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MATHEMATICAL ANALYSIS OF AN AGE STRUCTURED

EPIDEMIC MODEL WITH A QUARANTINE CLASS

Zakya Sari1, Tarik Mohammed Touaoula1

and Bedreddine Ainseba2,*

Abstract. In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-
Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave the
R-class before being completely recovered and thus will participate again to the disease transmission.
We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive
equilibria. In order to see the impact of the different model parameters like the relapse rate on the
qualitative behavior of our system, we firstly, give an explicit expression of the basic reproduction
number R0, which is a combination of the classical basic reproduction number for the SIQR model and
some other model parameters, corresponding to the individuals infected by the relapsed ones. It will
be shown that, if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable and becomes
unstable for R0 > 1. Secondly, while R0 > 1, a suitable Lyapunov functional is constructed to prove
that the unique endemic equilibrium is globally asymptotically stable on some subset Ω0.
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1. Introduction

Understanding epidemic dynamics remains a major health problem nowadays. Mathematical modeling of
epidemics has been increasingly classified as a powerful tool to understand various interactions between the
transmission dynamics and some other parameters controlling it, like demographical parameters, size of the
population, control actions, etc.

This paper will focus on an epidemic model of Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI)
type where we will look for the role of individuals that leave the R-class before being completely recovered and
thus will participate again to the transmission of the disease. We will also assume that all individuals completely
respect the quarantine, which is idealistic but can hold true; for example in a disciplined population, or if the
quarantine is not very restrictive. But we assume that they can relaps once they are recovered.

One of the leading works on epidemic mathematical models was introduced by Bernouilli in 1760’s in [6, 7].
Very later, Kermack and McKendrik proposed the first susceptible-infected- recovered (SIR) model [20]. Since
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Belkäıd, Tlemcen 13000, Algérie.
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then, many epidemic models like SIQR model among others have been developed in ODEs equations, see for
instance [9, 16] and references therein.

The chronological age as a variable that can play an important role in the epidemic has been introduced in
[18, 32] and the references therein. Further, the infection age (the elapsed time since the start of the infection)
structure, was considered in various works, [4, 8, 9, 12, 15, 23, 24, 29]. See also SIR model [11], SIRS model
[13], SIQ model [17], SEIRS model [33]. These models consider some parameters like the incidence rate which
depends on the nature of the transmission of the infection. For various mathematical forms of an incidence rate,
see for instance [2, 5, 11, 17], and references therein.

Epidemiologically, among all control actions that could change the transmission, the screening strategy is
known as the best intervention that could identify very early the infected individuals [1, 2] for treatment or
isolation. However, the population functional response must be taken into account, in particular non linear
ones, which makes the model not easy to handle. For the non linear epidemic model see [2, 5] and the references
therein.

Once identified, the quarantining measure is needed as a first health action for containing the disease, [17].
Because of the efficiency of the treatments and the long stay period in the quarantine class some individuals stop
their treatments or modify their habits [25]. Consequently they are relapsed and replaced into the infected class
again. For a mathematical model with relapse see [11, 17]. The last case can occur for the tuberculosis disease
which is known as a bacterial contagious disease [10, 25] for a preventive therapy. However, as it is detailed in
[1] this disease is characterized by its long time latency period (the period between starting and communicating
the disease). For recent contributions of tuberculosis disease dynamics, see [3, 31].

In [24], the authors considered an age structured SI epidemic model with an infection age in the infected
class and uses a Lyapunov function to obtain the global stability of the unique endemic equilibrium. In [21]
an age structured SIR model in each healthy subclass is considered. The author reduces the model into a four
dimensional system of ODEs and performs a fourth order characteristic equation to prove the local stability of
the endemic equilibrium. In [33] an age structured SEIRS model is reduced to a non linear delayed system to
obtain the local stability of both trivial and positive equilibrium. In [11], a SIR model including the infection
age in the infected class is studied, while in [17] a SIQ one includes it in the infected and in the quarantine
classes. Both of them include a non linear incidence function and relapse, for each one the global stability is
proved in a Lyapunov sense. In [2], the optimal control is investigated for an SIR type model with an infection
age structure uniquely in the infected class and a screening strategy depending only on the time. In most of all
these works, the reproduction rate R0 is computed and compared to the unity which determines the behavior
of the systems. In this context, see [14]. The persistence results are then established if R0 is greater than unity,
see [27].

In the present paper, we propose a non linear model of a SIQRI type with an infection age structure in both
infected and quarantined classes, where the screening function depends on the age. Our model would be an
extension to the one proposed in [2]. We believe that, such a model may represent among other disease the TB
infection dynamics.

Our model takes into account what follows:

– A fraction of the susceptible individuals enters into the infected class once the disease is transmitted until
they are screened.

– A subfraction of the infected individuals once detected, is quarantined for treating.
– Some of them are removed, while others are relapsed and then considered as newly infected i.e. the infected

with the infection age zero.

We firstly compute the basic reproductive rate in order to clarify its dependency with respect to each parameter
in a combined screening/population response/quarantining process, regulating the behaviour of our system.
Secondly, the stability is investigated in the Lyapunov sense.

This work is organized as follows: Section 2 is devoted to the statement of the problem, Section 3 is concerned
by the existence theorem of a compact attractor. In Section 4, the local and the global stability of a free disease
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equilibrium are shown. The persistence results and the global stability of the endemic equilibrium are proved
in Section 5. To illustrate our results, numerical simulations are given in Section 6.

2. The model

We consider a host population divided in four sub-populations: the susceptible, the infected, the quarantined
and the recovered classes. The densities of individuals of each class are denoted respectively by S(t), i(t, a),
q(t, a) and R(t), where a ≥ 0 is the infection age (the duration time since infection) at each time t ≥ 0. The
model is given by the following system

S′(t) = A− µS(t)− S(t)J(t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −µi(t, a)− v(a)ψ(N(t))i(t, a),

∂q(t, a)

∂t
+
∂q(t, a)

∂a
= v(a)ψ(N(t))i(t, a)− (µ+ φ(a))q(t, a),

R′(t) =

∫ ∞
0

φ(a)q(t, a)da− (µ+ δ)R(t),

i(t, 0) = S(t)J(t) + δR(t),

q(t, 0) = 0,

J(t) =

∫ ∞
0

β(a)i(t, a)da,

(2.1)

with N(t) = S(t) +

∫ ∞
0

i(t, a)da+

∫ ∞
0

q(t, a)da+R(t). This system is completed by the following initial data


S(0) = S0, R(0) = r0,

i(0, a) = i0(a), i0 ∈ L1(R+,R+),

q(0, a) = q0(a), q0 ∈ L1(R+,R+).

(2.2)

The parameters A, µ, are respectively the flux entering to the susceptible class and the natural death rate
of the host population. The parameters in (2.1) have the following description: δ: per capita relapse rate. v(a):
screening strategy, i.e. the planned fraction of individuals to be screened per unit of age; ψ(z): population-
dependent individual functional response to the screening offer, i.e. the fraction of individuals accepting the
screening offer; φ(a): age dependent removal term; β(a): age dependent transmission rate; J(t): force of infection
per unit of time t.

