,83 In particular, we carry out a thorough

sensitivity analysis of GW quasiparticle band gaps in relation to the density functional theory

(DFT) starting point and the use of self-consistency on the eigenvalues. We determine

accurate band structures and effective masses by means of Wannier interpolation, and we

calculate the electron-phonon renormalization of the band gap and effective masses using

the special displacement method.

The manuscript is organized as follows: In Sec. 3 we briefly review the theoretical and
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computational approach employed in this work, from the GW method to the special dis-

placement method. The computational setup, including details on software and convergence

tests, is described in Sec. 4. Section 5 presents our main results for the band gap, band struc-

tures, effective masses, and phonon-induced renormalization of the bands. In this section we

also compare our results to experiments. In Sec. 6 we draw our conclusions and discuss the

possible origin of the visible PL in Cs2InAgCl6.

3 Overview of methodology

3.1 GW calculations

The GW method84–87 constitutes the most reliable parameter-free approach for comput-

ing quasiparticle band structures in weakly- to moderately-correlated solids. In this method,

quasiparticle eigenvalues including nonlocal exchange and dynamical correlation are obtained

by replacing the DFT exchange and correlation potential Vxc with the many-body self energy

Σ = GW .84 In this symbolic expression, G is the electron Green’s function, and is evaluated

using DFT Kohn-Sham wavefunctions and eigenvalues, and W is the screened Coulomb

interaction, which is evaluated within the random-phase approximation (RPA) using once

again DFT wavefunctions and eigenvalues. The quasiparticle energy Enk is calculated per-

turbatively as Enk = εnk + Znk〈ψnk|Σ(εnk) − Vxc|ψnk〉, where εnk is the DFT eigenvalue

corresponding to the electronic band n and wavevector k, and ψnk is the associated wave-

function. Znk is the quasiparticle renormalization, and the self-energy is evaluated at the

unperturbed DFT energy, Σ(εnk).84,87

The above approach works best when the quasiparticle correction to DFT eigenvalues is

relatively small. For large corrections, this method suffers from the sensitivity of the self-

energy to the DFT band structure and wavefunctions.88–93 In order to reduce this sensitivity,

it is common to perform a few iterations where the eigenvalues used to calculate the self-

energy at each iteration are taken from the result of the previous iteration.84 This approach
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has been used for a variety of systems, ranging from molecules to semiconductors.94–99

A simpler self-consistent procedure consists of updating a scissor correction instead of all

individual eigenvalues.100,101 The advantage of the self-consistent scissor is that the correction

is well defined for all empty bands, and there is no need for extrapolations as in the case

of eigenvalue-self-consistency. The scissor operator is simply defined as
∑

k ∆kP̂
c
k, where

P̂ c
k is the projector on the empty states with wavevector k, and ∆k is a k-dependent scissor

correction. In the presence of a scissor correction, the quasiparticle eigenvalues are evaluated

as Enk = εnk + Znk〈ψnk|Σ(εnk) − Vxc − ∆kP̂
c
k|ψnk〉. For completeness, in this work we

also perform calculations using a k-independent scissor correction evaluated at the direct

gap. Self-consistent-scissor GW calculations proceed in the same way as for eigenvalue-self-

consistency: the scissor correction determined at a given iteration is employed as a starting

point for the evaluation of G and W in the next iteration, until convergence is achieved. For

comparison, we also perform band structure calculations using the HSE functional, which

has been very successful in calculations of extended solids.102,103

GW and HSE calculations are notoriously expensive. In order to calculate band struc-

tures along high-symmetry lines and evaluate the derivatives needed for the effective masses,

we employ Wannier interpolation.104,105 In particular, we perform GW and HSE calculations

on coarse Brillouin zone grids, and we interpolate the eigenvalues using maximally localized

Wannier functions.106

We evaluate effective masses by taking second order derivatives of the eigenvalues via

finite differences. In particular, we evaluate 1/mαβ = h̄−2∂2Enk/∂kα∂kβ, where h̄ is Planck’s

constant and α, β indicate Cartesian directions. We evaluate the masses using second-order

mixed finite difference formulas; the values reported below are the eigenvalues of the effective

mass tensors.
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3.2 Special displacement calculations

