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Abstract 10 

Sensorimotor adaptation involves the recalibration of the mapping between motor 11 

command and sensory feedback in response to movement errors. Although adaptation 12 

operates within individual movements on a trial-to-trial basis, it can also undergo learning 13 

when adaptive responses improve over the course of many trials. Brain oscillatory activities 14 

related to these “adaptation” and “learning” processes remain unclear. The main reason for 15 

this is that previous studies principally focused on the beta band, which confined the 16 

outcome message to trial-to-trial adaptation. To provide a wider understanding of adaptive 17 

learning, we decoded visuomotor tasks with constant, random or no perturbation from EEG 18 

recordings in different bandwidths and brain regions using a multiple kernel learning 19 

approach. These different experimental tasks were intended to separate trial-to-trial 20 

adaptation from the formation of the new visuomotor mapping across trials. We found 21 

changes in EEG power in the post-movement period during the course of the visuomotor-22 

constant rotation task, in particular an increased (i) theta power in prefrontal region, (ii) beta 23 

power in supplementary motor area, and (iii) gamma power in motor regions. Classifying the 24 

visuomotor task with constant rotation versus those with random or no rotation, we were able 25 

to relate power changes in beta band mainly to trial-to-trial adaptation to error while changes 26 

in theta band would relate rather to the learning of the new mapping. Altogether, this 27 

suggested that there is a tight relationship between modulation of the synchronization of low 28 

(theta) and higher (essentially beta) frequency oscillations in prefrontal and sensorimotor 29 

regions, respectively, and adaptive learning. 30 

Keywords: Sensorimotor adaptive learning, Neural oscillations, Electroencephalography, 31 

Machine learning, Sparse modeling.  32 
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Highlights: 33 

• Increases in post-movement power θ, β and γ bands underpin adaptive learning  34 

• SMA β synchronization increase relates to trial-to-trial adaptation from errors 35 

• Visuomotor mapping acquisition is associated with synchronized frontal θ activity 36 
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1. Introduction 37 

Adaptation is an essential feature of motor control in which the motor command is 38 

adjusted on a trial basis to compensate for disturbances in the external environment or in the 39 

motor system itself. It involves the recalibration, or updating, of the brain’s internal model that 40 

predicts the upcoming state of the motor system from the current state and the ongoing 41 

motor command. Any mismatch between the predicted motor state and the actual motor 42 

state as estimated through feedback, labelled a sensory prediction error, is used for the 43 

update of the model and the adjustment of the motor command (Diedrichsen et al., 2005; 44 

Wolpert et al., 1995; Wolpert and Miall, 1996). Adaptation can therefore be viewed as a 45 

change in the mapping that relates sensory inputs to motor outputs. Although this remapping 46 

operates fundamentally on a trial-to-trial basis, it can also engage a learning phase when 47 

sensorimotor mapping evolves over the course of many trials and stabilizes so as to become 48 

optimally tuned to specific environments and tasks (Braun et al., 2009a). This raises a 49 

fundamental question as to whether adaptation occurring on a trial basis and its improvement 50 

across trials arise through the same mechanisms or not. 51 

A number of studies have investigated the oscillatory brain activities associated with 52 

trial-to-trial reach adaptation using paradigms of visuomotor-rotation wherein a distortion is 53 

generated between the movement and its visual representation to induce an adaptive motor 54 

response. Most of the studies focused on beta band activity, which is known to play a central 55 

role in motor control (Kilavik et al., 2013). They reported a negative correlation between 56 

movement error induced by visuomotor distortion and the amplitude of post-movement beta 57 

event-related synchronization over the sensorimotor cortex, this negative correlation being 58 

enhanced when the bias and variance of the prior errors was additionally considered (Tan et 59 

al., 2014a, 2014b). This was interpreted to reflect neural processes that evaluate the 60 

outcome of a completed movement with respect to its predicted outcome and do so in the 61 

context of errors history. Interestingly, this correlation has been reported not only when the 62 

rotational distortion remained the same across trials but also when it varied pseudo-randomly 63 
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around a mean of zero degree, that is when no learning of a new visuomotor transformation 64 

would occur (Albert et al., 2021; Diedrichsen et al., 2005; Donchin et al., 2003). This 65 

suggests that amplitude modulation of post-movement beta synchronization with respect to 66 

error size is a hallmark of trial-to-trial adaptation and do not reflect the formation of new 67 

visuomotor mapping. Recent evidence further suggested that this post-movement beta 68 

synchronization relates also to uncertainties in sensory feedback and motor feedforward 69 

estimations that determine ‘how readily’ movement error updates the internal model (Palmer 70 

et al., 2019; Tan et al., 2016). Hence, there seems to be a link between post-movement beta 71 

rebound, trial-to-trial adaptation, and relevance of error to update the internal model. There is 72 

also evidence that trial-to-trial adaptation triggers modulation of beta synchronization during 73 

movement planning (pre-movement), therefore linking beta synchronization to the processing 74 

of previous error and somatosensory information, both critical to the updating of motor plans 75 

(Alayrangues et al., 2019; Jahani et al., 2020; Torrecillos et al., 2015). Altogether, the above 76 

results suggest that beta synchronization prior to and following a movement could express 77 

some sort of functional polymorphism, evaluating movement error and mediating the 78 

subsequent adaptation from both motor and sensory information.  79 

None of the above studies addressed the question of the learning occurring when a 80 

new sensorimotor mapping between feedback and motor command is acquired and 81 

becomes stable. A few studies provided some insights into this issue, examining changes in 82 

spectral power of the other oscillatory bands by comparing early and late phases of 83 

adaptation to a constant perturbation. They reported an increase of gamma power during 84 

movement execution as well as an increased power of the slower frequencies (theta and 85 

alpha) during pre-movement, especially in the parietal and frontal cortices, during the course 86 

of learning (Gentili et al., 2011; Perfetti et al., 2011; Thürer et al., 2018). Thus, rhythms 87 

outside the beta band may play a pivotal role in motor learning. Unfortunately, both 88 

adaptation and learning were intertwined in these aforementioned studies. Finally, it is worth 89 

to mention that besides spectral power, phase information is also involved in the neuronal 90 
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encoding of motor processes (Combrisson et al., 2017; Hammer et al., 2013; Jerbi et al., 91 

2007). However, motor adaptation and learning have not yet been studied under this 92 

perspective. 93 

In the present study, we aimed to come up with a more complete understanding of 94 

motor adaptation and learning in terms of neural oscillations and synchrony. To this end, we 95 

implemented a data-driven multivariate approach – multiple kernel learning (MKL) – that 96 

explored the different spectral features of the EEG signals – i.e. power and phase in different 97 

bandwidths and regions of interest – prior to (pre-movement) and following (post-movement) 98 

the movement during a visuomotor rotation task with constant perturbation. MKL is a 99 

powerful method that can decode states of interest from a combination of kernels (Gönen 100 

and Alapydin, 2011), such as features of the EEG signals (Schrouff et al., 2016). We 101 

examined features of adaptive behavior through an MKL model discriminating early from late 102 

stages of a visuomotor constant rotation task. We expected to find a combination of features 103 

including but not limited to pre-movement and post-movement beta power to bring 104 

information regarding adaptive behavior. However, it would have remained unclear from that 105 

modelling whether EEG features that contributed to the decision boundary were related 106 

either to trial-to-trial adaptation from errors or formation of the new visuomotor mapping since 107 

both processes occur concomitantly in a visuomotor constant rotation task. Accordingly, we 108 

also considered two other experimental conditions, including a normal movement condition 109 

that relies on the identity mapping and does not involve any adaptation, and a condition with 110 

a random rotational perturbation centered on identity mapping. In the latter, there was trial-to-111 

trial adaptation from errors (Albert et al., 2021; Diedrichsen et al., 2005; Donchin et al., 112 