Throughout this paper we assume that all data of (2.1) are positive and

(H0) β ∈ CBU (R+;R+), where CBU (R+;R+) is the set of bounded uniformly continuous functions.
(H1) ψ ∈ C(R+;R+) and v ∈  L∞((0,∞);R+).
(H2) φ ∈  L∞((0,∞);R+) ∩  L1((0,∞);R+) with

∫∞
0
φ(a)da = 1.

Note that the functional response Ψ(N)N is the part of the population accepting screening and i(t,a)da
N(t)

is the probability that the screened individual is infective. The functional response Ψ(z)z will be taken as a
Holling type function in the numerical section so that Ψ(z) will be a decreasing function and Ψ(z)z a saturating
increasing function (see for instance [2] for more details in the parameters description).
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We define the normed space (X, ||.||X) as

X := R× (L1(0,∞;R))2 × R

||(S(t), i(t, .), q(t, .), R(t))||X = |S(t)|+ ||i(t, .)||1 + ||q(t, .)||1 + |R(t)| ,

with ||f ||1 =

∫ ∞
0

|f(x)|dx. The associated positive convex cone is

X+ := R+ × (L1(0,∞;R+))2 × R+.

Using a standard methods, (fixed point methods) it is possible to prove existence and uniqueness of a
non-negative solution to system 2.1, see also [5].

Integrating along the characteristic lines, we find,

i(t, a) =


i(t− a, 0)π1(t− a, a), if t > a,

i0(a− t) π1(t− a, a)

π1(t− a, a− t)
, if t < a.

(2.3)

Using (2.3), see also [18], we obtain,

q(t, a) =



i(t− a, 0)

∫ a

0

v(s)ψ(N(s+ t− a))
π2(a)

π2(s)
π1(t− a, s)ds, if t > a,

π2(a)

π2(a− t)
q0(a− t)

+i0(a− t) π2(a)

π1(t− a, a− t)

∫ a

a−t
v(s)ψ(N(s+ t− a))

π1(t− a, s)
π2(s)

ds, if t < a,

(2.4)

where {
π1(t, a) = exp

(
−
∫ a
0

(µ+ v(s)ψ(N(t+ s))) ds
)

π2(a) := exp
(
−
∫ a
0

(µ+ φ(s)) ds
) (2.5)

are respectively the probabilities for an infected individual to stay in the infected class until age a and for a
quarantined individual to stay in the quarantine class until age a.

3. Semiflow, compact attractor and total trajectories

3.1. Semiflow and compact attractor

Setting φ0 = (S0, i0, q0, r0) and denoting by Φ(t, φ0) = (S(t), i(t, .), q(t, .), R(t)) the semiflow passing through
φ0.

Note that (S(t), i(t, .), q(t, .), R(t)) the solution of (2.1) is time continuous and state continuous uniformly
with respect to time.

For simplicity, throughout the paper we set N̄ =
A

µ
.
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Theorem 3.1. For φ0 in X+, there exists a unique positive solution of (2.1) in X+. Moreover, we have

N(t) ≤ max
(
N(0), N̄

)
, (3.1)

and

lim
t→∞

N(t) = N̄ . (3.2)

In addition, The semiflow Φ has a compact attractor A of each bounded subset of X+.

Proof. By summing the equations of (2.1) we easily obtain (3.1)–(3.2).
According to Theorem 2.33 in [28], we have to verify the following properties of Φ: (i) the point dissipative;

(ii) eventually bounded on bounded sets of X; (iii) asymptotically smoothness. The conditions (i) and (ii) are
satisfied by (3.1)–(3.2). For (iii), we use Theorem 2.46 in [28], by writing Φ as

Φ(t, φ0) = Φ1(t, φ0) + Φ2(t, φ0),

with,

Φ1(t, φ0) := (0, i1(t, .), q1(t, .), 0),

and

Φ2(t, φ0) := (S(t), i2(t, .), q2(t, .), R(t)),

where

i1(t, a) =


0, if t > a,

i0(a− t) π1(t− a, a)

π1(t− a, a− t)
, if t ≤ a,

i2(t, a) =

{
i(t− a, 0)π1(t− a, a), if t > a,

0, if t ≤ a,

q1(t, a) =



0, if t > a,

π2(a)

π2(a− t)
q0(a− t)

+i0(a− t) π2(a)

π1(t− a, a− t)

∫ a

a−t
v(s)ψ(N(s+ t− a))

π1(t− a, s)
π2(s)

ds, if t ≤ a,

and

q2(t, a) =


i(t− a, 0)

∫ a

0

v(s)ψ(N(s+ t− a))
π2(a)

π2(s)
π1(t− a, s)ds, if t > a,

0, if t ≤ a.

Let C be a non-empty closed bounded set of initial conditions of X. By Theorem 3.1, we have the estimate



6 Z. SARI ET AL.

N(t) ≤ max
(
S0 + ||i0||1 + ||q0||1 + r0, N̄

)
.

We put

c1 := sup {S0 + ||i0||1 + ||q0||1 + r0, φ0 ∈ C} ,

c2 := max{c1, N̄}.

First we claim that, ‖Φ1‖1 tends to 0 as t tends to 0 uniformly on C. In fact,

‖Φ1‖1 =

∫ ∞
0

|i1(t, a)| da+

∫ ∞
0

|q1(t, a)| da

=

∫ ∞
0

π1(−a, a+ t)

π1(−a, a)
i0(a) da+

∫ ∞
0

π2(a+ t)

π2(a)
q0(a) da

+

∫ ∞
0

π2(a+ t)

π1(−a, a)
i0(a)

∫ t

0

(v(s+ a)ψ(N(s))
π1(−a, a+ s)

π2(a+ s)
ds da

=

∫ ∞
0

exp

{
−
∫ a+t

a

(µ+ v(s)ψ(N(s− a))ds

}
i0(a)da

+

∫ ∞
0

exp

{
−
∫ a+t

a

(µ+ φ(s))ds

}
q0(a)da

+

∫ ∞
0

i0(a)

∫ t

0

v(s+ a)ψ(N(s))
π2(a+ t)

π2(a+ s)
× π1(−a, a+ s)

π1(−a, a)
ds da

= exp(−µ t)
[ ∫ ∞

0

exp(−
∫ a+t

a

v(s)ψ(N(s− a))) i0(a)e−µa da

+

∫ ∞
0

exp(−
∫ a+t

a

φ(s) ds) q0(a) da+

∫ ∞
0

∫ t

0

v(s+ a)ψ(N(s)) exp(−
∫ a+t

a+s

φ(r) dr)

× exp(−
∫ a+s
a

v(r)ψ(N(r − a)) dr)e−µs ds i0(a) da

]
≤ exp(−µ t) {2‖i0‖1 + ‖q0‖1}

≤ 3 c2 exp(−µ t).

