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Abstract

Purpose of review: Humanoid robots are versatile platforms
with the potential to assist humans in several domains, from edu-
cation to healthcare, from entertainment to the factory of the
future. To find their place into our daily life, where complex
interactions and collaborations with humans are expected, their
social and physical interaction skills need to be further improved.
Recent findings: The hallmark of humanoids is their anthropomorphic
shape, which facilitates the interaction but at the same time increases
the expectations of the human in terms of advanced cooperation capa-
bilities. Cooperation with humans requires an appropriate modeling and
real-time estimation of the human state and intention. This informa-
tion is required both at a high-level by the cooperative decision-making
policy and at a low-level by the interaction controller that implements
the physical interaction. Real-time constraints induce simplified models
that limit the decision capabilities of the robot during cooperation.
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Summary: In this article, we review the current achievements in the
context of human-humanoid interaction and cooperation. We report on
the cognitive and cooperation skills that the robot needs to help humans
achieve their goals, and how these high-level skills translate into the
robot’s low-level control commands. Finally, we report on the applica-
tions of humanoid robots as humans’ companions, co-workers or avatars.

Keywords: humanoid robots, human-robot interaction, cooperation

1 Introduction

Employing humanoid robots in real-world scenarios is still a challenge because
of the inherent complexity of locomotion, balancing and interaction with
humans or unknown environments. However, their versatility and their anthro-
pomorphism makes them the ideal platform to operate in environments
conceived and designed for humans. Several research projects and international
competitions have highlighted the potential of humanoid bipedal technologies
[1, 2]: with their extended mobility in unstructured or cluttered environments,
they can be used in a range of different applications, such as search and res-
cue, disaster response [1] and aircraft manufacturing [2]. In the last decade,
the advances in mechatronics technologies made it possible for companies
such as Honda, Boston Dynamics and Agility Robotics to produce prototypes
and commercial platforms (ASIMO [3], Atlas [4] and Digit [5], respectively)
that showcase the level of maturity required for robots to operate in the real
world. Yet, further advancements are required to integrate such robots into
our daily lives, where complex interactions and collaborations with humans
are expected.

In contrast to the structured working space of the laboratory or produc-
tion/testing site, the environment in which the robots are expected to operate
is characterized by a high level of dynamic uncertainty, and by the presence of
several human collaborators or bystanders. In this context, the robot must be
able to socially and physically interact with the human counterparts. It also
needs to exhibit advanced cognitive interaction skills to cooperate with human
workers, assisting them in their tasks. Figure 1 illustrates some examples of
human-humanoid interaction and cooperation, where the robot’s degree of co-
presence ranges from remote (e.g., in teleoperation) to proximal, even in the
human’s peripersonal space.

In this article, we review the key elements of human-humanoid interaction
and cooperation. We present and analyze the current achievements from a
human-centered point of view, considering that a humanoid robot interacting
with humans should help them to improve their health or working conditions.
Figure 2 shows the interconnection between the key building blocks that enable
a robot to make complex decisions and take actions to cooperate with a human:
it is meant to guide the reader through the different topics and sections. In
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Fig. 1 Examples of human-humanoid interaction and cooperation: A: social interaction
with a Pepper; B: cooperative load carrying with a Talos; C: passive physical interaction
with an iCub; D: iCub teleoperated by a human operator.

Section 2 we discuss the principal issues in building cognitive and social skills.
In Section 3 we formalize the concept of physical human-robot cooperation,
while in Section 4 we overview the main interaction control approaches that
enable low-level physical interaction between the robot and the human. The
knowledge of the human “state” is required by both the high and the low level
control to build human-aware control plans: hence we present the main meth-
ods used to model and perceive the humans in Section 5. Finally, in Section 6,
we report on the current main application of humanoid robots interacting and
cooperating with humans: humanoids as personal assistants, co-workers and
avatars.