2003), but this adaptation did not lead to the acquisition of a new sensorimotor mapping 113 

since the imposed average mapping is the identity policy as in normal movement condition 114 

(Braun et al., 2009b). MKL modelling of the constant rotation condition against these 115 

additional conditions as well as further univariate analyses provided information on the EEG 116 
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features most related to the trial-to-trial adaptation from errors and those relating mostly to 117 

the acquisition of the new visuomotor mapping.  118 
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2. Material and methods 119 

2.1. Participants 120 

19 right-handed healthy volunteers (9 females and 10 males, age range: 20 – 33 years; 121 

mean ± SD age: 23 ± 3 years) participated in the study. All subjects had no history of 122 

neurological or psychiatric disorders and presented normal or corrected-to-normal vision. 123 

The study was conducted with the approval of the local ethics committee from Grenoble-124 

Alpes University (IRB00010290-2019-02-12-60). Written informed consent was obtained 125 

from all participants. 126 

2.2. Experimental setup 127 

Participants were seated in front of a 27’’ computer screen, 1.5 meters away, and held 128 

a joystick with their right hand, which rested on a padded arm support. An opaque panel 129 

prevented the view of the hand and forearm. Participants were equipped with a 128-130 

electrodes cap (Biosemi©). The task, in line with previous studies (e.g. Perfetti et al., 2011; 131 

Tan et al., 2014a), consisted in performing target aiming movements with a joystick that 132 

controlled a green ball. Each movement started from the center of the screen to one of eight 133 

possible and equally spaced targets around a virtual circle (radius, 15 cm – circa 15-20° of 134 

wrist flexion). Each trial started with a 1500 to 1900 ms pre-cue period during which the eight 135 

targets were presented as red circles with transparent background. It was followed by a 1500 136 

ms cue period during which the background of two neighbor targets became red and allowed 137 

movement planning. Then, all targets except one of the two red targets disappeared to 138 

indicate the GO signal. Participants had to reach the remaining red target as fast and as 139 

accurately as possible. Once the target was reached with a 200 ms stop inside the target or 140 

when the allowed time elapsed (> 5000 ms), a 2500 ms inter-trial interval preceded the 141 

following trial. During this interval, the green ball disappeared and only the reached target 142 

remained visible. Subjects were asked to passively let the joystick return to its initial position. 143 

The task was implemented using a custom C++ software based on Qt and Measurement 144 

Computing© libraries. The software recorded behavioral data (cursor positions) at 2048 Hz. 145 
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EEG electrodes (Biosemi system) were placed according to the international 10-20 EEG 146 

system, and acquired at 2048 Hz. Data synchronization was controlled through triggering 147 

from behavioral software. 148 

2.3. Experimental conditions 149 

After 50 familiarization trials, participants performed the normal movement condition 150 

(Norm) and then the random rotation condition (RdmRot), including 80 trials each. In Norm, 151 

there was a normal relationship between the display and joystick. In RdmRot, rotation angle 152 

between the cursor and the actual movement was selected randomly between -60° to +60° in 153 

step of 20° with the average angle over the 80 trials being equal to 0° (Fig. 1). Each rotation 154 

angle was presented 10 times except for the 0° angle that was presented 20 times. Finally, 155 

participants performed the condition of 60° constant rotation, which was divided in two runs 156 

of 80 trials each separated by a 2’ break (CnstRot-1 and CnstRot-2; Fig. 1). In all 157 

conditions, each target was visited 10 times in a random order.  158 

Early and late stages of adaptive learning were defined as the first 30 trials of CnstRot-159 

1 (Early-CnstRot) and the last 30 trials of CnstRot-2 (Late-CnstRot), respectively, akin to 160 

previous studies (Perfetti et al., 2011; Tan et al., 2014a). Norm, RdmRot and CnstRot-1 were 161 

used to tease apart neural correlates related either to trial-to-trial adaptation or learning of 162 

the visuomotor transformation. 163 
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 164 

Fig. 1. Experimental design. Subjects started with 80 trials of Norm condition (no distortion), followed by 80 trials 165 

of RdmRot condition (random rotational perturbation), then performed CnstRot condition, divided in two runs of 80 166 

trials each. The first 30 trials of CnstRot-1 defined the Early-CnstRot stage while the last 30 trials of CnstRot-2 167 

defined the Late-CnstRot stage. Every trial started with a pre-cue period displaying the 8 possible target locations. 168 

Then, two targets lighted up during the preparation period and finally only one remained, towards which 169 

participants performed their aiming movement. In Norm condition visual feedback was normal, while in RdmRot 170 

and CnstRot conditions visual feedback was perturbed using random and constant perturbation, respectively. 171 

Distribution of perturbations over trials are presented below each column. 172 

2.4. Behavioral analysis 173 

Behavioral analysis was performed with custom Matlab routines (R2018b). Cursor 174 

positions were down-sampled at 100 Hz and then filtered through a dual low pass 175 

Butterworth filter with a 20 Hz cutoff frequency. Reaction time (RT) was calculated as the 176 

delay between GO signal and the time when the velocity crossed the threshold of three times 177 

its SD at rest. Trials in which participants exhibited an anticipatory behavior (RT < 100ms) or 178 
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did not reach the target were excluded from further behavioral and EEG analyses. For each 179 

trial, several parameters were also computed to quantify adaptive behavior (Braun et al., 180 

2009a; Perfetti et al., 2011; Tan et al., 2014a): (i) movement duration (MT), defined as the 181 

time elapsed between movement onset and movement termination (i.e. the moment when 182 

target was reached, after the 200ms stop within it); (ii) path length (PL), or normalized 183 

covered distance, computed as the total distance traveled by the cursor during the trial 184 

divided by the optimal path length, i.e. the length of the line connecting the starting position 185 

and the target; (iii) absolute initial angular error (AIE), defined as the absolute angle between 186 

the line connecting the initial cursor position to its position 200ms after movement onset – 187 

and before any corrective movement – and the line connecting the initial cursor position to 188 

the target;  and (iv) trial-to-trial adaptation rate (AR) as estimated from state-space modelling 189 

(c.f. appendix and Tan et al., 2014a). State-space model performance was assessed using 190 

Akaike information criterion (AIC). All parameters respected normality criterion as assessed 191 

through Shapiro-Wilk tests. Accordingly, paired t-tests and within-subjects ANOVAs 192 

combined with Fisher LSD post-hoc tests have been used to investigate differences in mean 193 

parameters (averaged across trials). All statistical tests were performed using Statistica 10 194 