We now claim that Φ2(t,C) is compact. To prove it, we need to verify condition (iii) of Theorem B.2. in [28]

I(h) =

∫ t−h

0

(i2(t, a+ h)− i2(t, a))da+

∫ t

t−h
(i2(t, a+ h)− i2(t, a))da

=

∫ t−h

0

π1(t− a− h, a+ h)

(
S(t− a− h)J(t− a− h) + δR(t− a− h)

)
− π1(t− a, a)[S(t− a)J(t− a) + δ R(t− a)]da

−
∫ t

t−h
π1(t− a, a)[S(t− a)J(t− a) + δ R(t− a)]da.
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Since the last term tends to 0 as h tends to 0, we focus on the first integral

I1(h) =

∫ t−h

0

π1(t− a− h, a+ h)[S(t− a− h)J(t− a− h) + δR(t− a− h)]

− π1(t− a, a)[S(t− a)J(t− a) + δ R(t− a)]da

=

∫ t−h

0

π1(t− a, a)[S(t− a− h)J(t− a− h)

+ δR(t− a− h)− S(t− a)J(t− a)− δ R(t− a)] da

+

∫ t−h

0

[S(t− a)J(t− a) + δR(t− a)][π1(t− a− h, a+ h)− π1(t− a, a)] da

By subtracting and adding functions we obtain

=

∫ t−h

0

π1(t− a, a)[S(t− a− h)J(t− a− h)− S(t− a)J(t− a)] da

+ δ

∫ t−h

0

π1(t− a, a)[R(t− a− h)−R(t− a)] da+

∫ t−h

0

[S(t− a)J(t− a) + δR(t− a)]

× [π1(t− a− h, a+ h)− π1(t− a, a)]da

=

∫ t−h

0

π1(t− a, a)[S(t− a− h)− S(t− a)]J(t− a− h) da

+

∫ t−h

0

π1(t− a, a)[J(t− a− h)− J(t− a)]S(t− a) da

+ δ

∫ t−h

0

π1(t− a, a)[R(t− a− h)−R(t− a)] da

+ (‖β‖∞ c22 + δ c2)

∫ t−h

0

[π1(t− a− h, a+ h)− π1(t− a, a)] da.

By the continuity of π1 with respect to t and a and thanks to the mean value theorem, the first, the third and
the last terms tend to 0 as h tends to 0, since we have the following estimates on S and R,

|S′(t)| ≤ A+ µc2 + ‖β‖∞ c22,

|R′(t)| ≤ ‖φ‖∞ c2.

So, since π1 ≤ 1 and S(t) ≤ c2 we have

|I1(h)| ≤ |I2(h)| = c2

∫ t−h

0

|J(t− a− h)− J(t− a)|da.
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Set

J(t) = J̄1(t) + J̄2(t),

with

J̄1(t) =

∫ t

0

β(a)π1(t− a, a) [S(t− a)J(t− a) + δ R(t− a)] da

=

∫ t

0

β(t− σ)π1(σ, t− σ) [S(σ)J(σ) + δ R(σ)] dσ,

(3.3)

and

J̄2(t) :=

∫ ∞
t

β(a)
π1(t− a, a)

π1(t− a, a− t)
i0(a− t) da

=

∫ ∞
0

β(a+ t)
π1(−a, a+ t)

π1(−a, a)
i0(a) da.

Thus, for r, h > 0, we have

|J(r + h)− J(r)| ≤ |J̄1(r + h)− J̄1(r)|+ |J̄2(r + h)− J̄2(r)|

We focus on each term separately,

|J̄1(r + h)− J̄1(r)| ≤
∫ r+h

r

β(r + h− s)π1(s, r + h− s)[S(s)J(s) + δ R(s)] ds,

+

∫ r

0

∣∣∣∣β(r + h− s)π1(s, r + h− s)− β(r − s)π1(s, r − s)
∣∣∣∣

× [S(s)J(s) + δ R(s)] ds,

≤ h [‖β‖2∞ c22 + δ ‖β‖∞ c2] + [‖β‖∞ c22 + δ c2]

×
{∫ r

0

β(r + h− s)
∣∣∣∣π1(s, r + h− s)− π1(s, r − s)

∣∣∣∣ds}
+

∫ r

0

π1(s, r − s)
∣∣∣∣β(r + h− s)− β(r − s)

∣∣∣∣ds,
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which tends to 0 as h tends to zero, uniformly on C, since β and π1 are bounded and uniformly continuous.

|J̄2(r + h)− J̄2(r)| =

∣∣∣∣ ∫ ∞
0

β(a+ r + h)
π1(−a, a+ r + h)

π1(−a, a)
i0(a) da

−
∫ ∞
0

β(a+ r)
π1(−a, a+ r)

π1(−a, a)
i0(a) da

∣∣∣∣
≤

∫ ∞
0

β(a+ r + h) i0(a)

∣∣∣∣π1(−a, a+ r + h)

π1(−a, a)
− π1(−a, a+ r)

π1(−a, a)

∣∣∣∣da
+

∫ ∞
0

π1(−a, a+ r)

π1(−a, a)

∣∣∣∣β(a+ r + h)− β(a+ r)

∣∣∣∣i0(a)da.

By the same arguments as above, this difference tends to 0 as h tends to 0, uniformly on C. This finishes the
proof.

3.2. Total trajectories

Let U = (S(t), i(t, .), q(t, .), R(t)) and U(t+ r) = Φ(t,U(r)).
Set (Sr(t), ir(t, a), qr(t, a), Rr(t)) = (S(t+ r), i(t+ r, a), q(t+ r, a), R(t+ r)) and Jr(t) = J(t+ r).

In view of (2.3) and (2.4) and the definition of the semiflow we have

S′r(t) = A− Sr(t)Jr(t)− µSr(t), Sr(0) = S(r),

ir(t, a) =


(Sr(t− a)Jr(t− a) + δRr(t− a))π1(t− a, a), if t > a,

i(r, a− t) π1(t− a, a)

π1(t− a, a− t)
, if t < a,

qr(t, a) =



ir(t− a, 0)

∫ a

0

v(s)ψ(Nr(s+ t− a))
π2(a)

π2(s)
π1(s+ t− a, s)ds, if t > a,

π2(a)

π2(a− t)
q(r, a− t)

+i(r, a− t) π2(a)

π1(t− a, a− t)

∫ a

a−t
v(s)ψ(Nr(s+ t− a))

π1(t− a, s)
π2(s)

ds, if t < a,

and 
R′r(t) =

∫ ∞
0

φ(a)qr(t, a)da− (µ+ δ)Rr(t),

N ′r(t) = A− µNr(t).
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Set t = s− r with s ≥ r then

S′(s) = A− S(s)J(s)− µS(s),

i(s, a) =


(S(s− a)J(s− a) + δR(s− a))π1(s− r − a, a) if s− r > a

i(r, a− s+ r)
π1(s− r − a, a)

π1(s− r − a, a− s+ r)
if s− r < a

q(s, a) =



i(s− a, 0)

∫ a

0

v(σ)ψ(N(σ + s− r − a))
π2(a)

π2(σ)
π1(s− r − a, σ)dσ, if s− r > a,

π2(a)

π2(a− s+ r)
q(r, a− s+ r)

+i(r, a− s+ r)
π2(a)

π1(s− r − a, a− s+ r)

×
∫ a

a−s+r
v(s)ψ(N(σ + s− r − a))

π1(s− r − a, σ)

π2(σ)
dσ, if s− r < a,

and 
R′(s) =

∫ ∞
0

φ(a)q(s, a)da− (µ+ δ)R(s),

N ′(s) = A− µN(s).