2 Social and cognitive interaction

Endowing humanoids with cognitive skills is a pivotal step to safely blend them
in our society. Such skills go beyond the abilities of reasoning, exploration
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and learning, and are rather oriented towards a mutual interplay between the
humanoid “brain”, its physical embodiment and its environment. In this sense,
cognitive skills emerge from a proper and coherent exploitation of stochastic
internal models of the knowledge the robot has of itself and of its surrounding.
These models mediate past knowledge with new perceptions and are continu-
ously and incrementally updated according to feedback from new experiences
[6]. As inherently probabilistic, the models are not only able to represent
temporal information through short and long-term memories [7], but also spa-
tial deictics [8] , surmounting the limits of the Cartesian definition of space,
embracing the more flexible concepts of “here” and “there” and of “this,
“these”, “that”, and “those”.

A consistent social interaction is achieved when the robot is perceived by
the human partners as “believable” through its appearance and through the
consistency of its actions and its social behaviors. Any physical or behavioral
inconsistency can be quickly spotted, perceived as “strange”, making the robot
become unacceptable for the human partners.

Because of their anthropomorphic appearance, humans tend to sponta-
neously attribute social intelligence to humanoid robots [9]. Designers can
exploit and enhance this tendency, inducing in partners the projection of
traits, emotions and intentions typically associated with humans. However,
even if making robots more appealing and acceptable, anthropomorphism
raises the expectation people have about their actual cognitive abilities. In
this sense, the behavior consistency requested to humanoids is not limited to a
coherent sequence of actions, but it is extended to the challenge of being “read-
able”,“legible”and “predictable” by human partners [10]: the robot reveals its
intentions and its internal state through a coherent production of verbal and
non-verbal social cues. Achieving coherent robot behaviors in response to the
human reactions strictly relies on the production of metrics, models, techniques
and algorithms aimed at capturing and describing the dynamics of the social
interplay [11], and on the development of robot “socio-cognitive” skills capable
of explicitly taking into account the human presence in their perception-
cognition-action loop [12]. This socio-cognitive skill will endow humanoids with
a sort of theory of mind [13], making them able to attribute mental states,
intents, emotions and personalities to themselves and to the others. Models
based on such concepts have already shown their potential and can be par-
ticularly interesting for achieving engagement in long-term interactions [14],
where the customization of behaviors becomes central.

The feeling of “illusion of life” [15], elicited by the coherence between the
humanoid’s embodiment, its actions and its social behaviors, can vary among
the scenarios in which such robots are employed, among category of users
and among people, being strictly dependent on the bias they have towards
humanoids, towards robots and, more in general, towards technology.

To evaluate how people perceive robots, several questionnaires have been
proposed, such as Godspeed [16], and Negative Attitudes Toward Robots Scale
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Fig. 2 Schematic drawing of the components involved in Human-Humanoid Interaction
and cooperation.

(NARS) [17]. Results from such questionnaires, together with human’s behav-
ioral metrics, are extremely useful tools to evaluate the effectiveness of the
social interplay with humanoids in real-world scenarios [14].

3 Cooperation: a decision problem

Social and cognitive skills are critical to make the robot believable and to
ensure it can perform in day-to-day interactions to significant endeavors. These
skills are the building blocks that enable a humanoid robot to pro-actively
cooperate with humans and help them achieve their goals. Developing these
skills requires a human-centered design of the robot’s intelligence, that at many
decision levels should integrate the goals and costs of the human’s actions to
plan suitable high-level assistance actions and translate those decisions into the
robot low-level control commands. Figure 2 shows the interconnection between
these skills: to cooperate, the robots needs to formulate the problem of finding
the best sequence of actions that assist the human in achieving their goals and
minimizing their costs, considering the constraints and limits of the robots and
the human as individuals first, then as interacting agents. This requires also
cognitive reasoning, in particular taking the human perspective [13]. Solving
this problem requires high-level decision making capabilities, which are then
translated at a lower level into the modules producing social and physical
interaction behaviors, also translated into lower-level motor commands for the
robot.

Several approaches are possible to design this robot high-level decision
making system. Among those approaches, the robot’s policy can be designed
based on expert knowledge or directly learnt through interactions with a
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human, however, in both cases, this would require to encompass all the pos-
sible encountered situations and the variety of human reactions (needing a
complete knowledge of all the possible situations in the first case or an impor-
tant amount of data in the second one). In this section, we propose specifically
to consider the use of a planning approach to compute the high-level robot’s
intelligence.