(StatSoft©), with a level of significance set at p < 0.05. 195 

2.5. EEG preprocessing 196 

EEG data preprocessing was performed using Python and open source MNE software 197 

(https://mne.tools). First, EEG was down-sampled at 200 Hz and referenced to the average 198 

signal across all electrodes. Raw EEG signals were band-pass filtered between 1 and 80 Hz 199 

with a notch filter at 50 Hz, and detrended. All channels were visually inspected to identify 200 

bad channels which were interpolated, and blinking artifacts were rejected through ICA 201 

analysis (Delorme et al., 2007). Then, signals were epoched in two periods: 1) pre-202 

movement, locked on GO signal, starting 2000 ms before and ending 700 ms after (to 203 

include first part of motion, before any corrective movement); 2) post-movement, locked on 204 

movement termination, starting when target was reached (200 ms before movement 205 
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termination) and ending after the 2500 ms inter-trial interval. All epochs were visually 206 

inspected to remove residual noisy epochs. “Bad epochs” based on anticipatory behavior or 207 

trials with target not reached were also excluded. To keep a large enough number of trials 208 

across participants in our main investigation between Early- and Late-CnstRot, the first 30 209 

“good epochs” of CnstRot-1 and the last 30 “good epochs” of CnstRot-2 were considered for 210 

each participant. Regarding other conditions, 3.6 ± 3.3, 7.4 ± 7,1 and 9.4 ± 6.7 over 80 211 

epochs were discarded in Norm, RdmRot and CnstRot-1 conditions, respectively (averaged 212 

values for pre- and post-movement epochs). 213 

2.6. EEG time-frequency analysis 214 

EEG time-frequency analysis was performed using Matlab (R2018b) and SPM12 215 

toolbox (https://www.fil.ion.ucl.ac.uk/spm/). For every recording sites, each epoch was 216 

decomposed in its time frequency representation through a Hilbert transform between 1 and 217 

80 Hz, with 1Hz non overlapping intervals and using a two-way, zero phase-lag FIR filter 218 

from EEGLAB toolbox (order 3r where r is the ratio of the sampling rate to the low-frequency 219 

cutoff of the filter, rounded down). Phase and amplitude (power) signals of the complex 220 

transform were then extracted for each frequency. This method has been shown previously 221 

to be as accurate as power estimation using Morlet wavelet (Bruns, 2004) while preserving 222 

phase information (Cohen et al., 2009; Combrisson et al., 2017; Voytek et al., 2013).  223 

Relative EEG power changes were then calculated for Early- and Late-CnstRot as the 224 

percentage change relative to a stable baseline, by dividing the power signals at each 225 

frequency and each time point by the baseline, and then subtracting 100 from the normalized 226 

value (expressed in percent). Positive values indicated an EEG power higher than the 227 

baseline and will be reported as a synchronization while negative values will be reported as a 228 

desynchronization. The baseline was defined for each frequency as the average power 229 

during the last 500 ms of the pre-cue period, pooled across trials (i.e. one global baseline 230 

was used for the 80 trials of CnstRot-1 and CnstRot-2, before extracting Early and Late 231 

subsets). In this 500 ms period, participants were at rest, had stopped performing motion 232 
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since more than 1000 ms and were presented with only the 8 targets with transparent 233 

background. Power changes were then averaged over epochs. Then, inter-trial coherence of 234 

phase signals over epochs (ITPC) was computed. For each subject, mean ITPC value during 235 

baseline period (same period than for power) was then subtracted from ITPC signals. Typical 236 

examples of time-frequency maps (powers and ITPC averaged across subjects on central 237 

electrode Cz in Early- and Late-CnstRot) are presented on Fig. 2. Power changes and ITPC 238 

were also estimated for conditions Norm, RdmRot, CnstRot-1 the same way. 239 

 240 

Fig. 2. Illustration of the EEG features in Early- and Late-CnstRot (on central electrode Cz). First column 241 

represents averaged power changes across subjects during pre-movement window (0 ms corresponds to GO 242 

signal). Theta (4-8 Hz) and gamma (31-80 Hz) waves presented concomitantly two synchronization peaks, after 243 

visual stimuli (immediately after the CUE signal at -1500 ms, and immediately after the GO signal at 0ms). Alpha 244 

(9-12 Hz) and beta (13-30 Hz) waves presented a desynchronization during the cue period, which became even 245 

more consistent after the go signal. Second column represents averaged ITPC across subjects during pre-246 

movement window. Peaks of ITPC were essentially present in theta and alpha bands, right after the CUE and GO 247 

visual stimuli. Third column represents averaged power changes across subjects during post-movement window 248 

(0 ms corresponds to movement termination). Theta and gamma powers presented a slight progressive 249 

synchronization after movement. Beta and alpha powers, which were largely below the baseline at the end of the 250 

movement, presented a strong synchronization after movement, peaking between 1,5 s and 2.5 s post-251 

movement. Fourth column represents averaged ITPC across subjects during post-movement window. A peak of 252 

ITPC was present mainly in theta and alpha bands right after the end of the movement. All these modulations are 253 

consistent with current literature (see Kilavik et al., 2013; Palmer et al., 2019; Tan et al., 2014a; Tzagarakis et al., 254 

2010 for power modulation and Combrisson et al. 2017; Popovych et al. 2016 for ITPC). 255 
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2.7. MKL classification 256 

MKL modelling was performed using Pronto library 257 

(http://www.mlnl.cs.ucl.ac.uk/pronto/) which is based on the SimpleMKL package 258 

(Rakotomamonjy et al., 2008). MKL is a supervised machine learning approach that 259 

simultaneously learns from different kernels (Gönen and Alapydin, 2011; Schrouff et al., 260 

2016) in order to classify two classes, or in the present study, conditions. MKL uses the set 261 

of inputs to build kernels representing pair-wise similarity between observations (dot product 262 

in Pronto). Then, a support vector machine (SVM; Cortes and Vapnik 1995) allows to define 263 

a decision boundary, discriminating between classes, for each kernel. To determine this 264 

boundary, model parameters wm, representing the contribution of each feature (unitary 265 

element of each input, e.g. time point) is optimized. Each decision boundary (one per kernel) 266 

is then weighted by a parameter dm to define a global decision boundary. These two steps 267 

are implemented recursively in an optimization procedure, with a L1-norm sparsity constraint 268 

on the dm vector, encouraging a sparse selection of non-null kernel contributions. Final kernel 269 

contributions dm and feature contribution wm are then retrieved (Fig. 3). However, contrary to 270 

dm, wm are not sparse in MKL modelling, meaning that every features contributed to the 271 

model. As such, interpreting wm is complex and raises several issues (Haynes, 2015; 272 

Schrouff et al., 2016), so that we preferred focusing our interpretation of the results on the 273 

kernel contributions dm. MKL algorithm is based on SVM models, which includes a soft-274 

margin hyper-parameter C. This hyper-parameter allows more or less misclassifications 275 

during training, affecting SVM decision boundary. To optimize this hyper-parameter, we 276 

performed a nested cross-validation scheme in which an inner loop was used for hyper-277 

parameter selection leading to the highest model performance whereas an outer loop used 278 

the selected hyper-parameter to assess the performance. This optimization procedure 279 

selected C = 1 for around 80% of the folds in all our MKL implementations and C = 0.1 or 10 280 

for the remaining ones. Thus, we chose to set C = 1 in order to keep the same hyper-281 

parameter across all folds. 282 
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In the present study, for every two-class classification, MKL was fed with input signals 283 

representing either temporal band-related power changes or temporal band-related ITPC, in 284 

the four main bands of interest (theta: 4-8 Hz, alpha: 9-12 Hz, beta: 13-30 Hz and gamma: 285 

