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Autonomy in Physical Human-Robot Interaction:
a Brief Survey

Mario Selvaggio1, Marco Cognetti2, Stefanos Nikolaidis3, Serena Ivaldi4, and Bruno Siciliano1

Abstract—Sharing the control of a robotic system with an
autonomous controller allows a human to reduce his/her cognitive
and physical workload during the execution of a task. In recent
years, the development of inference and learning techniques
has widened the spectrum of applications of shared control
(SC) approaches, leading to robotic systems that are capable of
seamless adaptation of their autonomy level. In this perspective,
shared autonomy (SA) can be defined as the design paradigm
that enables this adapting behavior of the robotic system.

This letter collects the latest results achieved by the research
community in the field of SC and SA with special emphasis
on physical human-robot interaction (pHRI). Architectures and
methods developed for SC and SA are discussed throughout
the paper, highlighting the key aspects of each methodology. A
discussion about open issues concludes this letter.

Index Terms—Physical Human-Robot Interaction; Human-
Centered Robotics; Human-Robot Collaboration.

I. INTRODUCTION

AFULLY autonomous robot is a machine that is able to
carry out a task by sensing, planning, and acting into

an environment without any human intervention. However,
despite the great progress achieved by automation in the
recent years, we are still far from providing robots with full
autonomy, that would allow them to successfully deal with
unpredictable events or unforeseen situations. Nowadays, in
most robotic applications, it is customary to have robots that
are operated or supervised by a human operator, who can pro-
vide superior situation awareness, logic, and problem-solving
capability. Sometimes, this is enforced by safety regulations
and/or ethical concerns (e.g., a robot is still fully operated
by a doctor during surgical procedures). In other words, the
interaction between humans and even the most autonomous
robot, albeit minimal, is needed and often desirable.

In Human-Robot Interaction (HRI) applications, autonomy
constitutes a means rather than the goal and its level varies
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widely from one application to another. Autonomy allows
reducing the human operator’s workload when performing
a task that can be repetitive and/or requires skills, effort or
precision levels that exceed those of a human.

In the past, several robot control architectures were designed
for humans to interact with a (partially) autonomous robot.
This design methodology was typically referred to as Shared
Control (SC). In the last decade, the advancements of sensing,
inference, modeling, and learning methods have extended SC
capabilities and have widened its spectrum of applications.
This gave rise to Shared Autonomy (SA) approaches where
the robot is capable of seamless adaptation of its auton-
omy level based on its own understanding of the human
actions/intentions and of the surrounding environment. Adap-
tation is the most desirable feature when the robot operates
in dynamically changing environments, needs to accomplish
diverse tasks and/or when the human behavior evolves over
time. The autonomy level is typically adapted by opportunely
arbitrating the user and the autonomous controller inputs. Until
now, SC and SA expressions have been used interchangeably.
In this survey, we make this distinction clearer: in SA the
robotic system automatically adjusts its level of autonomy
based on internal/external information, while in SC the human
manually tunes it. The application determines the paradigm
that needs to be adopted.

In both approaches, autonomy constitutes the key aspect to
be properly designed. In the past, other papers tried to propose
continuous or discrete classifications of autonomy levels in
SC applications. However, these classifications are drawn for
specific domains such as telerobotics [1], [2], autonomous
vehicles [3], [4], and surgical robotics [5], and are hard to
be generalized. In general, it would be more appropriate to
define a spectrum in place of discrete levels of autonomy
for SA approaches, since the robot may continuously vary its
autonomy level in function of external signals coming from
the human, the task, and/or the environment.

In this survey, we review the use of autonomy in physical
Human-Robot Interaction (pHRI). For us, the word physical
comprises both proximal and remote (bilateral teleoperation)
HRI scenarios. In the former, the human and the robot are
in direct contact, which may be mediated by a third object
(e.g., in cooperative manipulation scenarios). In the latter,
the connection between the human, at the local site, and the
robot, operating in a remote environment, is obtained by means
of an appropriate force feedback action that is provided to
the user. This survey provides the following contributions:
(i) we review the role of autonomy in pHRI, highlighting
the difference between SC and SA as design paradigms;
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Fig. 1. Categorization of approaches considered in this brief survey.

(ii) we classify the most recent papers proposing SC and SA
approaches; (iii) we collect and discuss open challenges and
future research directions.