Whereas a planning approach requires a representation of the interaction
situation, a detailled knowledge of its dynamics, and an adaptation of the high-
level strategy to low-level controls, it still seems a promising direction to us:
(1) it can leverage generic models and algorithms to automatically compute
a robot’s strategy from the definition of the collaborative task, (2) planning
approaches are able to deal with several sources of uncertainties like sensor
noises or uncertainties regarding the human behaviour or mental state, (3)
planning approaches are generic and various questions of paramount impor-
tance for collaborative humanoid robotics have been represented and can
merged in that same framework like intention estimation [18], role attribution
and/or inference of user profile [19], and, (4) planning allows to compute strate-
gies considering the long-term consequences of the robot’s behaviour which
could have a huge impact in the decision process (e.g., when optimizing the
user’s fatigue).

More precisely, in a planning context, a collaboration problem can be
modelled as a Multi-Agent sequential decision problem where two agents, the
human and the robot, select actions according to their respective policies in a
coordinated way to achieve a common task, where typically cumulative shared
rewards represents the common goal. This problem can typically be addressed
in game theory framework, defining the agents’ strategies and the rewards.

Due to the difficulty in modelling the complex and often unpredictable
human behavior, the most common formulations of human-robot interaction
and cooperation resort to single-agent problems: they only consider the robot’s
point of view, while the human is assumed as part of the environment and
modelled as purely reactive agent with a known policy [20]. Solving a single-
agent problem consists in building the long-term robot’s policy and potentially
influencing the human reactions in order to complete the collaborative task in
the most efficient way [21].

The robot decision problem is often formalized by a Partially Observ-
able Markov Decision Process (POMDP), a general framework well suited to
model different collaboration situations faced by the robot: it assumes that
the robot is acting in an uncertain environment, described by a Markov Deci-
sion Process (MDP) but the robot cannot directly observe its underlying state.
The uncertainty of the human reaction can be represented by considering a
stochastic evolution of the system. A POMDP is usually defined by the tuple:
< S,A, T,Ω, O, r, b0 > [22]. At each time step, the agent is in a state s ∈ S
performs an action a ∈ A influencing the evolution of the state of the system
according to a probability distribution T (s, a, s′) = P (s′ | s, a) and receives an
observation o ∈ Ω depending on the new state that has been reached and the
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observation function O(o, s) = P (o | s). The agent has no direct access to the
state of the system but only to those observations. Using past observations,
the agent infers a belief-state, a distribution of probability over the true state
of the system, and makes their decision based on this estimate.

Several algorithms can be used to build the optimal robot policy (e.g. [23]),
which may also include actions to gather information about the human state
and simultaneously estimate the hidden variable conditioning their actions
(e.g., their profile or objective) [24]. As such, POMDPs are ideal to develop
collaborative robot strategies in absence of structured rewards or structured
cooperation instructions.

One of the main difficulties in using this approach lies in the modelling of
the human behaviour: the critical questions are how to consider the expectation
of the human towards the robot and how they will adapt their policy depend-
ing on the robot’s actions. Often, the interaction between human and robot is
structured along “roles”, .e.g, leader/follower, which may determine not only
high-level decisions but also low-level actions (e.g., stiffness in impedance con-
trol). For example, in a strictly asymmetric leader-follower case, the humans
cognitive abilities can be used to supervise or to lead the robots superior
physical capabilities; whereas in an egalitarian roles distribution, where the
leadership is not specified, the robot may need to continuously adjust its own
role, and consequently its behavior, according to the humans intention and
estimated role [25].

Another difficulty is defining the right rewards, so that the robot policy
can truly help the human to achieve their goal. This is not an easy task since,
usually, the utility we would like to optimize is not reduced to a single dimen-
sion and must consider all possible criteria. It might involve the efficiency of
the task achievement but also the human ergonomics and physiological com-
fort, the cognitive load, as well as unknown objectives [18]. This is a problem
of paramount importance due to reward hacking problems [26]: the produced
policy will optimize the given reward but might have unexpected side effects
that could be counter-productive or dangerous.