To investigate the phonon-induced renormalization of the band structure of Cs2InAgCl6, we

employ the special displacement method.82,83 This method consists of performing a band

structure calculation for a supercell where the atoms have been displaced from their equi-

librium sites. The displacements are chosen so as to reproduce the thermal mean square

displacements including quantum zero-point fluctuations within a single supercell calcula-

tion. The special set of displacements is referred to as the ZG (Zacharias-Giustino) displace-

ment, and it is understood as the mean-value point of the multi-dimensional Williams-Lax

integral.83 This method was successfully employed to calculate temperature-dependent band

structure renormalization in numerous semiconductors and insulators.107–111 The ZG dis-

placement is given by:

∆τκα(R) =
∑
q,ν

Sqν

[
h̄

2NMκωqν

(2nqν,T + 1)

]1
2

2 Re
[
eiq·Reκα,ν(q)

]
, (1)

where ∆τκα(R) indicates the displacement of the atom κ with mass Mκ in the unit cell

with lattice vector R, and N is the number of unit cells in the supercell. eκα,ν(q) is the

polarization vector of the phonon (normalized within the unit cell) with wavevector q, branch

index ν, frequency ωqν , and Bose-Einstein occupation nqν,T at the temperature T . The

quantities Sqν are signs (±1) determined so as to yield the correct quantum canonical average

of the displacements in the thermodynamic limit of an infinitely-extended supercell. The

summation in Eq. (1) is restricted to q-vectors that are neither time-reversal invariant nor

time-reversal partner of another vector in the sum. The phonon frequencies and eigenvectors

needed in Eq. (1) are obtained via density-functional perturbation theory.112

To obtain the electron spectral function in the presence of electron-phonon interactions,

we unfold the band structure calculated for the supercell with the ZG displacement.83,113

The resulting bands include electron-phonon renormalization to second order in the atomic

displacements as in the Allen-Heine theory,114 as well as all higher orders of electron-phonon
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coupling and off-diagonal Debye-Waller corrections.55,115

4 Computational setup and convergence tests

All DFT calculations were performed using planewaves and pseudopotentials, as imple-

mented in the Quantum ESPRESSO suite.116 We considered three exchange and correla-

tion functionals: LDA,117 PBE,118 and PBEsol.119 We employed optimized norm-conserving

Vanderbilt pseudo-potentials (ONCVPSP)120 from the PseudoDojo library.121 The valence

configurations for Cs, Ag, and Cl are 5s2p66s1, 4s2p6d105s1, and 3s2p5, respectively. For In

the library offers pseudopotentials with semicore states, 4s2p6d105s2p1, and without semicore

states, 4d105s2p1. We tested both options to investigate the sensitivity of GW calculations

to semicore electrons. Following the PseudoDojo recommendations we used a stringent ki-

netic energy cutoff of 100 Ry for all calculations. To confirm that this cutoff is sufficient for

Cs2InAgCl6, we also tested 120, 140, and 160 Ry, and we found that 100 Ry yields lattice

parameters and GW shifts within 10−4 Å and 1 meV of the most accurate calculation at

160 Ry.

Structural optimization was carried out using very stringent convergent criteria for the

total energy (10−12 Ry), forces (10−6 Ry/bohr), and pressure (10−3 kbar). The optimized

lattice constants are 10.19 Å, 10.66 Å, and 10.38 Å for the LDA, PBE, and PBEsol functional,

respectively. As expected, the PBEsol functional produces the lattice constant closest to the

experimental value of 10.47 Å.26 Complete data about structural optimization is reported in

Table 1.

All GW calculations were performed using the Yambo code122,123 in conjunction with

Quantum ESPRESSO.116 We employed the Godby-Needs plasmon-pole model,124 and set

the plasmon energy to 21 eV based on calculations of the energy-loss function. In Fig. 2

we show our convergence tests for the kinetic energy cutoff of the dielectric matrix and

the energy window used for the Green’s function (or equivalently the number of empty
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states). We considered cutoffs between 4 and 12 Ry for the dielectric matrix, and between

15 and 90 eV for the Green’s function (100 to 650 bands). In this test we employed an

8×8×8 Brillouin zone grid. Fig. 2 shows that using 10 Ry for the dielectric matrix and 600

bands is sufficient to obtain a band gap converged to within 10 meV. Using these converged

parameters, we tested the sensitivity to the Brillouin zone sampling. To this end we repeated

the calculations using uniform grids with 63 to 123 points, and found that the gap changes by

7 meV at most. Therefore a 6×6×6 grid is already enough for our purposes. All subsequent

calculations have been performed using 10×10×10 grids. For eigenvalue-self-consistent GW

calculations, we calculated the quasiparticle shifts for 14 valence bands and 14 conduction

bands, and interpolated the corrections for the other bands.