This survey is not meant to be a comprehensive literature
review, rather, we want to provide the reader with an overview
of the different approaches. A recent literature review on
intention detection and arbitration for pHRI is given in [6].
To the best of our knowledge, the considered work is the
closest to this survey. However, it mostly focused on medical
and rehabilitation fields while our focus comprises a broader
range of systems and applications.

The rest of the paper is organized as shown in Fig. 1:
Section II overviews the general concepts behind the use of
autonomy in pHRI systems; Section III reviews the state-of-
the-art SC methods while Section IV overviews the latest
SA methods. In addition, Section V discusses haptic-based
communication methods in SC/SA while Section VI concludes
the paper by discussing open challenges.

II. AUTONOMY IN PHYSICAL HUMAN-ROBOT
INTERACTION

In a very broad sense, autonomy can be integrated in a
pHRI scenario as shown in Fig. 2. The evolution of the robotic
system can be described by the following dynamics:

ẋ(t) = f(x(t), u(t))

u(t) = hθ(uh(t), ua(t); θ(t)),

where x is the robot/environment state, u is the control
input. A (possibly non-linear) arbitration function hθ com-
bines/modulates ua and uh, which are the autonomous control
and the human inputs, respectively. Modulating the two inputs
uh and ua, hθ determines the autonomy level of the robotic
system. Here, θ models the robot understandings of the human
and/or of the environment used by the arbitration function
to modulate the two inputs. For example, θ may contain
information about the human action/intention or the task
completion status. In general, uh is a signal belonging to the
following robot channels: configuration, inputs and/or task.

A SA system modifies the weight of the human and the
autonomous control inputs based on θ. Conversely, in SC the
arbitration function hθ reduces to h(uh, ua), i.e., it does not
depend on external variables other than the human/autonomous
control inputs. This function is totally designed by the human
– usually to be fixed during a task – resulting in a user-defined
role/autonomy division between the user and the autonomous

Fig. 2. A general architecture integrating autonomy in a pHRI scenario.
Symbols are explained in Sec. II. Arbitration (hθ) of the control signals
(uh, ua) is either tuned by the human operator – shared control (SC) – or by
the autonomous control through inference – shared autonomy (SA).

controller. As matter of fact, no system intelligence is involved,
and the robot does not perform any adaptation when the
human/environment evolve their behavior/status over time.
To give an example, most of the times SC approaches are
designed to implement a linear combination of the human and
the autonomous controller signals, i.e., (in the scalar case)

h(uh, ua) = α uh + (1− α) ua (1)

where α ∈ [0, 1] is a weight allocating the control authority
between the human and the autonomous controller. In a SC
approach, the weight α, or more in general the arbitration func-
tion h, is designed by the human, which may also manually
modify/tune it over time. In case α is automatically tuned,
e.g., through inference of the human actions [7], the same
arbitration function can be used to realize a SA system.

III. SHARED CONTROL

In this section, we review SC approaches and classify them
based on the type of interaction: proximate (Sec. III-A) and
remote (Sec. III-B).

SC was primarily introduced as a control architecture for
remotely operated robots where embedding some autonomy
in the robot was essential to overcome large communication
delays between the local and remote sites [8]. Classically,
the architectures corresponding to different human interaction
modalities have been grouped into three classes: 1) direct con-
trol, which implies no intelligence or autonomy in the system,
all the degrees-of-freedoms (DoFs) of the robot are directly
controlled by the user via local interfaces; 2) supervisory
control, where the user commands and feedback occur at a
higher level, the connection is looser and the robot has to rely
on a stronger local autonomy to refine and execute tasks [9],
[10]; 3) shared control, comprehensive of all the intermediate
levels in which the robot is controlled by a combination of
direct user commands and autonomy [11]. In this context,
the most preeminent classification of autonomy levels was
proposed in [12].

Generally, a SC architecture is conceived to provide motion
commands correction/overlay or assume control of subtasks.
For instance, motion overlay compensating beating hearth
movements during robotic surgery gives the user the possibility
of operating on a virtually stabilized patient [13]. Subtask con-
trol is used to maintain a stable grasp over long time periods
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relieving the user from constantly imposing the corresponding
commands [14]. In general, SC paradigms are designed to
combine the cognitive skills of the human and the robustness
and precision abilities of robots.

