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A new type of models to represent stochastic processes is introduced. They mainly use a second stochastic process that underlines the first one. This kind of formulation has also been used to represent discrete random variables, as numbers of deaths when dealing with human mortality. However, our proposals involve both discrete and continuous stochastic processes.

Furthermore, relationships between the main and underlying processes considering lagged observations are also incorporated in those models. Numerical illustrations show that a large kind of real data of stochastic processes may be fitted by our models, some of them including seasonality. These new models seem very promising since they outperform competitors.

Introduction

In many experiences, a stochastic process of interest does not operate in an isolated way, but related to other underlying stochastic processes. For instance, the nominal interest rate has the inflation as one of its components, see [START_REF] Fisher | The Theory of Interest[END_REF] and e.g. [START_REF] Söderlind | Nominal interest rates as indicators of inflation expectations[END_REF]. The former variable systematically varies according to the latter variable. Furthermore, it is also hypothesized that nominal interest rates cause inflation, see e.g. [START_REF] Wicksell | Interest and Prices: A Study of the Causes of Regulating the Value of Money[END_REF], i.e. the former variable underlines the latter variable. Considering human mortality, the number of deaths in a population clearly depends among others on the number of individual of that population. Each time the entire population increases, it is likely that the number of its deaths increases accordingly. In this case, mortality rate variations may also modify population growth, see e.g. [START_REF] Hermalin | The effect of changes in mortality rates on population growth and age distribution in the united states[END_REF]. About human immunology, the CD4 percentage means the percentage of white blood cells (lymphocytes) that are CD4 cells. The higher the percentage, the more robust the immune response. This percentage is used to assess human immunodeficiency virus (HIV) progression in children under 12 years old, see e.g. O'Gorman and Zijenah [2008]. In patients with HIV, the evolution of this percentage depends largely on the application of treatments as the antiretroviral therapy.

In time series analysis, such kind of stochastic processes are usually modeled by using regression components, such as generalized linear models, see e.g [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF], [START_REF] Li | Time series models based on generalized linear models: Some further results[END_REF], [START_REF] Fokianos | Poisson autoregression[END_REF], and [START_REF] Davis | Count time series: A methodological review[END_REF]. In these models, the underlying stochastic processes are usually taken into account as linear regressors. However, in some models, those underlying stochastic processes have had a different meaning when focused on count time series.

More precisely, analyzing the number of deaths (D), [START_REF] Macdonald | An actuarial survey of statistical models for decrement and transition data -i: Multiple state, poisson and binomial models[END_REF] assumed that q represents the mortality probability and then that D follows the binomial distribution with parameters N and q, where N is the observed number of individuals with the same age exactly for one year.

Hence, the estimate of q is computed by

q = d N ,
where d is the observed number of who died. Also, assuming that N individuals are observed as before and that µ is the force of mortality, this author modeled D by supposing that this random variable follows a Poisson distribution with parameter µE, where E is the total central exposed to risk, i.e. the realized value of the total waiting time. This means that the estimate

of µ is μ = d E .
This kind of models was successful. [START_REF] Brouhns | A poisson log-bilinear regression approach to the construction of projected lifetables[END_REF] incorporated to the previous Poisson model a regression component as the one given by [START_REF] Lee | Modeling and forecasting u. s. mortality[END_REF], i.e., for a given age x and at time t,

D xt ∼ Poisson(E xt µ x (t)) with µ x (t) = exp(α x + β x κ t ), (1) 
where the parameters satisfy suitable conditions for guaranteeing identifiability of the model. et al. [2005] proposed a Bayesian version of this model, whereas [START_REF] Cossette | Bayesian poisson log-bilinear mortality projections[END_REF] provided a binomial version of it and [START_REF] Delwarde | Negative binomial version of the lee-carter model for mortality forecasting[END_REF] its negative binomial one.

Czado

In this paper, we propose a general expression for all these models described and cited previously, but for any kind of response stochastic processes Y t with an underlying stochastic process X t . Indeed, Y t is allowed to be either a discrete or a continuous process. Our model consists in assuming that Y t follows a known distribution function and in expressing the expected value of this process as the product of X t with a function depending on regression components.

Moreover, past observed values are included among those regressors. In this way, we give more flexibility for fitting eventual variability that data may present.