31-80 Hz). A region-of-interest (ROI) approach was used to limit influence of highly 286 

correlated data, averaging power changes and ITPC signals within different ROIs. ROIs 287 

definitions and examples of averaged (across subjects and ROIs) temporal band-related 288 

power changes are depicted in the left panel of Fig. 3. From a technical standpoint, input 289 

signals were converted into nifti files in order to fit the Pronto imaging toolbox. Thus, 44 290 

kernels (11 ROIs x 4 bands) of size 38x38 (19 subjects x 2 conditions) were built for each 291 

classification. To ensure that the scale of each kernel did not interfere in modelling, all 292 

kernels were mean-centered and normalized. Adaptive learning as a whole was decoded 293 

classifying Early- against Late-CnstRot for power changes and ITPC signals and during pre- 294 

and post-movement separately, leading to four main MKL implementations. We did not 295 

include pre- and post-movement periods as well as power changes and ITPC signals in the 296 

same model to avoid over-parametrization. 297 

When a classification was significant (see section 2.8.), further MKL classifications 298 

between conditions were performed to investigate more accurately the role of the identified 299 

kernels (CnstRot-1 vs. Norm, CnstRot-1 vs. RdmRot, and Norm vs. RdmRot). CnstRot-2 was 300 

discarded from these further classifications due to its intermediate position between CnstRot-301 

1 and Norm both in term of error size and acquisition of the new mapping. 302 



16 

 

 303 

Fig. 3. Illustration of multiple kernel learning modelling procedure for Early- vs. Late-CnstRot. For each subject 304 

but one, and for each electrode, time-frequency power (or ITPC) maps were computed in both Early- and Late-305 

CnstRot stages. These maps were then averaged across frequencies (in theta, alpha, beta and gamma bands) 306 

and over predefined regions of interest (ROIs) to define the 44 feature vectors in the two conditions (labels of the 307 

feature vectors are the conditions). ROIs were defined as showed on head map on the left side of the figure. For 308 

each region/band couple, a linear kernel Km, representing the pair-wise similarity between features vectors of 309 

both conditions across subjects was built (m = 1 … 44). All kernels and their associated labels were then used to 310 

train the model. First, features contributions wm are estimated to define a decision function fm per kernel. The 311 

weight of each decision function, dm, is then estimated to provide a final decision function f(x). These two steps 312 

are implemented recursively in an optimization procedure, leading to a sparse selection of non-null kernel 313 

contributions. The model was then applied to test data (feature vectors of the 19th subject without labels) to 314 

obtain associated predicted conditions. This whole process was repeated as many times as there were subjects, 315 

excluding a different subject each time to assess accuracy of the model. Abbreviations: FP: frontal pole, LPM: left 316 

premotor, SMA: supplementary motor area, RPM: right premotor area, LM: left motor, RM: right motor, LSS: left 317 

somatosensory, RSS: right somatosensory, LP: left parietal, RP: right parietal, OP: occipital pole. 318 

2.8. Decoding performance 319 

Performances of the MKL models were assessed using a “leave-one-subject-per-class-320 

out” cross validation scheme. This scheme is the best choice when subjects in different 321 

classes are correlated (i.e. within subject design), keeping testing and training sets 322 

independent. Indeed, to ensure proper cross-validation, it is crucial that correlated 323 

information (here the same subject) is not present both in the train and test sets. Such a 324 
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dependency would lead to “leakage” and over-optimistic model performance. In our design, 325 

the only way to keep testing and training sets completely independent was to split our data 326 

by subjects. Thus, each model was trained using all subjects with their corresponding labels 327 

(here conditions) except one, and used to predict the labels of the subject left out. This 328 

process was repeated as many times as there were subjects. Total accuracy (TA) and class 329 

accuracy (CA) were subsequently obtained as the total number of correctly classified test 330 

samples divided by the total number of test samples, irrespective of class for TA and for a 331 

given class for CA. 332 

Since training sets were not independent across folds (overlapping of training data 333 

between folds), the use of any parametric tests was excluded to assess the statistical 334 

significance (Noirhomme et al., 2014; Pereira et al., 2009). P-value associated to each 335 

performance measure was estimated using a 1000-permutation testing framework in which 336 

cross-validation and accuracy were recomputed after randomly shuffling training labels 337 

(Ojala and Garriga, 2010). The level of significance was set at p < 0.05 for TA.  338 

2.9. Univariate analyses 339 

We conducted further analyses on the kernels that were most contributing to the MKL 340 

models in order to refine the distinction between neural processes most related to trial-to-trial 341 

adaptation from those most linked to the learning of the new visuomotor transformation. It is 342 

however important to mention that these selective analyses were run on a subset of the 343 

kernels and as such suffered double dipping (Kriegeskorte et al., 2009). Accordingly, 344 

univariate analyses served to make interpretation of MKL models easier, but should not be 345 

considered as hypothesis testing per se.   346 

In this perspective, t-tests and one-way ANOVAs were used to evaluate differences of 347 

average power or PLV amplitude over time in the kernels that contributed the most to 348 

distinguish between Early-CnstRot and Late-CnstRot as well as between Norm, RdmRot and 349 

CnstRot-1. Also, we assessed the correlation between this average amplitude and error size 350 
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in CnstRot-1 and RdmRot conditions. To this end, for each condition, kernel and subject, 351 

trials were grouped into 8 bins according to the size of the AIE, and Fisher r-to-z transform 352 

was computed between bin’s order and the average amplitude signal in the post-movement 353 

period. Significance of the correlations were afterwards examined using one sample t-tests. 354 

In kernels associated with trial-to-trial adaptation from errors, correlation between error size 355 

and average magnitude should be present in both RdmRot and CnstRot-1 conditions while in 356 

kernels associated with learning of the new visuomotor transformation, this correlation should 357 

be present only in CnstRot-1 condition. Indeed in the latter, decrease of errors should more 358 

or less match with time course of the experiment and the increased level of acquisition of the 359 

transformation.  360 
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3. Results 361 

3.1. Decoding early from late stages of visuomotor-constant rotation task  362 

3.1.1. Behavioral results 363 

Paired t-test on RT between Early- and Late-CnstRot was not significant (p = 0.67), 364 

indicating that the level of readiness remained similar during the task (Mean ± SD RT: 0.36 ± 365 

0.02s; Fig. 4). Other behavioral measures showed that subjects adapted to the constant 366 

rotational perturbation. Both the AIE (41.0° ± 2.1 to 22.0° ± 1.2; p < 0.001) and the AR 367 

(0.0230 ± 0.004 to 0.009 ± 0.002; p < 0.001) decreased from Early- to Late-CnstRot. MT and 368 