Building policies able to simultaneously estimate the hidden variables
determining the human reactions and consider long-term consequences of the
robot actions are a key component to build adaptive robots that collaborate
with humans in a proficient way. Those models will turn out to be very useful
in assistive robotics in order to adapt the robot behaviour to the user profile
and to their physiological status.

4 Motion control for physical interaction

Once the cooperation strategy with the human has been defined, and the robot
has access to the human state estimation, it has to be controlled adequately
to enable the physical interactions. The previous section discussed how the
robot can plan for cooperative actions, at the high level, taking into account
the human’s goals and states. High-level decisions must be translated into
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low level commands, typically by means of desired behaviors, implemented as
desired trajectories, which needs to be translated into motor commands, as
represented in Figure 2. The critical aspect that distinguishes a robot motion
controller for cooperation with humans from a generic one for the robot alone
in the environment is to consider the human in the design of the motion con-
trol, i.e., to design a “human-aware” controller [27]. This means to consider
the human state, their dynamics [28], their intended movement [29], and use
the predictions of their future states to plan suitable robot motions and phys-
ical interactions. These interactions often result in complex behaviors, where
the humanoid needs to simultaneously control various aspects of its internal
and external motion like locomotion, posture, gaze, manipulation and con-
tact stability. All these aspects are usually considered as different tasks and
the whole-body controller becomes a multitask optimization problem. This is
classically formulated as a Quadratic Program (QP), where the control input
(the motor torques, the joint positions or velocities) is found so to minimize
a multivariate quadratic function related to the difference between the actual
value of the tasks and their references. The QP formulation provides extreme
flexibility in the choice of the type of control, allowing one to solve inverse kine-
matics [30], inverse dynamics [31] or momentum-based [27] control problems
for both position-controlled and torque-controlled humanoid robots.

In dynamic environments and in the presence of humans, momentum-based
control methods on torque-controlled robot are generally the preferred choice.
These approaches in fact, can ensure safety and contact stability under unex-
pected physical interactions [32], so they are appropriate to handle possible
collisions between the robot and the humans during the robot’s trajectory exe-
cution. In other situations, the robot has to adapt its motion to that of the
human, considering some variability in the execution of the various task ref-
erences and considering perceived external forces. In this case, to achieve a
stable robot behavior while maintaining contacts with the human, compliant
control approaches such as impedance control [33], and admittance control
[34] have been applied. Early works proposed separation of tasks: impedance-
based upper body manipulation with lower body balancing [35]. However, this
solution is not well suited for bipedal walking under physical interactions and
whole body control is better suited [31].

During interaction, one key-point for the robot is the computation of the
reference task: it usually defines the robot motions, but it may also be used to
influence the human motion through physical contact. An optimized choice of
the interaction trajectory (for instance, at the end-effector) could be used to
reduce the human effort [36] and make the cooperation more comfortable and
safe [37]. This computation is highly dependent on the estimated human inten-
tion. Following the terminology of [36], we could divide the robot strategies in
reactive and proactive. In reactive strategies the belief of human reference task
is computed online and the robot react accordingly. These kind of approaches
are highly dependent by the sensors integrated in the robot, for this reason a
discussion about them has been presented in Section 5. On the other hand,
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in proactive strategies, the robot predicts a long-term belief of human refer-
ence task and plan solutions accordingly [38]. Once the robot has access to
the human current (reactive) or long-term (proactive) intention, it can use
the information to compute its own reference task. The final task computa-
tion depends on the human intention and the estimated role as cooperative
agent [39].

A limitation of most existing controllers for physical human-robot inter-
action is the representation of the human state, which is vastly simplified as
an external force or end-effector’s pose; this limits the quality of the solutions
proposed by the robot and the extent to which the robot can reason about
the human. For this reason, recent work [27] proposed to extend the classical
quadratic program whole-body formulation in the case of human-humanoid
physical interaction, and to include the human model in the system model. This
allows to reason about the whole-body dynamics of the human, considering
their dynamics (e.g., joint torques), their posture and even ergonomics-related
quantities that may be instrumental to ensure a safe and ergonomically
optimized collaborative motion. One key issue is how to model the human kine-
matic and dynamic properties. Depending on the extent and objectives of the
cooperation, humans could be represented by a simple linear inverted pendu-
lum [40] or a more complex Digital Human Model (DHM) [27]. Choosing the
correct level of abstraction and simplification in the human model can make
the difference in real-time performance. In the next section, we will discuss
how to model the human and how to estimate their state based on multi-modal
sensor measurements.