For estimating the parameters in these models, we propose to apply the conditional maximum likelihood estimation method. However, since this method produces complex equation systems due to the high non-linearity involved in the design of the new models, numerical techniques are required to solve such equation systems. This issue is overcome by using techniques like the iterative reweighted least squares algorithms. This kind of procedures have been used

successfully in e.g. [START_REF] Cadena | Semi-parametric accelerated hazard relational models with applications to mortality projections[END_REF], who developed mortality models by distorting ages with respect to a reference life table.

In order to select the best model that fits a given data set, we use goodness-of-fit testing like the Akaike criterion information (AIC), see [START_REF] Akaike | A new look at the statistical model identification[END_REF], and the Bayesian criterion information (BIC), see [START_REF] Schwarz | Estimating the dimension of a model[END_REF].

A study about performance of the estimation method proposed to estimate the parameters of our models is developed. Under controlled environments, random realizations of several of our models are generated. Then, the parameters used to generate such simulations are estimated and compared with the original ones, by varying the size of the samples simulated. In this way, the ability to recover the original parameters when the sample size varies is assessed.

Two numerical illustrations showing the application of our models to real data sets are provided. One data set has as response a discrete stochastic process. It consists of the weekly number of deaths, distinguished by gender, in Belgium. We consider as an underlying process the number of individual in the entire population, distinguished by gender. A second data set has as response a continuous stochastic process. This data set is about expenditures in two pain medications, one of them more expensive than the other. The cheaper medication is chosen as the main process and the more expensive as the underlying process.

The rest of the paper is organized as follows. The next section presents the new models and some of their properties. Section 3 describes the method proposed for estimating the parameters of our models. Section 4 shows a study about the estimation of the parameters of the new models in an environment controlled. Section 5 illustrates the application of our models to two real data sets. The last section concludes this paper.

2 New Models and Properties

Specification of the new models

Let Y t be a positive stochastic process to be modeled and X t be a positive stochastic process that underlines Y t . Hereafter, Y t is either a discrete or a continuous processes, but X t may be any kind of process.

Let F t-1 be the σ-field generated by {X tp , Y tp } for some p ≥ 0, where X tp represents the set of random variables X s , t -p ≤ s ≤ t, and Y tp represents the set of random variables Y s ,

t -p ≤ s ≤ t -1. This means that F t-1 = σ(X tp , Y tp ).
We assume that Y t |F t-1 , for t ≥ p, follows a known distribution.

The expected value of Y t is denoted by µ t . Then, we assume that

µ t = X t g(h(X tp , Y tp )), (2) 
where the function g is strictly increasing and relates Y t X t with a score built from the function f . This function g may be chosen as a canonical link if the distribution assumed to follow Y t belongs to the family of exponential distributions. However, as it is well-known, other non-canonical links may be preferable. The function h incorporates the parameters of the model, say α 0 , . . . , α p . This function h configures the main dynamics of Y t .

Let us see that our model generalizes the model (1) cited in the previous section. To this aim, fix x since our model concerns only time. This variable will eventually be omitted to facilitate the notation. This variable will eventually be omitted to facilitate the notation. Note that different processes are obtained by varying x. The exponential function is chosen as the function g. Then, choose Y t as the number of deaths D tx and as X t the total central exposed to

risk E xt . Next, choose the Poisson distribution with parameter λ t = µ t = E t exp(h(X tp , Y tp ))
as the distribution that Y t follows. Clearly, p = 0 and f (X tp , Y tp ) = α 0 + α 1 α 2t . Note that α 0 and α 1 depend on x and α 2t is fixed independently of x.

Another model that is similar to the model ( 1) is obtained when the binomial distribution is considered. The corresponding model developed by [START_REF] Cossette | Bayesian poisson log-bilinear mortality projections[END_REF] also allows the representation of mortality data in function of time and age. In this case, x is again fixed and will eventually be omitted to facilitate the notation. Then, choose Y t as the number of deaths D tx and as X t the number of individuals aged x on January 1 of year t, L xt . The function g is chosen as g(x) = 1 -exp(-exp x). Now, choose the binomial distribution with parameters L t and q t = g(h(X tp , Y tp )) as the distribution that Y t follows. The function f is selected as above.