Now by straightforward computations we obtain

N(s) = N(r)eµ(r−s) +
A

µ
(1− eµ(r−s)) for s ≥ r.

Next by letting r → −∞ we get

N(s) = N̄ for all s ∈ R.

This, together with r → −∞, gives the following total trajectory, for all t ∈ R,

S′(t) = A− S(t)J(t)− µS(t),

i(t, a) = i(t− a, 0)π̄1(a),

q(t, a) = i(t− a, 0)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ,

R′(t) =

∫ ∞
0

φ(a)q(t, a)da− (µ+ δ)R(t),

i(t, 0) = S(t)J(t) + δR(t),

(3.4)
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with {
π̄1(a) = exp

(
−
∫ a
0

(µ+ v(s)ψ(N̄))ds
)
,

π2(a) := exp
(
−
∫ a
0

(µ+ φ(s)) ds
)
.

(3.5)

Lemma 3.2. For all φ0 ∈ A we have

S(t) +

∫ ∞
0

i(t, a)da+

∫ ∞
0

q(t, a)da+R(t) = N̄ , (3.6)

and

S(t) ≥ A

µ+ ||β||N̄
,

for all t ∈ R.

Proof. We set I(t) =

∫ ∞
0

i(t, a)da and Q(t) =

∫ ∞
0

q(t, a)da. Using the expression of i and q in (3.4) and after

a change of variable we get

I(t) =

∫ t

−∞
i(s, 0)π̄1(t− s)ds

and

Q(t) =

∫ t

−∞
i(s, 0)π2(t− s)

∫ t−s

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσds.

The functions, I and Q satisfy the following equations

I ′(t) = i(t, 0)− µI(t)−
∫ t

−∞
i(s, 0)v(t− s)ψ(N̄)π̄1(t− s)ds,

and

Q′(t) = −µQ(t)−
∫ t

−∞
i(s, 0)φ(t− s)π2(t− s)

∫ t−s

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσds

+

∫ t

−∞
i(s, 0)π̄1(t− s)v(t− s)ψ(N̄)ds.

Substituting q by its expression and after a change of variable we have

R′(t) =

∫ t

−∞
φ(t− s)i(s, 0)π2(t− s)

∫ t−s

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσds− (µ+ δ)R(t).

Now, for N(t) = S(t) + I(t) +Q(t) +R(t) we have

N ′(t) = A− µN(t).
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Finally, using the same computation as for the total trajectory of N, stated above, we obtain N(t) = N̄ for all
t ∈ R. Furthermore, it is easy to observe that

S′(t) ≥ A− (µ+ ||β||∞N̄)S(t)

and thus, by a straightforward computation,

S(t) ≥ A

µ+ ||β||∞N̄
,

for all t ∈ R.

We define the epidemic reproduction number for (2.1) as

R0 =

∫ ∞
0

N̄β(s)π̄1(s)ds+
δ

δ + µ
ψ(N̄)

∫ ∞
0

v(s)
π̄1(s)

π2(s)

∫ ∞
s

φ(σ)π2(σ)dσds. (3.7)

Remark 3.3. By Fubini’s Theorem we also have

R0 =

∫ ∞
0

N̄β(s)π̄1(s)ds+
δ

δ + µ
ψ(N̄)

∫ ∞
0

φ(σ)π2(σ)

∫ σ

0

v(s)
π̄1(s)

π2(s)
dsdσ.

4. Global stability of the disease free equilibrium

Theorem 4.1. If R0 ≤ 1, then E0 = (N̄ , 0, 0, 0) is globally asymptotically stable.

Proof. Let φ0 ∈ A. Since the compact attractor A is invariant, then there exists, a total trajectory Ψ : R→ A
such that Ψ(t) = (S(t), i(t, .), q(t, .), R(t)) solution of (3.4) passing through φ0. Set

k(a) =
δ

δ + µ

∫ ∞
a

φ(σ)
π2(σ)

π2(a)
dσ,

and

h(a) =
1

π̄1(a)

(
1−

∫ a

0

(
N̄β(σ)π̄1(σ) +

δ

δ + µ
ψ(N̄)v(σ)

π̄1(σ)

π2(σ)

∫ ∞
σ

φ(ξ)π2(ξ)dξ

)
dσ

)
.

Remark 4.2. Observe that h(a) ≥ 0 for R0 ≤ 1.

We consider the following functional

V (Ψ(t)) = F (S) +

∫ ∞
0

h(a)i(t, a)da+

∫ ∞
0

k(a)q(t, a)da+
δ

δ + µ
R(t),

with F (S) = S − N̄ ln
S

N̄
− N̄ and N̄ =

A

µ
. Set

I1(t) =

∫ ∞
0

h(a)i(t, a)da,
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and

Q1(t) =

∫ ∞
0

k(a)q(t, a)da.

Differentiating F (S) along the solution of (3.4) we obtain

d

dt
F (S(t)) = µ(1− N̄

S
)(N̄ − S)− S(t)J(t) + N̄J(t).

Next, from the expression of i in (3.4) we have

I1(t) =

∫ ∞
0

P1(a)B(t− a)da,

with B(t) = i(t, 0) and P1(a) = π̄1(a)h(a). Following the same arguments as in the proof of Lemma 9.18 in [28]
we can show that I1 is absolutely continuous and

I ′1(t) = P1(0)B(t) +

∫ ∞
0

P ′1(a)B(t− a)da.

By expanding P ′1 we obtain

I ′1(t) = B(t)−
∫ ∞
0

(
N̄β(a) + v(a)ψ(N̄)k(a)

)
π̄1(a)B(t− a)da.

Similarly, we have

Q1(t) =

∫ ∞
0

P2(a)B(t− a)da,

with P2(a) = k(a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ, so

Q′1(t) =

∫ ∞
0

P ′2(a)B(t− a)da.

By expanding P ′2 we obtain

Q′1(t) =

∫ ∞
0

(
− δ

δ + µ
φ(a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(a)

π2(σ)
dσ + k(a)π̄1(a)v(a)ψ(N̄)

)
B(t− a)da.
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Now we compute the derivative of V and by using the formulas in (3.4) we get

d

dt
V (Ψ(t)) = µ(1− N̄

S
)(N̄ − S)− S(t)J(t) + N̄

∫ ∞
0

β(a)π̄1(a)B(t− a)da

+ S(t)J(t) + δR(t)−
∫ ∞
0

(
N̄β(a) + v(a)ψ(N̄)k(a)

)
π̄1(a)B(t− a)da

+

∫ ∞
0

(
− δ

δ + µ
φ(a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ + k(a)π̄1(a)v(a)ψ(N̄)

)
B(t− a)da

+
δ

µ+ δ

(∫ ∞
0

φ(a)B(t− a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσda− (µ+ δ)R(t)

)
.