Below we report GW calculations performed using the three exchange and correlation

functionals LDA, PBE, and PBEsol. The band structures, gaps, and effective masses re-

ported below were obtained using the optimized lattice parameter for each functional, unless

otherwise stated. We also tested the effect of spin-orbit coupling by using fully-relativistic

ONCVPSP pseudopotentials, but we found that it does not affect band structures in any

significant way, in agreement with previous work.28,125 Based on these results, we performed

GW calculations without spin-orbit coupling.

HSE calculations were carried out starting from the PBE-optimized structure and a 10×

10×10 Brillouin zone grid, using the adaptively compressed exchange operator implemented

in Quantum ESPRESSO.126

To facilitate Wannier interpolation, we excluded the first 27 bands which form a composite

manifold below the valence bands for calculations in the presence of In semicore states

(23 bands otherwise). This leaves 30 bands for Wannier interpolation. All calculations of

Wannier functions were performed using the Wannier90 code.127–129

Effective masses were evaluated by finite differences using a step size of 10−3 Å−1 in

reciprocal space, which guarantees an accuracy of 10−2 m0, with m0 being the free electron

mass.
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Phonon dispersion relations and eigenmodes were calculated using density-functional

perturbation theory as implemented in the PHonon code of Quantum ESPRESSO.116 For

these calculations we used the PBE functional. The supercells with ZG displacements were

obtained using the ZG.x code released with the EPW package.83,130 We constructed special

displacements in 3×3×3, 4×4×4, and 5×5×5 supercells, containing up to 1250 atoms. To

lower the computational cost of these calculations, we used a reduced planewaves cutoff of

76 Ry, as suggested by the PseudoDojo library.121 We checked that band structure computed

with 76 or 100 Ry cutoffs are pratically indistinguishable. The band gap red-shifts at 300 K

obtained from 3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 supercells are 123 meV, 187 meV, and

165 meV, respectively [c.f. inset of Fig. 8(a)]. Based on these calculations, we expect the

converged value of the electron-phonon renormalization to fall in the interval 176±11 meV.

To reduce the cost of these calculations, we analyze band structures for the 4×4×4 supercell,

which yields a renormalization within 10% of our most converged value.

5 Results and discussion

5.1 Quasiparticle band gap and effective masses

The band structures of Cs2InAgCl6 calculated using DFT, GW, and HSE are shown in Fig. 3.

This compound exhibits a direct gap at the Γ point. The conduction band minimum (CBM)

originates from In/Ag-5s and Cl-3p states, while the valence band maximum (VBM) results

from the hybridization of Ag eg states (4dx2−y2 and 4dz2) with Cl-3p states. The flat band

visible along the Γ-X line at the top of the valence bands originates from the hybridization

of 4dx2−y2 states of Ag with the Cl-3px,y states, leading to a two-dimensional wavefunction

confined within the xy plane.26

An example of the iterative procedure for self-consistent GW calculations is given in

Fig. 4. This plot shows how, upon performing self consistency on the eigenvalues starting

from PBE, the band gap increases from 2.6 eV to 3.4 eV after five iterations. Similar trends
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are observed when considering self-consistent scissor corrections, with the converged value

being only slightly smaller at 3.3 eV. The monotonic increase of the band gap upon self-

consistency is understood as the result of the improved RPA screening resulting from the

wider band gap obtained at each iteration. In comparison, the one-shot (G0W0) gap is

underestimated because the initial PBE gap is extremely small (1 eV) as compared to the

final quasiparticle gap (3.4 eV).

In Table 2 we report a comprehensive dataset of band gaps computed using various

self-consistency schemes for GW, starting from three DFT functionals, with or without In

semicore states, and using the optimized or experimental lattice parameters. Key data is

also reported in Fig. 5. As expected, semicore states play an important role in the calculated

GW gaps, causing a blueshift of up to 0.4 eV as compared to calculation without semicore

states [Table 2(a)]. This is understood in terms of the exchange self-energy being sensitive

to the overlap between semicore states and band edge states.131–133 Among the functionals

employed, the DFT band gap is smallest for LDA and largest for PBE. This trend is reflected

in the corresponding GW band gaps. The same trends are observed when performing all

calculations using the experimental lattice constant, as shown in Table 2(b). The choice of

using optimized or experimental lattice constant brings only a small change in the gap, in

the range of 0.1 eV, as it can be seen in Table 2(c). Furthermore, the use of eigenvalue-self-

consistency or scissor-self-consistency is found to reduce the dependence of the GW band

gap on the DFT starting point, approximately halving the differences between LDA, PBE,

and PBEsol calculations. In comparison, HSE calculations yield too small a band gap, in

the same range as the result of one-shot G0W0 calculations (Table 2).