Note that the expected value of

Y t verifies µ t = L t g(f (X tp , Y tp )).
The two previous examples involve discrete distributions belonging to the family of exponential distributions. However, the setting of our models allows continuous distributions as the normal or gamma distributions, or other distributions than those belonging to the exponential family of distributions, such as the Weibull distribution.

When considering that Y t follows a Poisson distribution, autoregressive variants like the Poisson autoregression model introduced by [START_REF] Fokianos | Poisson autoregression[END_REF] have been proposed, see also e.g. [START_REF] Streett | Some Observation Driven Models for Time Series of Counts[END_REF] and [START_REF] Ferland | Integer-valued garch process[END_REF]. The model of [START_REF] Fokianos | Poisson autoregression[END_REF] incorporates past realizations of the dynamic parameter λ t associated to Poisson distributions. We do not hold that kind of alternatives because the underlying process X t is taken into account. Instead of an autoregressive component like that, we propose to take into account past realizations of Y t X t . For instance, regression components like

p i=1 α i Y t-i X t-i , (3) 
may be part of the function f . This disposition of past events in a model may contribute to describe in a better way events that are own behaviors of Y t . This conjecture will be examined when the numerical illustrations are performed.

Properties of the new models

In this paper, we focus in the distributions for Y t |F t-1 defined in For all these processes, we define h as the function

h(X tp , Y tp ) = α 0 + p i=1 α i Z t-i ,
where Z s = Y s X s . According to the definitions of these processes, the mean and variance of Y t are presented in Table 2.2. These outputs show that these statistics themselves are random variables because all of them depend on past values of Y t .

Another property of these models is that when X t = 1 for any t, we have then in consideration only Y t without an underlying process. This means that our models are an alternative of analysis for stochastic processes as usually presented.

Process

Mean Variance We propose the conditional maximum likelihood method for estimating the parameters α = (α 0 , . . . , α p ) of the processes described in Subsection 2.2. To this aim, we consider a sample (X 1 , Y 1 ), . . . , (X n , Y n ), n > p, of independent and identically distributed copies of (X t , Y t ).

Discrete X t exp (α 0 + p i=1 α i Z t-i ) X t exp (α 0 + p i=1 α i Z t-i ) Continuous X t exp (α 0 + p i=1 α i Z t-i ) X t exp (2 (α 0 + p i=1 α i Z t-i ))
Then, their log-likelihood functions which are based on their probability density functions f t are expressed as follows.

= log L(α|(X p+1 , Y p+1 ), . . . ,

(X n , Y n )) = n i=p+1 log f i (X ip , Y ip ).
Hence, the maximization of this function produces the equation system

∂ ∂α i = 0, i = 0, . . . , p.
Let us see in detail the case when corresponds to the log-likelihood function of the discrete process described in Table 2.2. Then, we have

∂ ∂α 0 = n k=p+1   Y k -X k exp   α 0 + p j=1 α j Z k-j     = 0, ∂ ∂α i = n k=p+1   Y k -X k exp   α 0 + p j=1 α j Z k-j     Z k-i = 0, i = 1, . . . , p.
This system can be expressed matrixically as

(Y -Y ) Z = 0, (4) 
where Y = Y p+1 , . . . , Y n , Y = X p+1 exp α 0 + p j=1 α j Z p+1-j , . . . , X n exp α 0 + p j=1 α j Z n-j , and

Z =      1 Z p • • • Z 1 . . . . . . . . . . . . 1 Z n-1 • • • Z n-p      .
To solve (4) we adopt an iterative reweighted least squares algorithm that has been adapted

for estimating the parameters in Poisson regressions. It consists in the recurrent computation of α = (α 0 , . . . , α p ) by using the formula, for s ≥ 1, denoting W = diag( Y ),

α s = α s-1 + (Z W Z) -1 Z (Y -Y ),
for a given α 0 . This algorithm stops when the amount p i=0 |α i,s -α i,s-1 | is less than a given tolerance level. Stopped the algorithm, this last estimate is denoted by α.