By simplification

d

dt
V (Ψ(t)) = µ(1− N̄

S
)(N̄ − S)

−
∫ ∞
0

δ

δ + µ
φ(a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσB(t− a)da

+
δ

µ+ δ

∫ ∞
0

φ(a)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσB(t− a)da,

= µ(1− N̄

S
)(N̄ − S) ≤ 0.

Notice that
d

dt
V (Ψ(t)) = 0 implies that S = N̄ . Due to (3.6) we get i = q = R = 0. Hence the largest invariant

set with the property that
d

dt
V (Ψ(t)) = 0 is {E0} (LaSalle’s invariance principle). Now since A is compact, the

ω(φ0) and α(φ0) (omega and alpha limits sets respectively) are non empty, compact, invariant and attract ψ(t)
as t→ ±∞ respectively. Since V (Ψ(t)) is a decreasing function of t, V is constant on the ω(φ0) and α(φ0) and
thus ω(φ0) = α(φ0) = {E0}. Consequently, lim

t→±∞
Ψ(t) = E0 and

lim
t→−∞

V (Ψ(t)) = lim
t→+∞

V (Ψ(t)) = E0.

Finally we obtain V (Ψ(t)) = V (E0) for all t ∈ R. Since α(φ0) = {E0} then V (Ψ(t)) ≤ V (E0) for all t ∈ R. Since
V achieves its minimum value at E0 we conclude that Ψ(t) = E0 for all t ∈ R. In particular φ0 = E0. Therefore
the attractor A is the singleton set formed by the disease free equilibrium E0. By Theorem 2.39 in [28] the
disease free is globally asymptotically stable.

5. Existence, uniqueness and global stability of the endemic
equilibrium

We first begin by proving existence and uniqueness of the positive equilibrium provided R0 > 1.

Lemma 5.1. Suppose that R0 > 1 then there exists a unique positive equilibrium of (3.4).
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Proof. First the equilibrium problem satisfies



A = S∗J∗ + µS∗,

i∗(a) = i∗(0)π̄1(a),

q∗(a) = i∗(0)π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ,

R∗ =
1

µ+ δ

∫ ∞
0

φ(a)q∗(a)da,

i∗(0) = S∗J∗ + δR∗ and J∗ = i∗(0)

∫ ∞
0

β(a)π̄1(a)da.

(5.1)

Set F (a) = π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ. Then, combining the third, fourth and the last equation of (5.1) we

obtain

i∗(0) = S∗i∗(0)

∫ ∞
0

β(a)π̄1(a)da+ i∗(0)
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da,

so, for i∗(0) 6= 0 we have

S∗
∫ ∞
0

β(a)π̄1(a)da+
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da = 1. (5.2)

Now using the first equation of (5.1) and combining it with (5.2) we get

A

∫ ∞
0

β(a)π̄1(a)da+ (µ+ J∗)
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da = µ+ J∗.

Thus,

J∗
(

1− δ

µ+ δ

∫ ∞
0

φ(a)F (a)da

)
= A

∫ ∞
0

β(a)π̄1(a)da+ µ

(
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da− 1

)
,

therefore

J∗
(

1− δ

µ+ δ

∫ ∞
0

φ(a)F (a)da

)
= µ

(
N̄

∫ ∞
0

β(a)π̄1(a)da+
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da− 1

)
,

= µ(R0 − 1).

Note that
δ

µ+ δ

∫ ∞
0

φ(a)F (a)da < 1. Indeed, it is easily to see that F (a) ≤ 1 for all a ≥ 0 then,

δ

µ+ δ

∫ ∞
0

φ(a)F (a)da ≤ δ

µ+ δ

∫ ∞
0

φ(a)da < 1. This, together with R0 > 1, leads to the existence of J∗ > 0,

and thus the existence of i∗(0). Finally, according to (5.1) we conclude the existence and the uniqueness of the
positive equilibrium (S∗, i∗(.), q∗(.), R∗). The lemma is proved.
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5.1. Uniform persistence of the system

Let ρ : X+ → R be a function defined by

ρ(Φ(t)φ0) = i(t, 0) := B(t), t ≥ 0, φ0 ∈ X+

and

Ω0 =

{
φ0 ∈ X+, ρ(φ0) > 0

}
.

We first prove the following Lemma.

Lemma 5.2. If ρ(U(t)) = 0 for all t ≤ 0, then ρ(U(t)) = 0 for all t > 0.

Proof. Suppose that ρ(U(t)) = 0 for all t ≤ 0, then, J(t) = 0 and R(t) = 0 for all t ≤ 0. Further, from (3.4),

B(t) = S(t)

∫ t

0

β(a)π̄1(a)B(t− a)da+ δR(t). (5.3)

By solving the equation of R in (3.4) we obtain

R(t) = r0e
−(µ+δ)t +

∫ t

0

e−(µ+δ)(t−σ)
∫ σ

0

φ(a)B(σ − a)F (a)dadσ,

with F (a) = π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ. Substituting the expression of R in (5.3) and using the fact that

R(0) = 0, we have

B(t) = S(t)

∫ t

0

β(a)π̄1(a)B(t− a)da+ δ

∫ t

0

e−(µ+δ)(t−σ)
∫ σ

0

φ(a)B(σ − a)F (a)dadσ,

Since F is a bounded function, then from Fubini’s theorem,

B(t) ≤ N̄ ||β||∞
∫ t

0

B(a)da+ δ

∫ t

0

B(a)

∫ t

a

e−(µ+δ)(t−σ)φ(σ − a)F (σ − a)dσda,

≤ (N̄ ||β||∞ +
δ||φF ||∞
µ+ δ

)

∫ t

0

B(a)da,

Gronwall’s inequality leads to B(t) = 0 for all t ∈ R.

Lemma 5.3. Assume that either β or φ is not equal to zero almost everywhere. Then, either ρ(U(.)) is identically
null in R or ρ(U(.)) is positive everywhere on R.

Proof. From the previous Lemma, by an appropriate shift, for each r ∈ R such that ρ(U(t)) = 0 for all t ≤ r
implies that ρ(U(t)) = 0 for all t ≥ r. Thus, either ρ(U(.)) is identically null or there exists a sequence tj → −∞
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as j → +∞ with ρ(U(tj)) > 0. Assume the second. Let Bj(t) = B(t+ tj). By Lemma 3.2, we have

Bj(t) ≥ A

µ+ ||β||N̄

∫ t

0

β(a)π̄1(a)Bj(t− a)da

+ δ

∫ t

0

e−(µ+δ)(t−σ)
∫ σ

0

φ(a)Bj(σ − a)F (a)dadσ + B̂j(t),

with B̂j(0) = B(tj) > 0. Using Fubini’s theorem,

Bj(t) ≥ A

µ+ ||β||N̄

∫ t

0

β(a)π̄1(a)Bj(t− a)da

+ δ

∫ t

0

Bj(a)

∫ t

a

e−(µ+δ)(t−σ)φ(σ − a)F (σ − a)dσda+ B̂j(t),

≥
∫ t

0

(
A

µ+ ||β||N̄
β(t− a)π1(t− a) + δξ(t− a)

)
Bj(a)da+ B̂j(t),

where ξ(t) =

∫ t

0

e−(µ+δ)(t−σ)φ(σ)F (σ)dσ. Note that B̂j is continuous at zero and B̂j(0) > 0. Therefore, by

Corollary B.6 in [28], we see that there exists b > 0 such that ρ(Uj(t)) > 0 for all t > b. Thus ρ(U(t)) > 0 for
all t > b+ tj . By passing to the limit as j →∞ we prove that ρ(U(t)) > 0 for all t ∈ R. Consequently ρ(U(.))
is positive on R.