In Fig. 5 we compare our calculations with measured absorption onsets in UV-Vis spec-

tra. Experimental data is from powder samples,26 single crystalline samples,33,47 films,28,81

and nanocrystals.49,51,79,80 Even after excluding nanocrystals which might be affected by

quantum confinement, there is a significant scatter between reported gaps, from 3.2 eV33

to 3.53 eV.28,81 These values are shown in pink in Fig. 5, and the experimental range is
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indicated by a gray horizontal stripe.

A comparison between our calculations and experiments indicates that eigenvalue- or

scissor-self-consistent GW calculations starting from the PBE functional lie well within the

experimental range, while the other options explored here tend to slightly underestimate the

experimental values. We should also keep in mind that the measured optical gaps might

include non-negligible renormalization from excitonic effects and electron-phonon interac-

tions. These effects will further lower the theoretical band gaps in Fig. 5. In particular, in

Sec. 5.2 we will show that the electron-phonon interactions reduce the band gap by as much

as ∼ 0.2 eV at room temperature.

Fig. 3(c) shows how quasiparticle corrections modify the curvature of the bands near the

band extrema. To quantify this effect, we report in Fig. 6 the effective masses calculated at

various levels of theory. Unlike for the band gaps, we find that the effective mass renormal-

ization is not very sensitive to the DFT starting point for the GW calculations, and that

HSE masses are similar to GW masses.

The band edges of Cs2InAgCl6 can be described via an electron mass, a light hole mass,

and a heavy hole mass, as it can be seen in Fig. 3(c). We find that both electron and hole

effective mass tensors are isotropic, therefore in Fig. 6 we report only the isotropic average.

Taking ∆k-scGW calculations with PBE starting point as a reference, we find that the

electron mass increases by 15% from 0.27 m0 (PBE) to 0.31 m0 (GW ), while the light hole

mass decreases by 20% from 0.36 m0 to 0.30 m0, and the heavy hole mass decreases by 17%

from 0.90 m0 to 0.77 m0. We note that the determination of the heavy hole mass is less

reliable owing to the non-dispersive nature of the top of the valence bands along the Γ-X

direction.

To the best of our knowledge, no measurements of the effective masses in Cs2InAgCl6

are available. However, given that GW calculations of quasiparticle effective masses in the

related halide CH3NH3PbI3 closely reproduce experimental effective masses obtained from

magnetic measurements of exciton binding energies,134 we expect our calculations to carry
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reasonable predictive power.

The much heavier carrier effective masses of Cs2InAgCl6 as compared to the prototypi-

cal halide perovskite CH3NH3PbI3 (∼ 0.1m0, Ref. [ 134]) suggest that this compound will

exhibit poor transport properties. Indeed, the calculated carrier mobility of the related dou-

ble perovskite Cs2BiAgCl6, which exhibits effective masses similar to Cs2InAgCl6, lies in

the range 6-11 cm2/Vs depending on direction,135 therefore for Cs2InAgCl6 we can expect

mobilities within this same range. This tentative estimate is in line with both experimental

measurements of the carrier mobility in Cs2InAgCl6, yielding 2.3-3.3 cm2/Vs,33 and theo-

retical estimates based on a Fröhlich polaron model, yielding 2.34 cm2/Vs.79 Clearly further

work will be needed to clarify the conduction mechanisms in Cs2InAgCl6 and related ma-

terials, and to understand how the transport properties of this compound can be improved

via doping.79

5.2 Electron-phonon coupling

Figure 7 shows the calculated phonon dispersion relations of Cs2InAgCl6, as well as the

phonon density of states (DOS) projected onto Cs, Ag/In, and Cl displacements. The lack

of soft modes confirms that Cs2InAgCl6 is dynamically stable in the Fm3m structure. We

can see three main groups of vibrations: a low-energy group around 5-10 meV, which is

dominated by the vibrations of Cs and Ag, an intermediate-energy group of modes around

15 meV, associated with the bending motion of the Ag-Cl/In-Cl bonds, and high-energy

modes in the range 25-30 meV associated with Ag-Cl and In-Cl stretching vibrations. The

phonon dispersions and the mode assignment are similar to the related double perovskite