5 Human perception and modeling

Similarly to other cooperative robots, humanoid robots need to estimate the
human physical, physiological and cognitive state in order to collaborate with
their human partner effectively: as discussed in the previous sections and shown
in Figure 2, the human state is a critical input for the high-level decision
planning and lower level motion planning and control. The perception of the
human state relies on sensors that can be placed in the environment, embed-
ded on the robot, or worn by the human. A list of sensors commonly used
to perceive humans is presented in Table 1. State-of-the-art motion capture
techniques remain widely used to provide high-fidelity and high-frequency mea-
surements of human kinematics. While human kinematics can serve to inform
about human’s intent, the on-line estimation of human dynamics is receiving
a lot of attention since it enables the robot to consider aspects such as balanc-
ing, or humans’ internal force distribution [43]. Dynamics estimation requires
a measure of external forces, either via generic force/torque (F/T) sensors
that can be embedded in the robot, or via specific sensors such as force plates
for human/ground reaction force. Wearable force sensors such as sensorized
insoles are also of interest due to their portability [45].
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Measurements of physiological quantities are also common in human-robot
cooperation. Physiological quantities can be used as such, for instance, elec-
tromyography (EMG) signals have been used to estimate human muscle fatigue
[47]. But physiological quantities can also serve to estimate the human cog-
nitive state: electrocardiography (ECG) and galvanic skin response (GSR)
signals have been linked to stress and anxiety levels [58], while eye gazing was
correlated with engagement and proactivity levels during social human robot
interactions without physical contact [55].

In more recent work, there are indications that individual factors such as
personality, can affect the human posture and motion while interacting with a
humanoid robot [59] (motor contagion), or even the level of trust towards the
robot [53]. These emotional, and perception factors should also be monitored
by the robot in order to provide mental safety during interactions [60].

Finally, the above-mentioned measurements are often used in combination
with a model of the human body, in order to retrieve further information. Many
levels of details exist to represent the human body [61], but the most widely
used in human-robot cooperation are the rigid body and musculoskeletal mod-
els. In rigid body models, the human body is represented as a kinematic chain
of rigid segments linked together by ideal joints. This is typically done to esti-
mate joint torques via inverse dynamics [43]. Such robotics-based models are
also used to simulate human motion at a low computational cost [62]. Muscu-
loskeletal models [63] include muscles and possibly tendons, providing a better
degree of realism, obviously at a higher computational cost.

6 Applications of humanoids interacting and
cooperating with humans

Humanoid robots are versatile platforms that can interact with and help
humans in different contexts, relying on the cooperative and human-aware
decision and control skills discussed in the previous sections. We discuss three
main scenarios and provide examples of recent work listed in Table 2, reporting
the type of robot and its control strategy used for each application.

6.1 Humanoids as companions: coaches and education
tools

Humanoids endowed with social skills have the potential to assist humans in
their daily endeavors (i.e., at a supermarket, at school, at work or at home) and
as tools for education and rehabilitation. The anthropomorphic shape coupled
with advanced cognitive and social behaviors, gestures and communication
channels, can favor legibility, engagement, attunement and trust [51, 54].

The small humanoid NAO from Softbank Robotics is a representative
example of a robot that has been employed in several researches as classmate
[83] or tutor [84] in educational environments, as storyteller for children [85],
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as fitness companion [86], as personal assistant in eating disorders[87] and dia-
betes management [88]. Such applications heavily rely on the socio-cognitive
abilities of the humanoid that become an instrument for inducing a sustained
engagement into a shared activity. Humanoid robots have been also success-
fully applied both as diagnosis instruments as well as remediation tools for
neurodevelopmental deficits (e.g., autism and attention deficit/hyperactivity
disorder), aging and neurodegenerative diseases such as Alzheimer [89].