The following lemma states the uniform persistence of the semiflow.

Lemma 5.4. Assume that R0 > 1. Then, system (2.1) is uniformly strongly persistent for non-trivial initial
data, that is, there exists ε > 0 such that lim inf

t→∞
ρ(Φ(t)φ0) ≥ ε for all φ0 ∈ Ω0.

Proof. First, by Lemmas 5.2, 5.3, we can apply Theorem 5.2 in [28] to conclude that the weak uniform persistence
implies the strong uniform persistence.

Suppose now, by contradiction, that the semiflow Φ is not weakly persistent, that is,

lim sup
t→∞

ρ(Φ(t)φ0) = 0.

This, with (2.3)–(2.4), implies that lim
t→∞

i(t, .) = lim
t→∞

q(t, .) = 0 and lim
t→∞

R(t) = lim
t→∞

J(t) = 0. Thus, there exists

T > 0 such that J(t) ≤ ε for all ε > 0 and t ≥ T. Hence, from the equation of S in (2.1) we get S(t) ≥ N̄ − ε
for all t ≥ T. In the other hand, since N(t) → N̄ as t → ∞ and ψ is a continuous function then, there exists
T > 0 such that ψ(N̄)− ε ≤ ψ(N(t)) ≤ ψ(N̄) + ε for all t ≥ T.
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We introduce the following problem

∂ĩ(t, a)

∂t
+
∂ĩ(t, a)

∂a
= −(µ+ v(a) (ψ(N̄) + ε))̃i(t, a),

∂q̃(t, a)

∂t
+
∂q̃(t, a)

∂a
= v(a) (ψ(N̄)− ε)̃i(t, a)− (µ+ φ(a))q̃(t, a),

R̃′(t) =

∫ ∞
0

φ(a)q̃(t, a)da− (µ+ δ)R̃(t),

ĩ(t, 0) = (N̄ − ε)J̃(t) + δR̃(t),

q̃(t, 0) = 0,

J̃(t) =

∫ ∞
0

β(a)̃i(t, a)da,

(5.4)

with the same initial data as in (2.2). From a comparison principle we can see that there exists T > 0 such that
ĩ(t, .) ≤ i(t, .), q̃(t, .) ≤ q(t, .) and R̃(t) ≤ R(t) for all t ≥ T.

Now, since R0 > 1 then for ε > 0 so small, there exists λε > 0 such that∫ ∞
0

[
(N̄ − ε)β(s)

+
δ

µ+ δ + ε
v(s)(ψ(N̄)− ε)

∫ ∞
s

φ(σ)
π2(σ)

π2(s)
e−ε(σ−s)dσ

]
π̄1(s)e−

∫ s
0
(λε+εv(ξ))dξds = 1.

(5.5)

Set,

kε(a) =
δ

µ+ δ + ε

∫ ∞
a

φ(s)
π2(s)

π2(a)
e−ε(s−a)ds,

and

hε(a)π̄1(a) = 1−
∫ a

0

[
(N̄ − ε)β(s)

+
δ

µ+ δ + ε
v(s)(ψ(N̄)− ε)

∫ ∞
s

φ(σ)
π2(σ)

π2(s)
e−ε(σ−s)dσ

]
π̄1(s)e−

∫ s
a
(λε+εv(ξ))dξds,

with π̄1 and π2 are defined in (3.5).
In view of (5.5) the function hε is positive and by a simple computation we get,

hε(a) =

∫ ∞
a

[
(N̄ − ε)β(s)

+
δ

µ+ δ + ε
v(s)(ψ(N̄)− ε)

∫ ∞
s

φ(σ)
π2(σ)

π2(s)
e−ε(σ−s)dσ

]
π̄1(s)

π̄1(a)
e−

∫ s
a
(λε+εv(ξ))dξds

=

∫ ∞
a

[
(N̄ − ε)β(s) + v(s)(ψ(N̄)− ε)kε(s)

]
π̄1(s)

π̄1(a)
e−

∫ s
a
(λε+εv(ξ))dξds.
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These two equations satisfy

k′ε(a)− (µ+ φ(a) + ε)kε(a) = − δ

µ+ δ + ε
φ(a), (5.6)

and

h′ε(a)− (λε + µ+ v(a)(ψ(N̄) + ε))hε(a) = −(N̄ − ε)β(a)− v(a)(ψ(N̄)− ε)kε(a). (5.7)

Now by simple computations we have

d

dt

∫ ∞
0

hε(a)̃i(t, a)da = −
∫ ∞
0

hε(a)
∂

∂a
ĩ(t, a)da−

∫ ∞
0

hε(a)(µ+ v(a)(ψ(N̄) + ε))̃i(t, a)da,

= hε(0)̃i(t, 0) +

∫ ∞
0

h′ε(a)̃i(t, a)da

−
∫ ∞
0

hε(a)(µ+ v(a)(ψ(N̄) + ε))̃i(t, a)da.

Using (5.7), hε(0) = 1 and the expression of ĩ(t, 0) we obtain

d

dt

∫ ∞
0

hε(a)̃i(t, a)da = λε

∫ ∞
0

hε(a)̃i(t, a)da−
∫ ∞
0

v(a)(ψ(N̄)− ε)kε(a)̃i(t, a)da+ δR̃.

Now, from (5.6) we have

d

dt

∫ ∞
0

kε(a)q̃(t, a)da =

∫ ∞
0

(
k′ε(a)− (µ+ φ(a))kε(a)

)
q̃(t, a)da

+

∫ ∞
0

v(a)(ψ(N̄)− ε)kε(a)̃i(t, a)da

= ε

∫ ∞
0

kε(a)q̃(t, a)da− δ

µ+ δ + ε

∫ ∞
0

φ(a)q̃(t, a)da

+

∫ ∞
0

v(a)(ψ(N̄)− ε)kε(a)̃i(t, a)da

Set Iε(t) =

∫ ∞
0

hε(a)̃i(t, a)da+

∫ ∞
0

kε(a)q̃(t, a)da+
δ

µ+ δ + ε
R̃(t), and using these two last equalities we get

I ′ε(t) = λε

∫ ∞
0

hε(a)̃i(t, a)da+ ε

∫ ∞
0

kε(a)q̃(t, a)da+ ε
δ

µ+ δ + ε
R̃(t),

≥ max{λε, ε}Iε(t).

This implies that Iε(t) ≥ emax{λε,ε}tIε(0). Consequently, the boundedness of hε and kε lead to lim sup
t→∞

B(t) =∞
in Ω0, which is a contradiction. The lemma is proved.