PL followed the same pattern, decreasing significantly from Early- to Late-CnstRot (Early-369 

CnstRot: MT = 1.15s ± 0.05 and PL = 1.70 ± 0.05; Late-CnstRot: MT = 0.89s ± 0.04 and PL = 370 

1.36 ± 0.03; p < 0.001). Nevertheless, although the level of adaptation was largely improved 371 

in Late-CnstRot, it was still not comparable to the level of Norm condition (Fig. 4). Hence, 372 

subjects adapted to the new visuomotor transformation although room for improvement 373 

remained.   374 
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 375 

Fig. 4. Kinematic results during visuomotor-constant rotation task. While reaction time (RT) remained stable, 376 

movement time (MT), initial angular error (AIE), normalized path length (PL) and adaptation rate (AR) decreased 377 

during the course of adaptation. Bottom right panel depicts evolution of AIE and AR during the course of CnstRot 378 

condition. Values in Norm condition are provided as reference. Values are mean ± SE. **p<0.01 in t-tests. 379 

3.1.2. MKL modelling 380 

The main objective of the study was to decode the process of adaptive learning based 381 

on EEG spectral features. To do so, we ran four MKL models aiming at classifying early 382 

(Early-CnstRot) and late (Late-CnstRot) stages of a constant perturbation condition based on 383 

power and ITPC from multiple frequency bands and cortical regions during pre- and post-384 

movement. The MKL model whose kernels were built from power of the different 385 

band/regions couples in post-movement period was statistically significant (TA = 86.84%, p = 386 

0.002; CA = 84.21% and 89.47%, p = 0.004 and p = 0.002 for Early- and Late-CnstRot, 387 
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respectively). MKL classification based on kernels built from power in pre-movement did not 388 

distinguish the two classes (TA = 65.79%, p = 0.11). As for ITPC-based modelling, both pre- 389 

and post-movement classifications failed to dissociate Early- from Late-CnstRot (TA = 390 

60.53% and 26.32%, p = 0.26 and p = 0.97 for pre- and post-movement, respectively). These 391 

results suggested that motor adaptation and learning (on 160 trials) was related to 392 

modulation of brain waves’ power in post-movement, only. 393 

Kernel contribution to the MKL model of Early- vs. Late-CnstRot based on power in 394 

post-movement was assessed in terms of frequency bands, ROIs, and ROI for each 395 

frequency band (a.k.a. ROI×band), as depicted in Fig. 5. Three frequency bands actively 396 

participated to the classification, including the theta, beta and gamma bands with a 397 

contribution of 29.4%, 18.6% and 51.7%, respectively (Fig. 5A). ROIs that contributed the 398 

most to the MKL model were mainly distributed over frontal and central regions (e.g., dFP = 399 

20.5%, dRPM = 11.6%, dSMA = 17.9%, dRM = 10.3%, dLM = 20.6%; Fig. 5B). Interestingly, when 400 

looking at ROI×band kernels (Fig. 5C), it appeared that frontal and premotor cortices were 401 

related to the theta band (dFP_theta = 19.9%, dRPM_theta = 9.0%), supplementary motor area to 402 

the beta band (dSMA_beta = 17.9%), whereas motor and post-central cortices were associated 403 

with the gamma band (dRM_gamma = 10.3%, dLM_gamma = 19.6%, dLP_gamma = 9.8%). 404 

Power changes (averaged across subjects) in post-movement window are represented 405 

in Fig. 5C for the three main contributing ROI×band-specific kernels (FP theta, SMA beta and 406 

LM gamma, which accounted together for 57.4% of the total contribution) to qualitatively 407 

examine their evolution between Early- and Late-CnstRot. For FP theta, power was roughly 408 

at a baseline level in Early-CnstRot and became positive in Late-CnstRot, which reflected 409 

occurrence of post-movement theta band synchronization with adaptation. A similar trend 410 

was found for LM gamma, also indicating the occurrence of a post-movement 411 

synchronization in this frequency band during the course of adaptive learning. Regarding 412 

SMA beta, there was an increased post-movement rebound, or equivalently post-movement 413 

synchronization, from Early- to Late-CnstRot. These trends were confirmed by t-tests on 414 
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average post-movement synchronization between Early- and Late-CnstRot in each kernels 415 

(p < 0.001, p = 0.003 and p = 0.03 for FP theta, SM beta and LM gamma, respectively). 416 

 417 

Fig. 5. Kernel contributions to Early- vs. Late-CnstRot MKL modelling and power changes of the most contributing 418 

kernels. (A) Contribution of each band, shared between theta, beta and gamma. (B) Contribution of each ROI, 419 

distributed mainly across frontal, premotor and motor cortices. (C) Contribution of each kernel (band/ROI couple), 420 

revealing three main clusters of contribution: frontal to premotor theta oscillations, supplementary motor area beta 421 

oscillations and motor/post-central gamma oscillations. Averaged power changes across subjects of the three 422 

main contributing kernels are represented for Early- (red) and Late-CnstRot (green), as well as mean ± SE values 423 

(over the time period - 0 ms corresponds to movement termination), showing the increase of post-movement 424 

synchronization in these three kernels during adaptation. Averaged power changes across and mean values in 425 

Norm (grey) condition are provided as reference. *p<0.05, **p<0.01 in t-tests. 426 
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3.2. Decoding conditions with (either constant or random) and without visuomotor rotation 427 

3.2.1. Behavioral results 428 

Within-subjects ANOVA did not reveal (p = 0.94) any RT difference between Norm, 429 

RdmRot and CnstRot-1 (Mean ± SD RT: 0.36 ± 0.01s; Fig. 6), suggesting a comparable level 430 

of readiness in all conditions. The other ANOVAs demonstrated an effect of condition on MT 431 

(F2,54 = 84.5; p < 0.001), AIE (F2,54 = 143.4; p < 0.001) and PL (F2,54 = 49.0; p < 0.001). Fisher 432 

LSD post-hoc testing revealed lower values in Norm as compared to the other two conditions 433 

on MT (Norm: 0.49s ± 0.01, RdmRot: 1.07s ± 0.03, CnstRot-1: 1.09s ± 0.04, p < 0.001), PL 434 

(Norm: 1.06 ± 0.01, RdmRot: 1.55 ± 0.03, CnstRot-1: 1.56 ± 0.05, p < 0.001) and AIE (Norm: 435 

6.4° ± 0.2, RdmRot: 34.1° ± 0.4, CnstRot-1: AIE = 36.1° ± 1.8, p < 0.001). Interestingly, post-436 

hoc testing did not reveal any difference on those parameters between RdmRot and 437 

CnstRot-1 (p = 0.55, p = 0.86 and p = 0.27 for MT, PL and AIE respectively). Likewise, t-test 438 

on AR between RdmRot and CnstRot-1 did not reveal any statistical difference (RdmRot: 439 

0.010 ± 0.005, CnstRot-1: 0.014 ± 0.002, p = 0.34), with an equivalent state-space model 440 

performance (AIC RdmRot: 380.1 ± 15.1, AIC CnstRot-1: 366.1 ± 12.5, p = 0.32). Thus, 441 

Norm and RdmRot differed regarding error size and adaptation rate whereas RdmRot and 442 