This design paradigm evolved in the context of teler-
obotics and found numerous applications in diverse contexts,
such as space/undersea exploration [15], [16], wheelchairs
control [17], autonomous driving [18], humanoid teleop-
eration [19], nuclear sites decommissioning [20], aerial
robotics [21], assistive robotics [22], and surgical robotics [23].

In most of the above-mentioned contexts, the human usually
interacts with a complex robotic system (e.g., having many
DoFs) to accomplish one or more tasks simultaneously. SC is,
thus, required to reduce the amount of user’s workload that
would be necessary to direct control the system. For example,
controlling the rotational end-effector DoFs of a robotic arm
contributes significantly more to decreased performance and
increased difficulty than translational ones [24]. SC may
be designed to reduce the effect of these difficult-to-control
features on task performance [25].

A. Proximate interaction

In the context of proximate pHRI, SC principles are lever-
aged to design collaborative [26] and cooperative robotic
systems [27] integrating autonomy. For instance, SC methods
are used to enable cooperative manipulation of long objects
(grasped at the two ends by the human and the robot) con-
straining their motion as they were transported on a wheel [28]
or varying the task effort assignment via dynamic role ex-
change/sharing mechanisms [29]. In this case, SC can be im-
plemented through classical or variable impedance/admittance
control techniques [30], virtual constraints [31], or hybrid
force/velocity control [32]. An admittance-based SC archi-
tecture for collaborative object transportation with dual-arm
robot is developed in [33] to increase the productivity in
manufacturing: estimating and compensating the object gravity
is performed autonomously, while human applied force in the
cooperative task space is used to move the object in the desired
direction. Similarly, a group of mobile robots can transport
an object in cooperation with a human by compensating its
dynamics and orienting towards the user-preferred direction of
motion acting as Caster-like wheels [34]. Outside industrial
environments, cooperative object manipulation requires con-
straint avoidance algorithms and effort sharing policies [35].
Recent work is focusing on designing distributed multi-robot
SC frameworks where a human operator physically interacts
with an object manipulated by a multi-manipulator robotic
system [36].

Semi-autonomous driving, in which a user and an au-
tonomous controller simultaneously control the vehicle, is
another field in which proximate interaction SC is highly
employed. Shared control of intelligent vehicles between a
human driver and a lane-keeping and obstacle avoidance
assisting system is addressed in [37]: the steering assistance
actions are computed according to the driver’s real-time driv-
ing activity. Finally, SC is leveraged for wheelchair control in
tight environments in [38]: the driver commands a preferred

velocity which is transformed into a collision-free smooth lo-
cal motion that respects the actuator constraints. Although SC
allows the human to always takeover in case of disagreement
with autonomy, it lacks the additional intelligence that can
be provided by estimation of human intentions, desires, and
beliefs as in SA.

B. Remote interaction

In remote pHRI scenarios, the human and the robot are
spatially separated, and the interaction is established through
appropriately designed communication channels. SC methods
are used to implement a task- or a trajectory-level interaction.

The former approach is used when accomplishing a task
requires fulfilling several sub-tasks simultaneously. Thus, the
accomplishment of some sub-tasks is carried out by the
autonomous controller to facilitate the human operator. For
instance, an autonomous control action makes the robot grip-
per always pointing in the direction of an object to facilitate
its approaching and grasping during sort and segregation of
nuclear waste activities [25]. Task prioritization and whole-
body control architectures allows implementing a hierarchical
division of roles between the human and the autonomy [39]:
this allows a humanoid robot to coordinately accomplish
manipulation, locomotion and constraint avoiding tasks while
accepting position goals issued by a human [16], [40].

The latter approach, allows the user to interact in real-time
with a remote inspection robot at the trajectory level: the user
can steer the reference path of an autonomous mobile robot
(e.g., a UAV) by acting on path parameters that are simultane-
ously affected by an autonomous algorithm to ensure collision
avoidance, path regularity, proximity to points of interest [41]
or maximize the collected environmental information [42].

Besides, SC can be designed to improve the user’s ability
to remotely operate complex machines while simultaneously
avoiding unsafe regions [43]: to this end, obstacles avoidance
can be performed by autonomously overriding the user’s
commands leveraging reactive techniques such as artificial
potentials fields [16] or model predictive control [44].