Finally, humanoids could also be teleoperated to enable “distant” social
interactions. Their human-like embodiment simplifies the projection of the
human operator into the robotic body and can induce a sustained engagement
into shared activities with the human partner in the remote site. More details
about humanoid teleoperation are discussed later (Section 6.3).

6.2 Humanoids as co-workers: optimizing the human
ergonomics and performance

Collaborative robots have received a lot of attention lately due to their poten-
tial to act as co-workers that can possibly improve working conditions. While
initially focused on fixed-base robotic arms, research in this domain is now
moving towards robotic manipulators mounted on wheeled mobile bases [90].
Even if providing more mobility, these robots remain largely limited to indoor
settings with flat and uncluttered ground. Humanoid robots instead, could
adapt to different environments and leverage their versatility. Even if their
capabilities have been mostly validated in laboratory setups, the ultimate goal
is to make them proactively work side by side humans without the need of
protective cages [46]. To this end, they should also exhibit advanced interper-
sonal communication skills, and be able to learn new operations and new tasks
through social interaction [91].

Even though most approaches proposed for robotic manipulators can be
ported to humanoids with limited adaptation, examples of legged humanoids
as co-workers in a physical interaction are still scarce. Most human-humanoid
collaboration studies were focused on object carrying. For instance, Agravante
et al. proposed a control framework that takes into consideration constraints
for both walking and interacting with a human in a carrying task [46]. Otani
et al. proposed to take into account the whole-body dynamics of the human
to control an interacting humanoid robot [28]. Similarly to [92] with a mobile
manipulator, Rapetti et al. proposes to improve human ergonomics by extend-
ing their humanoid whole-body controller to try to minimize the estimated
torque, and joint velocities from a human partner [93].

To ease the balance issues faced in legged locomotion, humanoid torsos
on wheels can also be used as co-workers [73]. Even though they do not pos-
sess legs, humans perceive them differently than robotic manipulators [59],
which could have a beneficial impact depending on the application. In a recent
work, Bolotnikova et al. presented a human-friendly humanoid that is able to
approach a person in need and establish multimodal interactions for human
assistance, including initiating physical contact [94]. Even though there was
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no shared task in [94] it gives a prime example of how leveraging the human
perception could be used for assistance in the future.

6.3 Humanoids as avatars: enabling humans to act in
remote environments

There are many scenarios where the human presence at the site is inherently
dangerous (e.g. interventions in contaminated environments, construction
sites, space exploration). In such situations, robots could be employed to
replace humans at the site as physical avatars, protecting the operators from
any potential hazards. Robot avatars could also be helpful in contexts not nec-
essarily dangerous, for example to allow humans to virtually exist in another
location in view of a more ecological and time-efficient society with an overall
improved work-life balance.

A teleoperation system is a cooperative set-up where the robot imitates or
replicates the human’s actions to reach a common objective. First the human
motion is captured and then converted in real-time into corresponding refer-
ences for a whole-body controller that generates the joint or torque commands
actuating the robot. The motion capture techniques are generally based on
optical tracking or inertial technology (Section 5). Alternatively, the operator
can directly control the robot through dual-arm exoskeletons [95] or whole-
body exoskeleton cockpits [96], in which case their motion is tracked by the
actuators and sensors of the device.

The captured human information is then transformed into corresponding
values for the robot. A common retargeting method consists in performing an
identity map between the rotational motion of the human and the robot, while
using a fixed scaling factor for translational movements [97]. The joint angles
and velocity of the human joints instead are either manually mapped to the
corresponding joints of the robot [30], or automatically found by recurring to
learning techniques [98].

The retargeted information is then corrected via feedback controllers [99] to
ensure the dynamical balance of the teleoperated references on the humanoid
robot. The resulting dynamically feasible references are then sent to the low-
level controller, which is classically formulated as a QP [79], as explained in
Section 4. The QP optimization is solved by taking into account the retargeted
information as references, computing the actuating commands for the robot.