Furthermore, the asymptotic standard error of α are computed using the Hessian matrix H( α) associated to the minimization of the log-likelihood. More precisely, such a matrix is

H( α) =       ∂ 2 ( α) ∂α 2 0 • • • ∂ 2 ( α) ∂α 0 ∂αp . . . . . . . . . ∂ 2 ( α) ∂αp∂α 0 • • • ∂ 2 ( α) ∂α 2 p      
, where

∂ 2 ∂α 2 0 = - n k=p+1 X k exp   α 0 + p j=1 α j Z k-j   , ∂ 2 ∂α 0 ∂α i = - n k=p+1 X k exp   α 0 + p j=1 α j Z k-j   Z k-i , i = 1, . . . , p, ∂ 2 ∂α i ∂α l = - n k=p+1 X k exp   α 0 + p j=1 α j Z k-j   Z k-i Z k-l , i, l = 1, . . . , p, i = l.
Note that H( α) is a consistent estimator of the expected Fisher information matrix -E(H(α)), see e.g. [START_REF] Lindsay | On second-order optimality of the observed fisher information[END_REF]. Moreover, under suitable conditions we have the approximation to a normal distribution α ≈ N (α, -H( α) -1 ), and more general a α ≈ N (a α, -a H( α) -1 a)

for any scalar vector a. Choosing a with only one non zero component a i = 1, 0 ≤ i ≤ p, we get the confidence interval

α i ± z δ/2 -h i ,
for 100 × (1 -δ) % confidence, 0 < δ < 1, where h i is the element of H( α) -1 in the ith row and ith column, and z δ/2 is the quantile 1 -δ/2 of the standard normal distribution.

When corresponds to the log-likelihood function of the continuous process described in Table 2.2, we have similar results like those obtained for the discrete case. In this case, the corresponding equation system is

∂ ∂α 0 = n k=p+1   Y k -X k exp   α 0 + p j=1 α j Z k-j     exp   -α 0 - p j=1 α j Z k-j   = 0, ∂ ∂α i = n k=p+1   Y k -X k exp   α 0 + p j=1 α j Z k-j     exp   -α 0 - p j=1 α j Z k-j   Z k-i = 0, i = 1, . . . , p. Now, this system in matrix terms is (Y -Y ) QZ = 0, (5) 
where

Q = diag(u) with u = exp -α 0 -p j=1 α j Z p+1-j , . . . , exp -α 0 -p j=1 α j Z n-j .
The iterative reweighted least squares algorithm adapted for estimating the parameters in gamma regressions is

α s = α s-1 + ((QZ) W QZ) -1 (QZ) (Y -Y ).
With respect to the elements of the Hessian matrix, now they are

∂ 2 ∂α 2 0 = - n k=p+1 Y k exp   -α 0 - p j=1 α j Z k-j   , ∂ 2 ∂α 0 ∂α i = - n k=p+1 Y k exp   -α 0 - p j=1 α j Z k-j   Z k-i , i = 1, . . . , p, ∂ 2 ∂α i ∂α l = - n k=p+1 Y k exp   -α 0 - p j=1 α j Z k-j   Z k-l Z k-i , i, l = 1, . . . , p, i = l.
Hence, to build the corresponding confidence intervals for α, one can proceed as in the Poisson case described above.

Study of Simulations

In this section, we study simulated processes generated from simple models based on those indicated in Table 2.2. We fix X t = 1 for any t, α 0 = 1, and α 1 = -0.5. Then, we simulate processes from sample sizes 500 and 1000. Since the estimates of α 0 and α 1 are related each other because an increasing (decreasing) of α 0 would be in relation with an increasing (decreasing) of α 0 , the formulation of the model is left depending only on one parameter, say α. Hence, the function h is expressed by

h(X t1 , Y t1 ) = α(1 -0.5Z t-1 ).
We start noting that there is evidence of serial correlation as demonstrated in Table 3.

These findings are also shown in corresponding ACF plots, see Figure 1. According to these plots, autoregressive components of order 2 would be required. Hence, models with p ≥ 1 are taken into account. To this aim, we begin analyzing the case when p = 1. Table 4 shows α estimates, which are close to the true value 1.0. This approximation is better in the case of the continuous process and when the sample size increases. This 

Process

Numerical Illustrations

In this section, applications of our models to two real data sets are performed. 