Dual-arm robotic systems are typically employed to grasp
and manipulate large objects: SC allows a human operator
to specify the object motion while autonomy performs co-
ordinated control of the arms to realize grasp stability in
the remote space [45], [11]. A framework to accomplish
both coordinated bimanual grasping and asymmetric tasks is
proposed in [46], while a SC architecture with a dynamic
selection of the most suitable robot to be commanded by the
user is presented in [47]. Frequently, SC for dual-arm systems
is designed with one arm remotely operated and the other
completely autonomous and equipped with an eye-in-hand
camera to provide visual feedback. In this case, a vision-based
autonomous controller allows the execution of occlusion-free
tasks [48], while avoiding self-collisions, joint limits, and
singularities constraints [49].

The benefits of SC on the human operator’s workload are
even more evident when a group of mobile robots (e.g.,
UAVs) need to be controlled by a user as in real-world search
and rescue missions. SC architectures providing connectivity
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maintenance, formation control, and obstacle avoidance func-
tionalities allow the user to control a semi-autonomous group
of UAVs while redeeming from directly commanding single
agents [50], [51], [21]. More recently, SC was used to perform
cooperative grasping and transportation of an object with a
group of aerial manipulations [52], [53] or with heterogeneous
robot teams [54] following the operator’s commands. In a
recent and comprehensive review on SC methodologies for
human-robot team interaction, the autonomy level adaptation,
e.g., based on the human confidence in performing certain
tasks, is identified as a key step to be taken in the future [55].

IV. SHARED AUTONOMY

As discussed above, in SC approaches the amount of auton-
omy, shared between the human and the robot, is either static
or manually tuned by the human. However, as the physical
interaction between the human and the robot has an evolving
nature, autonomy adaptation approaches were started to be
devised paving the way towards SA architectures. This enabled
a human-robot interaction much closer to a human-human one
where (mutual) adaptation is a predominant aspect.

The transition from the SC to the SA paradigm was smooth.
Some works preliminary introduced human-robot cooperative
control with different autonomy levels leveraging features
such as active constraints, machine learning, and automated
movements in the context of robotic surgery [56]. On this
line, platforms able to deal with different autonomy levels for
human-robot coexistence and collaboration in manufacturing
applications were developed [57]. Besides surgical and indus-
trial scenarios, several other fields envisioned the use of multi-
level autonomy such as autonomous driving [18], space [58],
and assistive robotics [22].

As stated above, in the SA paradigm the autonomy level is
dynamic and its adaptation is seamlessly performed by the
robot during the task execution. This adaptation is usually
performed leveraging information extracted from the human
and/or from the environment (including the task). According
to the source of information that triggers the autonomy adap-
tation, we list approaches that extract information from the
human in Sec. IV-A and approaches that use environmental
information in Sec. IV-B.

A. Human

In this section, we survey approaches that extract and use
information from the human operator to adapt the autonomy.
In the following, we consider human intentions (Sec. IV-A1),
muscle activity (Sec. IV-A2), and skills (Sec. IV-A3).

1) Human intentions: A SA system may infer which is, in
a probabilistic sense, the action that the human is performing.
Based on this information, it can compute what action the
robot must undertake, regulating its autonomy and/or provid-
ing assistance. Leveraging this concept, a human-robot mutual
adaptation framework for collaborative object transportation
tasks is presented in [59], [60]: a bounded memory adaptation
model assumes that the human stochastically switches between
a finite set of modal policies and a mixed-observability Markov
decision process chooses the robot action, accordingly. A SA

approach for assistive teleoperated robots that infers and pre-
dicts human intentions is proposed in [7]: a recursive Bayesian
filter fuses multiple observations to infer the human goal and
alter the system autonomy level in function of its estimated
uncertainty. On the same line, a framework based on policy
blending is presented in [61]: the robot assistance, during
a teleoperated reach-to-grasp task execution, is provided as
arbitration of two policies, namely, user’s input and the robot’s
prediction of the user’s intent.