While controlling the robot, it is of crucial importance to sufficiently inform
the operator of their avatar state, to give them the illusion of being physically
present at the site, producing effective behaviors. A conventional way to pro-
vide situation awareness to the human operator is through visual feedback.
The user can wear VR headsets, connected to the robot cameras or visualize
on displays the information coming from the cameras of the robot together
with images of the remote environment coming from LIDAR sensors and other
external cameras. However, visual feedback is not sufficient for many real-world
applications, especially those involving power manipulation or interaction with
other human subjects. In such scenarios also the haptic feedback is required to



Springer Nature 2021 LATEX template

Human-Humanoid Interaction and Cooperation: a Review 15

exploit the human operator’s motor skills in order to augment the robot per-
formance. Force feedback, tactile and vibro-tactile feedback are the most used
[100]. Voice and sound feedback can further enrich the virtual experience of
the human operator especially in scenarios where other humans are present in
the remote robot location [80]. Table 2 reports some examples of applications
of teleoperated humanoid robots.

7 Conclusion

To guarantee proficient and adequate cooperative behaviors, humanoid robots
need to advance their cognitive, social and physical interaction skills. This arti-
cle reported on the current work in these areas of research, acknowledging the
main limitations due to the real-time nature of the interaction and the com-
plexity of modeling and identifying the human state. Human-aware humanoid
collaborators capable of long-term interactions in real situations are the next
grand challenge.
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O., Latella, C., Lazzaroni, M., Lober, R., Lorenzini, M., et al.: The
codyco project achievements and beyond: Toward human aware whole-
body controllers for physical human robot interaction. IEEE Robotics
and Automation Letters 3(1), 516–523 (2017)

[28] * Otani, K., Bouyarmane, K., Ivaldi, S.: Generating assistive humanoid
motions for co-manipulation tasks with a multi-robot quadratic pro-
gram controller. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3107–3113 (2018).
This paper presents a multi-robot quadratic program controller
which allows to keep the robot balanced, while also assisting
the human in achieving their shared objectives.

[29] Dermy, O., Chaveroche, M., Colas, F., Charpillet, F., Ivaldi, S.: Predic-
tion of human whole-body movements with ae-promps. In: 2018 IEEE-
RAS 18th International Conference on Humanoid Robots (Humanoids),
pp. 572–579 (2018)

[30] Penco, L., Scianca, N., Modugno, V., Lanari, L., Oriolo, G., Ivaldi, S.:
A multimode teleoperation framework for humanoid loco-manipulation:
An application for the icub robot. IEEE Robotics Automation Magazine
26(4), 73–82 (2019)

[31] Tirupachuri, Y., Nava, G., Rapetti, L., Latella, C., Pucci, D.: Trajec-
tory advancement during human-robot collaboration. In: 2019 28th IEEE



Springer Nature 2021 LATEX template

Human-Humanoid Interaction and Cooperation: a Review 19

International Conference on Robot and Human Interactive Communica-
tion (RO-MAN), pp. 1–8 (2019)

[32] Gazar, A., Nava, G., Chavez, F.J.A., Pucci, D.: Jerk control of floating
base systems with contact-stable parameterized force feedback. IEEE
Transactions on Robotics (2020)

[33] Brygo, A., Sarakoglou, I., Tsagarakis, N., Caldwell, D.: Tele-
manipulation with a humanoid robot under autonomous joint impedance
regulation and vibrotactile balancing feedback. (2014). https://doi.org/
10.1109/HUMANOIDS.2014.7041465

[34] Ranatunga, I., Lewis, F.L., Popa, D.O., Tousif, S.M.: Adaptive admit-
tance control for human–robot interaction using model reference design
and adaptive inverse filtering. IEEE transactions on control systems
technology 25(1), 278–285 (2016)

[35] Kormushev, P., Nenchev, D.N., Calinon, S., Caldwell, D.G.: Upper-body
kinesthetic teaching of a free-standing humanoid robot. In: 2011 IEEE
International Conference on Robotics and Automation, pp. 3970–3975
(2011)

[36] Bussy, A., Gergondet, P., Kheddar, A., Keith, F., Crosnier, A.: Proactive
behavior of a humanoid robot in a haptic transportation task with a
human partner. In: 2012 IEEE RO-MAN: The 21st IEEE International
Symposium on Robot and Human Interactive Communication, pp. 962–
967 (2012)

[37] Mainprice, J., Sisbot, E.A., Jaillet, L., Cortés, J., Alami, R., Siméon,
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