From Theorem 5.7 in [28] we have
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Proposition 5.5. There exists a compact attractor A1 that attracts all solutions with initial data φ0 in Ω0.
Moreover A1 is ρ− uniformly persistent, that is, there exists C > 0 such that

B(t) := i(t, 0) ≥ C for all φ0 ∈ A1. (5.8)

We give now some estimates of solutions of (3.4).

Lemma 5.6. For all φ0 ∈ A1 The following estimates are satisfied

i(t, a)

i∗(a)
≥ C

i∗(0)
,
J(t)

J∗
≥ C

i∗(0)
,
R(t)

R∗
≥ C

i∗(0)
,

for all t ∈ R and a ≥ 0 and C is defined in Proposition 5.5.

Proof. By (3.4), (5.1) and Proposition 5.5 we easily have

i(t, a)

i∗(a)
=
B(t− a)

i∗(0)
≥ C

i∗(0)
,

and

J(t)

J∗
≥ C

i∗(0)
,

for all t ∈ R and a ≥ 0. Next, again from (3.4), (5.1) and Proposition 5.5,

q(t, a) = B(t− a)F (a) ≥ CF (a),

≥ C

i∗(0)
q∗(a),

with F (a) = π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ.

This, with the equation of R in (3.4), gives

R′(t) ≥ C

i∗(0)

∫ ∞
0

φ(a)q∗(a)da− (µ+ δ)R(t).

Using the expression of R∗ stated in (5.1), we get

R′(t) ≥ C

i∗(0)
(µ+ δ)R∗ − (µ+ δ)R(t).

Let r ∈ R and t ≥ r, then integrating this last inequation over (r, t) we find

R(t) ≥ (R(r)− CR∗

i∗(0)
)e(µ+δ)(r−t) +

CR∗

i∗(0)
,

passing to the limit as r → −∞ we conclude that

R(t)

R∗
≥ C

i∗(0)
,
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for all t ∈ R. The lemma is proved.

Now we turn to the global stability of the positive equilibrium.

Theorem 5.7. Suppose that R0 > 1. Then the positive equilibrium is globally asymptotically stable in Ω0.

Proof. We set

k(a) =
i∗(0)

S∗
− i∗(0)

∫ a

0

β(σ)π̄1(σ)dσ − δR∗

S∗

∫ a

0

φ(σ)F (σ)∫∞
0
φ(ξ)F (ξ)dξ

dσ,

with F (a) = π2(a)

∫ a

0

v(σ)ψ(N̄)
π̄1(σ)

π2(σ)
dσ.

Remark 5.8.

1) k(a) ≥ 0 for all a ≥ 0. Indeed, from the last equation of (5.1), the function k may be rewritten as

k(a) = J∗ − i∗(0)

∫ a

0

β(σ)π̄1(σ)dσ +
δR∗

S∗

(
1−

∫ a

0

φ(σ)F (σ)∫∞
0
φ(ξ)F (ξ)dξ

dσ

)
,

= i∗(0)

∫ ∞
a

β(σ)π̄1(σ)dσ +
δR∗

S∗

∫ ∞
a

φ(σ)F (σ)∫∞
0
φ(ξ)F (ξ)dξ

dσ.

2) k, k′ ∈ L1(R+). In fact, from Fubini theorem we find

∫ ∞
0

k(a)da = i∗(0)

∫ ∞
0

σβ(σ)π̄1(σ)dσ +
δR∗

S∗

∫ ∞
0

σφ(σ)F (σ)∫∞
0
φ(ξ)F (ξ)dξ

dσ.

Observe that these last integrals are finite. Finally, k′ ∈ L1 can be easily showed.

Let φ0 ∈ A1, since A1 is invariant, then there exists a total trajectory Ψ1 : R → A1, such that Ψ1(t) =
(S(t), i(t, .), q(t, .), R(t)) is solution of (3.4) passing through φ0. Let H(x) = x − ln(x) − 1, and introduce the
following Lyapunov functional

V (Ψ1(t)) = H(
S(t)

S∗
) +

∫ ∞
0

k(a)H(
i(t, a)

i∗(a)
)da+

δR∗

S∗(µ+ δ)
H(

R(t)

R∗
).

We differentiate the first term of V we have

d

dt
H(

S(t)

S∗
) =

1

S∗
(1− S∗

S(t)
)(A− µS(t)− S(t)J(t)),

using the fact that A = µS∗ + S∗J∗, we obtain

I ′1(t) :=
d

dt
H(

S(t)

S∗
) = µ(1− S∗

S(t)
)(1− S(t)

S∗
)− S(t)

S∗
J(t) + J(t) + (1− S∗

S(t)
)J∗. (5.9)
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Concerning the second term of V, using the second equation of (3.4) and following the same arguments as in
the proof of Lemma 9.18 in [28] we get,

I ′2(t) =
d

dt

∫ ∞
0

k(a)H(
i(t, a)

i∗(a)
)da = k(0)H(

i(t, 0)

i∗(0)
) +

∫ ∞
0

k′(a)H(
i(t, a)

i∗(a)
)da,

=
i∗(0)

S∗
H
(S(t)J(t) + δR(t)

i∗(0)

)
+

∫ ∞
0

k′(a)H(
B(t− a)

i∗(0)
)da,

(5.10)

with B(t) = i(t, 0).

From the last equation of (5.1), we have
S∗J∗

i∗(0)
+
δR∗

i∗(0)
= 1. Combining this, with the fact that H is convex,

we find

H
(S(t)J(t) + δR(t)

i∗(0)

)
= H

(S∗J∗
i∗(0)

S(t)J(t)

S∗J∗
+

δR∗

i∗(0)

R(t)

R∗
)

≤ S∗J∗

i∗(0)
H
(S(t)J(t)

S∗J∗
) +

δR∗

i∗(0)
H(

R(t)

R∗
),

≤ S∗J∗

i∗(0)

(
S(t)J(t)

S∗J∗
− ln(

S(t)

S∗
)− ln(

J(t)

J∗
)− 1

)
+

δR∗

i∗(0)
H(

R(t)

R∗
).

Using this last inequality in (5.10),

I ′2(t) ≤ J∗
(
S(t)J(t)

S∗J∗
− ln(

S(t)

S∗
)− ln(

J(t)

J∗
)− 1

)
+
δR∗

S∗
H(

R(t)

R∗
)

+

∫ ∞
0

k′(a)H(
B(t− a)

i∗(0)
)da.

Summing I ′1 and I ′2,

I ′1(t) + I ′2(t) ≤ µ(1− S∗

S(t)
)(1− S(t)

S∗
)− J∗H(

S∗

S(t)
) + J∗H(

J(t)

J∗
) +

δR∗

S∗
H(

R(t)

R∗
)

+

∫ ∞
0

k′(a)H(
B(t− a)

i∗(0)
)da.
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Using Jensen inequality, we have

J∗H(
J(t)

J∗
) = J∗H

(∫ ∞
0

β(a)π̄1(a)B(t− a)da

i∗(0)

∫ ∞
0

β(ξ)π̄1(ξ)dξ

)
,

≤ J∗∫ ∞
0

β(ξ)π1(ξ)dξ

∫ ∞
0

H(
B(t− a)

i∗(0)
)β(a)π̄1(a)da,

≤ i∗(0)

∫ ∞
0

H(
B(t− a)

i∗(0)
)β(a)π̄1(a)da.