Approaches based on SA can be used to assist humans
with disabilities in object reaching and manipulation (e.g.,
slicing and scooping) tasks: a linear blending function with
user-tunable parameters and a confidence metric estimating the
human goal are used in [62] to determine the arbitration be-
tween the autonomous controller and the human. Similarly, the
human task is modelled as a Markov decision process in [63],
which provides the autonomous controller with the human goal
estimates using dimensionality reduction techniques. A SA
teleoperation framework, which mimics the arm movements
of an operator through a bimanual robotic system, is presented
in [64]: the human is assisted on-the-fly in completing different
bimanual tasks (e.g., object handover, container opening) by
means of a recurrent neural network using the user motion
information detected through a motion capture system. Game-
theoretic approaches also can be used to build SA frameworks:
the system assumes that the human is optimizing its objective
function, while its latent intention is inferred from feedback
errors to determine the parameters of a variable impedance
controller during human–robot co-assembly tasks [65], [66].

2) Human muscle activity: Instead of inferring the human
intentions, some papers focus on estimating a metric related
to the human fatigue and take actions for minimizing it. A
framework for proximal human-robot collaboration is pre-
sented in [67]: the robot implements a hybrid force/impedance
controller and estimates the human muscle activity while
performing the task thanks to wearable EMG electrodes. When
the human muscle activity exceeds a threshold, the robot
uses the learned skills (encoded as periodic dynamic motion
primitives) for helping the human in reducing his/her fatigue.
A similar idea is proposed in [68], where the ‘rapid upper
limb assessment’ is used to estimate the human muscle activity
during remote teleoperation tasks: based on this information,
the robot adapts its trajectory to minimize it. An interesting
emerging direction consists in estimating the human fatigue
thanks to a continuous monitoring of the human activities [69].

3) Human skills: Attributing skills to humans allows defin-
ing distance metrics between the performances of expert and
naive operators. The autonomy level can then be autonomously
regulated according to these metrics. In surgical robotics, a SA
teleoperation framework that adapts its cooperative properties
to the estimated skill level of the operator is proposed in [70]:
skill profiles, captured as task performance measures, are
exploited to modify the behavior of the assistive robotic system
and enhance the user experience by preventing unnecessary
restrictions for skilled users. On the same line, the assistance-
as-needed paradigm provides the user with variable assistance
during surgical training according to its current and past
performances [71]. A partially observable Markov decision
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process is used to represent the expertise level of an operator
during teleoperated navigation of a mobile robot [72]: the
SA framework uses the inferred user’s expertise level and
environmental observation to fuse the user’s input with the
appropriate autonomous controller.

In general, the correct interpretation of data and attribution
of human mental states are crucial aspects in SA systems.
Perspective-taking (i.e., the ability to take one another’s per-
spective and reason from this alternative point of view) on
robots would be a valuable asset for people working with
them [73]: interpreting data from a human perspective allows
overcoming ambiguity and incompleteness that can often
be present in human demonstrations [74] and communicate
and interact naturally with humans [75]. Theory of mind
computational models allow attributing beliefs, goals, and
desires to the human operator [76], [77]. In this perspective,
neural networks have shown to be capable of building models
for agents’ behavior predicting the main characteristics and
mental states [78]. However, the development of efficient
computational models that predict the human behavior in real-
time is still an open challenge as will be discussed in Sec. VI.

B. Environment

In this section, approaches that use information about the
environment (rather than the human operator) to adapt the
autonomy level are discussed. The most common method to re-
trieve environmental information is to focus on what the robot
has to fulfill, i.e., the task, and extract information directly
from it. In this perspective, Learning-from-Demonstration
(LfD) has been proven to be an effective approach: the idea
is to extract expert users’ behavior while executing some
tasks, and use this information to help non-expert users in
accomplishing similar tasks. This paradigm is adopted in
the context of a pick-and-place remote manipulation task
in [79], where trajectories from expert users are captured
through a haptic device, encoded into some distributions, and
then used by an adaptive controller to determine the system
autonomy. This way, naive operators are assisted during the
task execution through haptic cues that point in the direction
of the trajectories performed by the expert users.