Death number

In this subsection, we analyze a data set that concerns the weekly number of deaths, distinguished by gender, in Belgium. These data available at STATBEL [2021] are from 2009 to 2020. Recorded weeks are from 1 to 52 or 53 each year. In order to have the same number of weeks each year, data for week 53 were deleted, if any. Moreover, the number of individuals, distinguished by gender, of the entire Belgian population was chosen as an underlying process.

These numbers that are presented yearly are available at Federal Planning Bureau (Belgium) [2021]. An exponential increase considering 52 weeks by year has been used in order to have weekly estimates for each week. Since these data correspond to count statistics, we model them by using the discrete model indicated in Table 2.2.

Figures 2 and 3 present plots of raw data and fitted data for the number of deaths, for males and females respectively. The plots of observed data illustrate the serial correlations that these processes present, being notorious their seasonal behaviors. These facts are also evidenced in the ACF plots. The p-values of the Ljung-Box test of these data also confirm such serial correlations because they are lower than 2.2e-16 for both male and female. To fit the models, we analyzed the order p equal to 15 for both males and females. Under this constraint, there were not more serial correlations in the residual series. This is in line with the cumulative periodogram plots which would evidence that the residual series correspond to theoretical noises. 

Male

Medication expenditure

In this subsection, we analyze a data set that concerns expenditures in two pain medications, which has been provided in [START_REF] Kaushik | Ai in healthcare: Time-series forecasting using statistical, neural, and ensemble architectures[END_REF]. These data are a part of the Truven MarketScan data set, see e.g. [START_REF] Adamson | Health research data for the real world: The marketscan databases[END_REF]. These medications that have been denoted by simply A and B because they have not been disclosed, belong to the top 10 most prescribed pain medications in the US, see e.g. [START_REF] Scott | Top 10 Painkillers in the US[END_REF]. Reported data are from January 2nd, 2011 to April 15th, 2015. For each day i and for each medication j, an average (in American dollar) computed as Total amount spent in the day i on the medication j Total number of patients who refilled the medication j in the day i , is available. For each day, on average, about 1,428 patients refilled medication A, and about 550 patients refilled medication B. We assigned the expenditures on the medication B as the process to be modeled, and the ones on the medication A as the underlying process. Since these data correspond to continuous statistics, we model them by using the continuous model indicated in The specification of the chosen model is presented in Table 9. There we have estimates of the parameters of this model. It includes their corresponding standard errors in brackets. 

Conclusion

A new family of models for representing stochastic processes has been introduced. These models distinguish from others since they use underlying stochastic processes. However, such a constraint does not represent a limitation for large kind of random variables, like those bounded where a superior bound may be chosen as an underlying process. Using the aimed stochastic process and its underlying process, the new models take into account their past observations.

Numerical illustrations have shown that such models give suitable fits. When compared against competitors, the new ones outperform them.

Because these new models are promising, future research will deepen in their adaptation to particular cases of common use in practice.
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 1 Figure 1: ACF by type of process and sample size.

Figure 2 :FemaleFigure 3 :

 23 Figure 2: Death number for males: observed values, ACF, predicted values, and cumulative periodogram plot of the raw residuals from the chosen model.

  et al.[2016]. The function tsglm allows modeling using the Poisson and negative binomial distributions. We fit the number of deaths by using this couple of distributions and considering the number of the entire population as a regressor, considering the Poisson distribution. For this distribution, we use the logarithm function as link function. Moreover, these models allow the definition of the number of previous observations to be regressed on (p o ) and of the number of the previous conditional means to be regressed on (p m ). We examine the cases 1 ≤ p o , p m ≤ 10.

Figure 4 :

 4 Figure 4: Expenditures of medication B: observed values, ACF, predicted values, and cumulative periodogram plot of the raw residuals from the chosen model.

Table 2

 2 

	.2. Hence, we consider

t = X t exp(h(X tp , Y tp )) Continuous Gamma k t = X t and θ t = exp(h(X tp , Y tp ))

Table 1 :

 1 Distributions for Y t |F t-1 by its type of process

Table 2 :

 2 Mean and variance of Y t |F t-1 by its type of process3 Method for Estimating ParametersA first parameter needed before to apply our models is p. Since values p ≥ 1 put in evidence the existence of serial correlation in processes, we propose to use the non-parametric Ljung-Box test[START_REF] Ljung | On a measure of lack of fit in time series models[END_REF] in order to determine if p ≥ 1, i.e. if dependence among observations of a residual process would be evidenced. Moreover, if p ≥ 1, a sample autocorrelation function (ACF) may suggest the order of an autoregressive component.