Cs2BiAgCl6.135

In Fig. 8 we show the momentum-resolved spectral function and the electronic DOS of

Cs2InAgCl6 including electron-phonon interactions at 300 K, as obtained via the special

displacement method.83 Electron-phonon couplings are seen to shift and broaden the non-

interacting DFT bands, which are also shown in Fig. 8 as gray lines for comparison.
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Phonon-induced renormalization is most pronounced for the valence bands. Indeed, the

VBM acquires a finite linewidth of 143 meV and blueshifts by 255 meV. In contrast, the CBM

acquires a finite linewidth of 9 meV, and blueshifts by 68 meV. To rationalize this significant

difference between VBM and CBM, in Fig. 9 we show the electron density around the metal-

halide octahedra, for both the ground state structure and the perturbed ZG structure at

300 K, evaluated at the Γ point. From this comparison we see that the diffuse and isotropic

nature of the Ag/In-5s states makes the CBM wavefunction relatively insensitive to lattice

fluctuations. On the other hand, the more localized and directional nature of the Ag eg

states (4dx2−y2 and 4dz2) makes the VBM wavefunction more responsive to a breaking of

octahedral symmetry.

The uneven temperature shift of VBM and CBM leads to a band gap renormalization of

187 meV at 300 K. Combined with our self-consistent GW calculations in Table 2 (start-

ing from PBE), this result implies that our most accurate theoretical gap of Cs2InAgCl6,

including both many-body electron-electron and electron-phonon interactions, should be in

the range 3.07-3.19 eV. It is worth noting that the electron-phonon coupling evaluated at

the PBE level is expected to be slightly too weak (by a few tens of percent) as a result of the

band gap underestimation.64 Therefore, our calculations of the band gap renormalization

likely constitute a lower bound to the true effect, and our final band gap range is probably

overestimated by a few tens of meV.

Given that the conduction band near the CBM is relatively sharp [see Fig. 8(a)], it is

possible to extract the renormalized electron effective mass from the spectral function using

a simple parabolic fit. This procedure yields the effective mass 0.33 m0 at 300 K. Since

the bare mass is 0.27 m0, we conclude that phonons induce a mass enhancement of 22 %.

Assuming that the most significant contribution arises from longitudinal optical phonons as

for the related CH3NH3PbI3 and Cs2AgBiCl6,135,136 we can use the mass renormalization to

extract an approximate polaron coupling constant α.137 The mass enhancement in Feynman’s

model138 is given by 1 +α/6 + 0.025α2, yielding a coupling constant α = 1.1 for electrons in
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Cs2InAgCl6. This value indicates a weak polaron coupling regime for the electrons. We also

estimate the size of polaronic carriers using Feynman’s expression, rp = (3.4 h̄/m∗ αω)1/2.139

Using h̄ω = 32.7 meV from Fig. 7 and m∗ = 0.27m0, we find rp = 52 Å, indicating

large electron polarons. This analysis suggests that electron carriers in Cs2InAgCl6 undergo

standard diffusive transport. A similar parabolic fit for the light hole carriers (along the

Γ-L direction) yields a much more pronounced mass enhancement, from 0.36m0 to 1.2m0,

therefore in this case we have α = 6.9 and rp = 18 Å. As expected, in this simple model the

holes form intermediate polarons, hence thermal activation may play an important role in

hole transport.

6 Conclusions

In this work we reported a detailed investigation of the quasiparticle band structure and

electron-phonon couplings in the lead-free halide double perovskite Cs2InAgCl6. We per-

formed a thorough sensitivity analysis of the GW quasiparticle corrections by considering

several DFT exchange and correlation functionals as starting point, and several strategies

for self-consistency. In addition, we computed the band gap renormalization arising from

electron-phonon interactions at room temperature via the special displacement method.