Similarly, a task-parametrized Gaussian Mixture Model
(GMM) is used to build a representation of a remotely ex-
ecuted scanning task in [80]: datapoints from expert operators
are collected to encode the task. This is used, together with
the user input, inside a linear quadratic regulator that computes
the robot stiffness and damping that determines the autonomy
level of the teleoperated robot. A similar approach is presented
in [81], where a Task-Parametrized Hidden Semi-Markov
Model (TP-HSMM) is used together with an incremental
online learning algorithm to encode models of a hot-stabbing
task. A model predictive control, that uses the TP-HSMM
predicted state evolution, allows anticipating and adapting the
robot to future events. The approach is extended in [82],
where the system is also able to automatically disambiguate
between local and remote task parametrizations. LfD is used
in [83] for encoding remotely performed peg-in-hole tasks:
GMMs are used to extract information from demonstrations

of expert operators, which is then used to generate force-
based haptic guidance trajectories that help non-expert users
in fulfilling the insertion task. Similarly, LfD is used to create
surgical task models in [56]: the proposed framework collects
demonstrations and segments the task based on tool-tissue
or tool-tool interaction. The task is encoded as a continuous
hidden Markov model which is used to regress a path among
those captured during the demonstration, helping naive users
through visual and haptic cues.

Besides the task, environmental constraints can be used to
trigger the system adaptation. An adaptive authority frame-
work handling target occlusions is presented in [84]: the
control allocation between the human and the autonomous
controller is adapted based on target measurements uncertainty
of an adaptive Bayesian filter. This estimates the pose of the
target based on visual measurements and its covariance matrix
is used to linearly weight the contribution of the human and
the autonomous controller.

It is worth to note that the use of human/environment
sources of information is not mutually exclusive. A challenge
in the design of effective SA frameworks is to understand how
to properly combine and, possibly, prioritize information gath-
ered from multiple sources, as will be discussed in Sec. VI.

V. HAPTIC COMMUNICATION

In both remote and proximate pHRI scenarios, haptic
communication between the human and the robot is always
inherently present. In some SC/SA approaches the autonomous
controller inputs, opportunely arbitrated, are provided to the
users as haptic signals [79]. Control of the robotic system is
thus shared, since user’s movements are influenced by haptic
signals generated exploiting knowledge of the environment
and the task [85]. In this way, the potentially variable au-
tonomy is reflected to the user, the system becomes more
legible/transparent, while the operator retains its full control.

The exchange of forces helps to increase the human situ-
ation awareness providing useful information about, e.g., the
current system status, proximity to constraints [39], environ-
mental obstacles [86], etc. Haptic signals integrated in SC/SA
systems can be equivalently seen as virtual fixtures, that help
the human to operate into restricted regions and/or to move
along desired paths [87], [31]. Haptic displays realize the
cobotic behaviour of the robotic device [26] making it poten-
tially well-suited to safety-critical tasks (e.g., surgery) [88].
However, their effective integration is subject to the stability
and the safety certification of the interactive robotic system.
Haptic-based SC/SA frameworks have been developed to
guide the user towards grasp poses that maximize manipulation
capabilities [89], [90], or avoid incurring into the system
constraints along post-grasping trajectories [91]. At a larger
scale, whole-body haptic teleoperation interfaces are currently
being developed for bipedal robots to provide the user with a
sense of the robot’s executed motion [92].

Contextualized haptic assistance can be provided to the
operator in a structured manner exploiting models of the task
learned from demonstration [82], [56]. The level of autonomy,
adjusted exploiting the confidence into human and autonomous
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control, is reflected to the user through haptic guidance [93],
[80]. Exploiting the online estimated probability of following
a certain trajectory, mechanisms for automatic regulation of
haptic assistance have been developed [94], [95]. However,
the haptic feedback provided to the human operator may be
in conflict with other sensory signals (e.g., audio or visual).
The conflict may be caused by a low confidence estimation
of human goals performed by the autonomous control. This
results in low or wrong assistance causing a decrease of trust
in automation by the human operator [96], [97]. Accounting
for this in the design of SA frameworks can potentially lead to
reduced user’s workload and higher trust in automation [98]
as discussed in the next section.

VI. CONCLUSIONS AND DISCUSSION

In this letter, we briefly surveyed the use of autonomy in
pHRI, discussing SC and SA as implementation paradigms.
The autonomy level is manually designed and tuned by the
human in SC while it is automatically adapted by the system
in SA exploiting the robot understanding of the human and/or
the task/environment.