CnstRot-1 did not. As such, any difference between Norm and RdmRot provided information 443 

on trial-to-trial adaptation after exposure to errors, whereas difference between RdmRot and 444 

CnstRot-1 informed on “cumulative” learning of the new visuomotor transformation. The 445 

difference between Norm and CnstRot-1 embedded both processes. 446 
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 447 

Fig. 6. Kinematic comparison of the different experimental conditions. Reaction time (RT) was stable across 448 

conditions. Movement time (MT), Initial angular error (AIE), and Normalized path length (PL), were similar 449 

between RdmRot and CnstRot-1 conditions, and lower in Norm condition. Adaptation rate (AR) was similar 450 

between RdmRot and CnstRot-1. Values are mean ± SE. *p<0.05, **p<0.01 in post-hoc Fisher LSD tests. 451 

3.2.2. MKL modelling 452 

We implemented three MKL models to uncover which of the post-movement power-453 

based kernels that decoded early from late stages of CnstRot condition were most 454 

associated with trial-to-trial adaptation from errors or cumulative learning of the new 455 

visuomotor transformation: Norm vs. CnstRot-1, Norm vs. RdmRot and CnstRot-1 vs. 456 

RdmRot. 457 
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The MKL model Norm vs. CnstRot-1 showed a significant discrimination between the 458 

two conditions (TA = 82%, p = 0.002; CA = 79% and 84%, p = 0.02 and 0.006 for Norm and 459 

CnstRot-1, respectively). The contribution vector dm revealed a set of kernels that were 460 

equivalent to those of the classification of Early- against Late-CnstRot, with post-movement 461 

theta power in frontal pole and premotor areas, beta power in supplementary motor area and 462 

gamma power in motor and parietal areas most contributing to the decision function. There 463 

was also a noticeable difference (compared to Early- vs. Late-CnstRot) in the balance of the 464 

kernel contribution to the decision boundary, with more contributory signal in the theta band 465 

than in the higher-frequency beta and gamma bands (dtheta = 66.3%, dbeta = 10.9% and dgamma 466 

= 14.6%; Fig. 7A). Qualitatively, all contributing kernels showed weaker power in CnstRot-1 467 

compared to Norm (Fig. 7A). Given that Norm and CnstRot differed both in terms of 468 

movement error and level of acquisition of the imposed mapping, these results supported 469 

once again the idea that post-movement theta synchronization in frontal pole and premotor 470 

regions, as well as beta synchronization in SMA, and gamma synchronization in motor-471 

related and parietal regions were related to adaptive learning.   472 

The MKL model Norm vs. RdmRot led to a significant classification of the conditions 473 

(TA = 74%, p = 0.016; CA = 63% and 84%, p = 0.2188 and 0.006 for Norm and RdmRot 474 

respectively). Post-movement beta power in the supplementary motor area and gamma 475 

power in motor to parietal regions mainly contributed to the model (dbeta = 46.2% and dgamma = 476 

40.6%; Fig. 7B). Contribution of theta band was still present, but to a much lesser extent than 477 

the higher-frequency bands (dtheta = 11.9%), and emerged from parietal areas and not from 478 

prefrontal areas as in the case of Early- vs Late-CnstRot MKL model. Accordingly, this result 479 

suggested that both supplementary motor area beta power and motor to parietal areas 480 

gamma power after movement completion principally reflected trial-to-trial adaptation from 481 

errors. The observed lower amplitude of post-movement beta and gamma power in RdmRot 482 

compared to Norm suggested an inverse relationship between error and post-movement 483 

high-frequency band synchronization (Fig. 7B). This finding also shed new light on frontal 484 
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and premotor theta power strongly involved in the classification of both Early- vs. Late-485 

CnstRot and Norm vs. CnstRot-1 which may be rather associated with the level of acquisition 486 

of the sensorimotor mapping. However, this conclusion on the relationship between post-487 

movement frontal theta band synchronization and update of the mapping lacks direct 488 

demonstration as the MKL model RdmRot vs. CnstRot-1 did not show a significant result (TA 489 

= 50.00%; p = 0.55).  490 

3.2.3. Univariate analyses 491 

Further comparisons between kernels identified through above mentioned MKL models 492 

are presented in Fig 7C. For FP theta kernel, within-subjects ANOVA revealed an effect of 493 

condition on mean post-movement power (F3,54 = 5.25; p = 0.003). Post-hoc testing revealed 494 

a lower power in CnstRot-1 compared with the other conditions (p < 0.001 and p = 0.03 in 495 

comparison to Norm and RdmRot respectively), while Norm and RdmRot conditions 496 

presented similar levels (p = 0.08). These differences suggested that increase in post-497 

movement FP theta mean power would reflect principally the level of acquisition of the new 498 

mapping. Indeed, although the acquisition of the new mapping was underway in CnstRot-1 it 499 

remained largely incomplete while it was complete in Norm and RdmRot condition and 500 

corresponded to the identity mapping (i.e. < ∅ >= 0°). 501 

Regarding SMA beta kernel, within-subjects ANOVA also demonstrated an effect of 502 

condition (F3,54 = 5.10; p = 0.004). Post-hoc testing revealed a larger mean power in Norm 503 

compared to RdmRot and CnstRot-1 (p = 0.001 and 0.003 respectively). These differences, 504 

in addition to the absence of significant difference between CnstRot-1 and RdmRot, 505 

corroborated our guess that mean amplitude of post-movement SMA beta reflected trial-to-506 

trial adaptation from errors, which was similar in CnstRot-1 and RdmRot. On the other hand, 507 

within-subjects ANOVA for LM gamma kernel did not reveal any difference between 508 

conditions (p = 0.20). Hence, this extra analysis remained inconclusive on whether post-509 

movement power in LM gamma relate rather to trial-to-trial adaptation or cumulative learning 510 

of the new mapping. 511 
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 512 

Fig. 7. Results of extra MKL models. (A) Norm vs. CnstRot-1 model: Theta, beta and gamma bands mainly 513 

contributed to the model (as in Early- vs. Late-Adapt model), although with a dominance of the theta contribution. 514 

Main identified kernels qualitatively showed a larger power in Norm compared to CnstRot-1. This supported the 515 

implication of these three kernels in both movement error and acquisition of the new mapping. (B) Norm vs. 516 

RdmRot model: beta and gamma bands mainly contributed to the model. SMA beta and LM gamma kernels 517 

showed a larger power in Norm compared to RdmRot, suggesting that these kernels were principally related to 518 

trial-to-trial adaptation. Note that theta band was also identified as contributing to the model. However, further 519 

analysis revealed a parietal contribution on it, which differed from the theta contribution in frontal areas of the 520 

Early- vs. Late-CnstRot MKL model. (C) Mean postmovement power for the three main contributing kernels in all 521 

conditions. CnstRot-1 postmovement average power was lower than both Norm and RdmRot powers in FP theta 522 

kernel suggesting a relationship with level of acquisition of the new transformation. Furthermore, Norm 523 

postmovement average power was lower than both RdmRot and CnstRot-1 levels in SMA beta kernel, relating 524 

beta modulation to the adaptation process. These extra-analyses remained inconclusive regarding LM gamma 525 

kernel. *p<0.05, **p<0.01 in post-hoc Fisher LSD tests. 526 

Finally, we found significant correlations between bin’s order (sorted according to 527 

decreasing error size) and mean post-movement power for SMA beta in both CnstRot-1 and 528 