Upon including both electron-electron and electron-phonon interactions, our most accurate

estimate for the band gap is 3.07-3.19 eV. These values are well within the experimental band

gap range as determined via UV-Vis absorption spectroscopy. In comparison, we found that

both the one-shot G0W0 and HSE band gaps underestimate the band gap by as much as an

eV, hence they do not provide a reliable description of the band structure of Cs2InAgCl6. The

present study indicates that the luminescence of this compound around 2 eV is not related

to band-to-band recombination, which occurs at a much higher energy. Remaining options

to explain the observed PL are the formation of strongly bound polarons, defect-induced

emission, and self-trapped excitons. Regarding polarons, our simplified analysis based on
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Feynman’s model indicates that electron carriers are in the large polaron coupling regime,

while hole carriers are moderately coupled to phonons due to the dx2−y2 and dz2 character

of the VBM. It is likely that hole carriers in this compound form intermediate polarons,

although a precise determination of the polaron formation energies will require a separate,

detailed investigation. In summary, this work establishes clear guidelines for future ab initio

calculations of the electronic and optical properties of Cs2InAgCl6, and provides a firm basis

for quantitative studies of the photophysics of this promising light-emitting material.
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Table 1: Optimized structure of cubic Cs2InAgCl6 with space group Fm3m. We report
the Wyckoff site and fractional coordinates of each atom in the primitive cell obtained using
the LDA, PBE, and PBEsol functionals, as well as the bond lengths and lattice constants.
For reference, the measured lattice constant is 10.47 Å.26 Only data obtained by including
In semicore states are reported; the bond lengths and lattice constants calculated without
semicore states are within 0.05% (0.01 Å) of the values reported below.

LDA PBE PBEsol

Cs 2c (1/4, 1/4, 1/4) Cl 6e (x, y, x) x 0.754 0.759 0.756
Cs 2c (3/4, 3/4, 3/4) Cl 6e (y, x, y) y 0.246 0.241 0.244
In 1a (0, 0, 0) Cl 6e (x, y, y) In-Cl (Å) 2.5043 2.5705 2.5327
Ag 1b (1/2, 1/2, 1/2) Cl 6e (y, x, x) Ag-Cl (Å) 2.5927 2.7609 2.6592

Cl 6e (x, x, y) a (Å) 10.1933 10.6629 10.3838
Cl 6e (y, y, x)
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Table 2: Bandgap of Cs2InAgCl6 calculated using DFT, GW, and HSE. (a) Calculations
perfomed using the optimized structures for each functional, as described in Table 1. (b)
Calculations performed using the experimental lattice constant and the fractional coordinates
reported in Table 1 for each functional. (c) Difference between the values obtained in (b) and
in (a). In all cases we report results including or excluding In semicore states. The labels
on the leftmost column indicate eigenvalue-self-consistent GW (ev-scGW ), self-consistent
scissor GW with a k-independent scissor (∆Γ-scGW ), and self-consistent scissor GW with
a k-dependent scissor (∆k-scGW ). HSE calculations were performed using the structure
optimized via the PBE functional.

LDA PBE PBEsol

no semicore semicore no semicore semicore no semicore semicore

(a) DFT 0.60 0.60 1.02 1.03 0.78 0.79
G0W0 2.03 2.39 2.30 2.60 2.12 2.45
ev-scGW 2.69 3.12 3.02 3.38 2.81 3.20
∆Γ-scGW 2.58 3.07 2.84 3.26 2.67 3.12
∆k-scGW 2.59 3.06 2.91 3.31 2.70 3.14
HSE - - 2.25 2.46 - -

(b) DFT 0.50 0.50 1.08 1.09 0.75 0.76
G0W0 1.90 2.23 2.37 2.68 2.09 2.41
ev-scGW 2.59 3.00 3.06 3.44 2.78 3.17
∆Γ-scGW 2.47 2.94 2.90 3.32 2.64 3.08
∆k-scGW 2.48 2.93 2.96 3.37 2.67 3.10
HSE - - 2.33 2.55 - -

(c) DFT (-0.10) (-0.10) (0.06) (0.06) (-0.03) (-0.03)
G0W0 (-0.13) (-0.16) (0.07) (0.08) (-0.03) (-0.04)
ev-scGW (-0.10) (-0.12) (0.04) (0.06) (-0.03) (-0.03)
∆Γ-scGW (-0.11) (-0.13) (0.06) (0.06) (-0.03) (-0.04)
∆k-scGW (-0.11) (-0.13) (0.05) (0.06) (-0.03) (-0.04)
HSE - - (0.08) (0.09) - -
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(b)(a)

Figure 1: Ball-and-stick model of (a) conventional cell, and (b) primitive unit cell of
Cs2InAgCl6. The color code is as follows, Cs: cyan; In: purple, Ag: grey, and Cl: orange.
The structure belongs to the Fm3m space group, and the experimental lattice parameter is
10.47 Å.26 The PBEsol Ag-Cl and In-Cl bond lengths are 2.659 Å and 2.533 Å, respectively,
see Table 1.
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