In this view, SC still constitutes a powerful paradigm
for combining human decision-making and robot precision
capabilities. Indeed, it provides assistance through commands
overlay and subtasks control while leaving the human operator
the ultimate authority over the system. The common trend
behind the design of SC architectures is the leverage of
task models and model-based control. However, while this is
advantageous for stability and safety certification, it makes SC
strategies specific to the application domain and to the task to
be performed. As no autonomy adaptation is envisioned in this
paradigm, any change in the task requires substantial strategy
modifications leading to tedious interruptions and setting up
times. This constitutes the main limiting factor, as the level
of the robot autonomy is desirable to change according to the
human/environment evolving behavior.

Determining the level of autonomy that a human wants a
robotic system to have is a very complex problem. There are
cases in which users appreciate that the robotic system guides
them [99]. However, there are also cases where the user wants
that the autonomy is limited and the robotic system does not
take invasive actions, (see, e.g., the surgical domain). Since
pHRI embraces a wide range of applications, we believe there
is no unique answer to this open problem but it requires the
development of a case-by-case solution.

Contrarily, SA approaches provide this favorable autonomy
level adaptation feature that leverages inference of the human
intentions or the task progress. However, other environmental
information are typically ignored. Thus, some of the open
questions are: how does this information increase the ver-
satility of the robots in performing everyday tasks? How to
combine the information coming from multiple sources in a
unified framework? Our intuition is that the SA framework
should be able to dynamically understand the importance of
each source and appropriately choose its autonomy level.

As advanced SA techniques are being developed, using
various adaptation mechanisms and haptic communication

means, these require novel control methodologies that assure
a safe interaction between the human and the robotic system.
The enhanced flexibility of SA systems, that are capable of
providing contextual or personalized assistance and seamless
adaption of the autonomy level, is a desirable trend that raises
new challenges for safety and stability certification [100]. A
possible approach is to use passivity-based control techniques
as largely done for SC scenarios [101].

As discussed in Sec. IV, most of the SA approaches use
user’s goals inference within a predict-then-act paradigm.
However, when the user’s goals cannot be predicted with
high confidence, SA methods may not assist the user or give
little assistance [96]. Developing reliable inference methods
to effectively regulate assistance is still an open research
field. Moreover, SA approaches that require task/environment
inference are challenged by unstructured environments with
ill-defined tasks. This issue may be mitigated by developing
approaches that render robots capable of online learning, up-
dating in real-time their understandings of the user’s goals and
of the task/environment. To this end, reinforcement learning
and deep learning techniques are capable of learning auton-
omy/assistive policies directly, instead of optimizing them. In
particular, deep reinforcement learning allows implementing
model-free SA but this typically requires lots of training data,
which can be burdensome for human users operating physical
robots [102].

The concept of human trust in autonomy is another essential
aspect to be considered when developing effective human-
robot collaboration techniques. Trust favors the adoption of
semi-autonomous systems such as robot assistants [97]. SA
paradigms integrating the notion of trust require the definition
of its computational model, which is a research question per
se. The trust towards a robotic system depends on many factors
such as the context, the application, and several individual
factors such as user’s attitude and experience. It also evolves
over time, which can be anchored in specific features of
the robot, and can be influenced by the user experience and
the robot behavior [103]. Developing sophisticated predictive
models integrating trust into the robot decision-making in a
principled way, while maintaining computational tractability,
is an exciting area for future work [60]. This opens interesting
questions: how much autonomy should the system have?
How does this affect users’ trust and their willingness to use
the system? Transparency and explainability of the system
behavior, intended as the human understanding of what the
system is doing, why, and what it will do next is another
important aspect to consider [104]. In this context, haptics
may be used to increase system legibility and the situational
awareness of the human, which may increase trust towards the
system.

Ultimately, the evaluation of SA systems is highly sub-
jective, users generally may prefer more assistance when
performing difficult tasks, as this might allow a more efficient
task completion. In our opinion, SA approaches require the
development of contextualized benchmarking and validation
methods for their objective evaluation. These validations in
simulated and/or real-world scenarios may speed up the de-
ployment of robots in our every-day life [105].
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Solving the above-mentioned open issues will bring to a
significant advancement in the field of pHRI. We believe
that SA will be a fundamental paradigm in the next future,
especially for helping non-experts and people with disabilities
in performing everyday tasks, thanks to its nature to adapt to
the user’s requirements.
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