RdmRot conditions (R = 0.38 ± 0.03, p = 0.006 and R = 0.24 ± 0.03, p = 0.04 respectively). 529 

The smaller the error, the larger the mean post-movement power in SMA in the two 530 

conditions. Thus, post-movement power in SMA was modulated by error size. There was 531 

also a significant correlation for FP theta in CnstRot-1, but not in RdmRot (R = 0.23 ± 0.02, p 532 

= 0.03 and R = 0.12 ± 0.03, p = 0.28). This absence of relationship in FP theta for RdmRot 533 
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condition indicated that postmovement theta modulation during adaptive learning rather 534 

reflected the formation of the new mapping. Regarding LM gamma kernel, power did not 535 

correlate with bins of decreasing error size in both conditions.  536 
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4. Discussion 537 

The aim of this study was to come up with a more complete characterization of 538 

adaptive learning in terms of neural oscillations and synchrony of distributed brain regions, 539 

and try to tease apart two subtending processes, namely trial-to-trial adaptation from errors 540 

and cumulative learning of a new sensorimotor mapping. Our main MKL model indicated that 541 

post-movement synchronization of beta oscillations in supplementary motor area, gamma 542 

oscillations in motor to parietal regions and low-frequency, theta, oscillations in (pre)frontal 543 

regions contributed to adaptive learning. Further discriminant models suggested that higher-544 

frequency – beta and gamma – synchrony in motor-related regions was associated rather to 545 

trial-to-trial adaptation, while low-frequency synchrony in (pre)frontal regions rather informed 546 

on acquisition of the new mapping. Univariate analyses also pointed in the same direction, 547 

except for the gamma band. Modulation of SMA synchrony in the beta band was similar 548 

when facing both constant and random perturbations, in particular with a power that 549 

increased as a function of decreasing error size. This reinforced the idea that post-movement 550 

beta power relates to error processing that instantiates trial-to-trial adaptation. Inversely, 551 

modulation of frontal synchrony in the theta band differed between the conditions of constant 552 

and random perturbations, with the latter condition being similar to the condition with normal 553 

movements. Increased theta power during the course of adaptation seems therefore to be a 554 

hallmark of the acquisition of a new visuomotor mapping. Finally, univariate outcomes were 555 

inconclusive concerning the link between post-movement gamma synchronization and either 556 

trial-to-trial adaptation or cumulative learning. 557 

An important result was the increase in post-movement beta synchronization during the 558 

constant rotation task to a level comparable to normal condition. Hence, there was an 559 

attenuation of post-movement beta power at the beginning of adaptive learning, that tended 560 

to disappear as learning progressed, confirming earlier results (Palmer et al., 2019; Tan et 561 

al., 2014a, 2014b). Furthermore, we were able to relate these brain oscillatory changes to 562 

the adaptation process that occurs independently of cumulative learning of the new 563 
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sensorimotor mapping, thus linking them to the processing of a completed movement with 564 

respect to its predicted outcome. This complements previous results which specifically linked 565 

post-movement beta synchronization to movement error and confidence in internal model 566 

estimations in motor and somatosensory cortices, suggesting that post-movement beta 567 

synchronization decrease could signal a need for adaptation of the motor output (Palmer et 568 

al., 2019; Tan et al., 2016). The topography of our result was different, being confined mainly 569 

to SMA. An explanation for this topographic discrepancy is that we let the MKL to select the 570 

most discriminating regions (i.e. data-driven approach) while the above mentioned studies 571 

did an a priori choice with respect to EEG channels of interest (i.e. model-based approach). 572 

Accordingly, adaptation from errors may be mainly mediated through SMA although other 573 

sensorimotor regions also likely contribute to it. Interestingly, it is acknowledged that 574 

synchronized beta oscillations bind multiple sensorimotor regions into a large-scale network 575 

during motor behavior (Brovelli et al., 2004). This also remains true with subcortical areas 576 

such as the subthalamic nucleus whose beta power increases in coherence with that of the 577 

sensorimotor cortex after movement offset (Tan et al., 2014b). Consequently, beta oscillatory 578 

activity may be synchronized between different sensorimotor cortical (SMA, motor, 579 

somatosensory) and subcortical areas to process movement error and mediates subsequent 580 

adaptation. In addition, our result strengthens the indication that regions of the medial frontal 581 

cortex, especially the SMA and the dorsal anterior cingulate cortex (dACC), play a critical 582 

role in processing errors and evaluating the outcomes of action (Amiez et al., 2012; Bonini et 583 

al., 2014; Botvinick et al., 2004; Ridderinkhof et al., 2004). It is clear that the oscillatory 584 

activity we reported here is not limited to SMA but also includes influence from the dACC 585 

which lies underneath. Finally, we did not find relationship between adaptive features and 586 

pre-movement beta synchronization as suggested before (Torrecillos et al., 2015). This 587 

discrepancy may reside in the fact that premovement period could be more involved in the 588 

integration of somatosensory information (Alayrangues et al., 2019) than in processing of 589 

sensory prediction error, that are both essential for adaptive update of the upcoming 590 
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movement. Thus, we propose that post-movement modulation of beta power reflects sensory 591 

error processing and subsequent signal that engages internal model update.   592 

Our MKL main result also revealed that synchronization in post-central regions within 593 

the gamma band during the post-movement period was involved in overall adaptive learning. 594 

However, we failed to reach a clear conclusion about the particular process that was 595 

encoded through gamma modulation. At the most, our study suggested that post-movement 596 

gamma modulation would relate to error processing that triggers adaptation on a trial basis 597 

rather than to learning a new visuomotor transformation. This would suggest that gamma 598 

oscillations may not only serve the function of encoding afferent (proprioceptive) feedback 599 

and properties (e.g. velocity, effort, force level) of the movement reported in previous motor 600 

control studies  (Muthukumaraswamy 2010; see also Nowak et al., 2018 for review and 601 

references therein). Besides, the involvement of gamma oscillations in processing of action 602 

outcome that triggers motor adaptation recalls previous reports that found a role of gamma 603 

oscillations in encoding reward outcomes for adapting to challenging tasks (Quilodran et al., 604 

2008; Rothé et al., 2011). It might be that gamma band is a vehicle to encode outcome 605 

expectation in a broad sense, with different regions encoding different dimensions (reward, 606 

sensory feedback) of outcome expectancy. Indeed, these previous studies reported 607 

modulation of gamma power in frontal regions during adaptation while we located it in post-608 

central regions. This assumption is neurophysiologically plausible as power in gamma band 609 

is highly localized (e.g. Sirota et al., 2008), reflecting specific computations of local groups of 610 

neurons in the neocortex. This calls for a more elaborated study on the extent to which 611 

gamma-modulated oscillations contribute to recalibration of internal model and adaptive 612 

behavior.   613 

Another important finding of the present study was the implication of post-movement 614 

synchrony of prefrontal, and to a lower extent premotor, theta oscillations in adaptive 615 

learning. This finding is in line with the overall implication of the prefrontal cortex in the 616 

coordination of adaptive goal-directed behavior (Koechlin, 2016; Miller et al., 2010; 617 
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Ridderinkhof et al., 2004), and also replicates the previous finding of a modulation of 618 

prefrontal theta power during visuomotor adaptation (Gentili et al., 2011; Perfetti et al., 2011). 619 