Table 3 :

 3 Test ofLjung-Box (p-value) with 10 lags by type of process and sample size.

		Sample size
		500	1000
	Discrete	< 2.2e -16 < 2.2e -16
	Continuous < 2.2e -16 < 2.2e -16

Table 4 :

 4 Test ofLjung-Box (p-value) with 10 lags and parameter estimates by type of process and sample size.

	Process	Sample size
		500	1000
	Discrete	0.9273	0.7753
		α = 0.9715 α = 0.9867
	Continuous	0.1240	0.2201
		α = 1.0000 α = 0.9999

table also shows p-values of the Ljung-Box test, showing that the residual processes through all analysis would not present serial correlation. Therefore, it is not needed to analyze other values of p.

Table 5 :

 5 Death number: goodness-of-fit measures by gender.Table6presents estimates of the parameters of the chosen models. It includes their corresponding standard errors in brackets.

	Gender		Parameters	
	Male	α 0 = -9.22 (0.01)	α 1 = 3562.20 (62.12)	α 3 = 207.66 (75.97)
		α 5 = 187.09 (66.32)	α 11 = 249.66 (88.89)	α 12 = 260.89 (106.30)
		α 13 = -671.00 (93.90) α 15 = -414.36 (72.73)	
	Female α 0 = -9.27 (0.01)	α 1 = 3906.47 (46.54)	α 4 = -298.34 (83.19)
		α 5 = 474.95 (79.16)	α 11 = 265.18 (65.97)	α 13 = -624.45 (64.91)

Table 6 :

 6 Parameter estimates of the chosen models: estimates and standard errors in brackets.In this application, an evaluation about performance of our model with respect to generalized linear models for modeling count time series is performed. To this aim, we use the function tsglm available in the R package tscount, see[START_REF] Liboschik | tscount: An r package for analysis of count time series following generalized linear models[END_REF]. This function fits a generalized linear model for time series of counts, incorporating a linear predictor by regressing past observations, past values, and covariates. In this way, the so-called INGARCH model, see e.g.[START_REF] Ferland | Integer-valued garch process[END_REF],[START_REF] Fokianos | Poisson autoregression[END_REF],[START_REF] Fokianos | Log-linear poisson autoregression[END_REF], and Liboschik

Table 7

 7 presents the two lowest AIC and BIC values of competitors when 1 ≤ p o , p m ≤ 10, by gender. These outputs show that our models outperform them for males as well as for females.Moreover, for males, the increase of mainly p o would lead to lower values of both AIC and BIC, but incorporating each time large numbers of parameters. This behavior is also observed for females, but more slowly. These results provide empirical evidence in favor of the conjecture formulated above about to get better fits by using past events instead of previous conditional

	means.		
	Gender p o p m	AIC	BIC
	Male	8	2 9558.18 9611.41
		7 10 9575.69 9659.98
	Female 10 8 9930.36 10019.08
		5	9 9986.26 10057.24

Table 7 :

 7 The two lowest AIC and BIC values of competitors when 1 ≤ p o , p m ≤ 10, by gender.

Table 8 :

 8 Table 2.2.Figure 4 presents plots of data before and after fit. All of the are about expenditures of the medication B. Data do not show clear patterns visually, but a ACF plot that data are related from each other. The model fitted to data reaches to describe them in such a way that the residual series has behaviors that look as theoretical noises, see the cumulative periodogram plot of the raw residuals. The fitted model shows a feature in line with the cumulative periodogram plot presented above. It concerns the p-value of the Ljung-Box test shown in Table8. Such a p-value exhibits a level that does not allow to reject the independence of the observations that conform the residual series. Furthermore, both AIC and BIC values of that model are also presented in Table8. Expenditures of medication B: goodness-of-fit measures.

	p-value (LB test) †	AIC	BIC
	0.1026	98284.49 98343.33
	† LB test: Ljung-Box test.	

Table 9 :

 9 Parameter estimates of the chosen model: estimates and standard errors in brackets.
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