Although these latter studies have speculated on the role of theta enhancement in the 620 

formation of internal models, they were not designed to tease out whether it relates to 621 

changes in the state of the internal model that responds to error on a trial basis or to the 622 

accumulation of these changes over time to form a new mapping. The inclusion of a 623 

condition in which errors were random and equaled zero on average allowed us to 624 

specifically link the increase of prefrontal theta oscillatory activity to cumulative learning of 625 

the new sensorimotor mapping. This interpretation is in line with a large consensus about the 626 

implication of the prefrontal cortex, especially the ventromedial and lateral components, in 627 

encoding and learning predictive models mapping stimulus–action onto expected outcomes 628 

(Anguera et al., 2009; Contreras-Vidal and Kerick, 2004; Koechlin, 2016). There is also firm 629 

evidence that new acquired motor memories are stored and consolidated in prefrontal and 630 

secondary motor cortices (Dandolo and Schwabe, 2019; Pinsard et al., 2019). In particular, 631 

the ability to store newly learned behavior as memory-based constructs requires 632 

implementing top-down control signals from the prefrontal cortex to motor regions 633 

(Narayanan and Laubach, 2006), these latter regions being involved in selecting motor plans 634 

in response to stimuli (Koechlin et al., 2003). Finally, our interpretation is also consonant with 635 

a recent study having demonstrated that exploitation of learned associations between stimuli 636 

and responses during spatial context learning are implemented in prefrontal theta band 637 

activity (Spaak and de Lange, 2020).   638 

Even though we have emphasized that our approach distinguished between oscillatory 639 

activity related to trial-to-trial changes in the internal model (i.e. adaptation) and oscillatory 640 

activity responsible for accumulating these changes across trials (i.e. learning), it is also 641 

possible that another process, namely cognitive strategy, has affected the study outcomes. It 642 

has been shown that individuals employ cognitive strategies to eliminate the error at the 643 

beginning of adaptive learning, and that implicit adaptation increasingly takes over from 644 
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explicit cognitive strategies as skill learning proceeds (Miyamoto et al., 2020; Taylor et al., 645 

2014; Taylor and Ivry, 2011). Thus, our primary outcome on comparison between early and 646 

late stages of constant rotation condition (increase of power in theta, beta and gamma 647 

bands) could to some extent also reflect the change in the balance between explicit and 648 

implicit processes which are at work during adaptive learning. Individuals may have also 649 

employed explicit cognitive strategies to adapt in the random rotation condition, possibly 650 

affecting our secondary comparison between constant and random rotation conditions. There 651 

is evidence that explicit cognitive strategies influence sensorimotor adaptation even in 652 

conditions where perturbations are poorly predictable (Albert et al., 2021; Miyamoto et al., 653 

2020). We have very few clues about the neural correlates of implicit and explicit processes 654 

in motor learning. To our knowledge, it has been proposed only recently that explicit 655 

cognitive and implicit processes are reflected into beta-band activities of distinct regions, the 656 

medial frontal region and the lateral central region, respectively (Jahani et al., 2020). Hence, 657 

SMA-related increase in beta power during the course of adaptation may not only reflect 658 

adaptive changes in the sensorimotor mapping but may also relate to a reduction of 659 

movement error guided by a cognitive strategy. It will be important for future studies to 660 

confirm that the increase in beta and theta band activities during adaptive learning are 661 

hallmarks of trial-to-trial adaptation error and cumulative learning of the new sensorimotor 662 

mapping and not a byproduct of the changes in the interactions between explicit strategy and 663 

implicit motor adaptation. This will require designing adaptive learning experiments that 664 

isolate as much as possible explicit and implicit processes of adaptation, for instance by 665 

delaying presentation of the feedback for the former (Brudner et al., 2016; Schween and 666 

Hegele, 2017) and limiting reaction time for the latter (Haith et al., 2015; Leow et al., 2017). 667 

Another solution to isolate the explicit component of adaptation may consist in asking 668 

subjects to report where they plan to aim before each trial (Miyamoto et al., 2020; Taylor et 669 

al., 2014). Finally, we cannot rule out the possibility that subjects exposed across trials to 670 

random variations in visuomotor transformation were able to learn some meta-parameters 671 

related to the multiple transformations; the so-called structural learning that fasters learning 672 
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in a new situation (Bond and Taylor, 2017; Braun et al., 2010). Hence, our conditions of 673 

constant and random rotations may not have been perfectly orthogonal with respect to 674 

learning of the new mapping. 675 

Our results on the relationship between specific sensorimotor processes and particular 676 

EEG bands and regions would not have been possible without a multi-band exploration of 677 

the tasks through machine learning MKL modelling. This stresses how important it is to study 678 

brain oscillations in adaptive learning, and more generally motor control, beyond beta band. 679 

This complements previous observations that not only beta band but also other oscillatory 680 

activities are important to enhance motor performance (Chung et al., 2017). In this 681 

perspective, looking at the coupling between theta and gamma or beta is an important 682 

challenge, such couplings coordinating communication across brain regions and contributing 683 

to the formation of memory traces (Lisman and Jensen, 2013). In particular, it has been 684 

shown that theta-gamma and theta-beta coupling can predict individual working memory 685 

performance (Axmacher et al., 2010) which is known to be engaged in visuomotor adaptation 686 

(Anguera et al., 2010; Christou et al., 2016). Closely related is the need to foster whole-brain 687 

approaches that integrate not only the sensorimotor regions that have been traditionally 688 

explored but also the frontal regions that likely generate theta oscillations. Some studies 689 

suggested that dACC would process errors to output a control signal that specifies the need 690 

for adjustments toward downstream regions, including the prefrontal cortex, responsible for 691 

implementing corresponding adjustments (Ridderinkhof et al., 2004; Shenhav et al., 2016). 692 

Given this assumption, investigating the coupling between prefrontal theta and SMA beta 693 

oscillations could be valuable in the context of motor adaptation.  694 

5. Conclusion 695 

The current study advances our understanding of adaptive learning in humans by 696 

demonstrating changes of oscillatory activity in multiple bands and regions and linking these 697 

changes to specific “adaptive” and “learning” motor processes. Consistent with previous 698 

studies, the results indicated that beta power, here of the supplementary motor area, 699 
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underpins error-dependent changes in trial-to-trial performance and as such reflects neural 700 

processes that evaluate motor error and likely signal a need for adaptation of the motor 701 

output. The other main outcome is the contribution of frontal theta power to adaptive 702 

learning, yet without being related to errors. This suggests a role of theta oscillations in 703 

storing the newly learned internal model. Whether these spatially and band-wise distinct 704 

oscillatory activities constitute neural correlates of implicit motor adaptation, only, or also 705 

reflect cognitive strategies that may operate during motor adaptation to learn from errors 706 

remains to be tested.      707 
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