Therefore

I ′1(t) + I ′2(t) ≤ µ(1− S∗

S(t)
)(1− S(t)

S∗
)− J∗H(

S∗

S(t)
) +

δR∗

S∗
H(

R(t)

R∗
)

+

∫ ∞
0

(
k′(a) + β(a)π̄1(a)i∗(0)

)
H(

B(t− a)

i∗(0)
)da.

Since

k′(a) = −i∗(0)β(a)π̄1(a)− δR∗

S∗
φ(a)F (a)∫∞

0
φ(ξ)F (ξ)dξ

,

then

I ′1(t) + I ′2(t) ≤ µ(1− S∗

S(t)
)(1− S(t)

S∗
)− J∗H(

S∗

S(t)
) +

δR∗

S∗
H(

R(t)

R∗
)

− δR∗

S∗

∫ ∞
0

H(
B(t− a)

i∗(0)
)

φ(a)F (a)∫∞
0
φ(ξ)F (ξ)dξ

da.

Now we focus on the third term of V

I ′3(t) :=
δR∗

S∗(µ+ δ)

d

dt
H(

R(t)

R∗
)

=
δR∗

S∗(µ+ δ)
H ′(

R(t)

R∗
)

(
i∗(0)

R∗

∫ ∞
0

φ(a)F (a)
B(t− a)

i∗(0)
da− (µ+ δ)

R(t)

R∗

)
.

Since

R∗ =
i∗(0)

µ+ δ

∫ ∞
0

φ(a)F (a)da,
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then

I ′3(t) =
δR∗

S∗
H ′(

R(t)

R∗
)

∫ ∞
0

φ(a)F (a)∫ ∞
0

φ(ξ)F (ξ)dξ

B(t− a)

i∗(0)
da− δR(t)

S∗
H ′(

R(t)

R∗
).

For I(t) := V (Ψ1(t)) = I1(t) + I2(t) + I3(t), we have

I ′(t) ≤ µ(1− S∗

S(t)
)(1− S(t)

S∗
)− J∗H(

S∗

S(t)
) +

δR∗

S∗
H(

R(t)

R∗
)

− δR∗

S∗

∫ ∞
0

H(
B(t− a)

i∗(0)
)

φ(a)F (a)∫∞
0
φ(ξ)F (ξ)dξ

da

+
δR∗

S∗
H ′(

R(t)

R∗
)

∫ ∞
0

φ(a)F (a)∫ ∞
0

φ(ξ)F (ξ)dξ

B(t− a)

i∗(0)
da− δR(t)

S∗
H ′(

R(t)

R∗
).

Finally,

I ′(t) ≤ µ(1− S∗

S(t)
)(1− S(t)

S∗
)− J∗H(

S∗

S(t)
)

+
δR∗

S∗

∫ ∞
0

[
H(

R(t)

R∗
)−H(

B(t− a)

i∗(0)
) +H ′(

R(t)

R∗
)

(
B(t− a)

i∗(0)
− R(t)

R∗

)]
φ(a)F (a)∫ ∞

0

φ(ξ)F (ξ)dξ

da.
(5.11)

Since H(x)−H(y) +H ′(x)(y − x) ≤ 0 then the third term of (5.11) is negative and therefore I ≤ 0.

Further, notice that
d

dt
V (Ψ1(t)) = 0 implies that S(t) = S∗ and

B(t− a)

i∗(0)
=
R(t)

R∗
for all t ∈ R and a ≥ 0.

From the equation of S in (3.4) we have J(t) = J∗ for all t ∈ R. This leads to

J∗ =

∫ ∞
0

β(a)π̄1(a)B(t− a)da,

=
R(t)

R∗
i∗(0)

∫ ∞
0

β(a)π̄1(a)da,

= J∗
R(t)

R∗
,

and thus R(t) = R∗ for all t ∈ R. It yields B(t− a) = i∗(0) for all t ∈ R and a ≥ 0. Consequently i(t, a) = i∗(a)
and q(t, a) = q∗(a) for all t ∈ R and a ≥ 0. Finally, employing the same arguments as in the end of the proof of
Theorem 4.1, we prove the global asymptotic stability of the endemic equilibrium.
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Figure 1. The evolution of function ψ(N(t)) with respect to time t.

6. Numerical simulation

The results of the previous sections are illustrated by numerical simulations. We consider the following values
of parameters

A = 0.01, µ = 0.02 v(a) ≡ 0.1 and ψ(z) =
1

1 + 0.5z
,

with the initial conditions

S0 = 0.9, i0(a) = 10−2e−0.1a, q0(a) = 0, and r0 = 0.

The functions β and φ are chosen as

β(a) =

{
0, if a ≤ 5,

8× 10−3(a− 5)2e−0.1(a−5), if a > 5,

and

φ(a) =

{
0, if a ≤ 10,

8× 10−3(a− 10)2e(−0.1(a−10)); if a > 10.

In the first case, we fix δ = 0 we then find R0 < 1. According to Theorem 4.1, the disease-free equilibrium is
globally asymptotically stable see Figures 2 and 3.

In the second case, we take δ = 0.4 and then R0 > 1. From Theorem 5.7, the positive equilibrium is globally
asymptotically stable see Figures 4 and 5.
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Figure 2. The evolution of solution S (left) and R (right) with respect to time t.

Figure 3. The evolution of solutions i (left) and q (right) with respect to time t and age a.

Now, for the following parameters, v(a) ≡ 0.2 and

φ(a) =

{
0, if a ≤ 10,

4× 10−3(a− 10)2e(−0.1(a−10)); if a > 10,

we obtain R0 < 1 for δ ∈ {0, 0.1, 0.5}.
Next we choose the following parameters A = 0.015, µ = 0.01 and v(a) ≡ 0.1,

β(a) =


0, if a ≤ 5,

9× 10−3(a− 5)2e−0.1(a−5), if a > 5,
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Figure 4. The evolution of solution S (left) and R (right) with respect to time t.

Figure 5. The evolution of solutions i (left) and q (right) with respect to time t and age a.

and

φ(a) =


0, if a ≤ 10,

8× 10−3(a− 10)2e−0.1(a−10), if a > 10.

So, we find R0 > 1 for all δ ≥ 0.

6.1. Discussion

In this paper we presented an age controlled structured epidemic model of Susceptible-Infected-Quarantine-
Recovered-Infected (SIQRI) type where we will look for the role of individuals that leave the R-class before
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Figure 6. The impact of the relapse parameter δ on the incidence i(t, 0). For δ = 0, R0 is less than
one. For δ = 0.4, R0 becomes greater than one.

being completely recovered and thus will participate again to the transmission of the disease. The epidemic

reproduction number R0 is a sum of two epidemic reproduction numbers. The first one R00 =

∫ ∞
0

N̄β(s)π̄1(s)ds

corresponds to the basic epidemic number in the case of an SIQR system. It means that there is no relapse of

the individuals in the recovered class R. The second one Ror =
δ

δ + µ
ψ(N̄)

∫ ∞
0

φ(σ)π2(σ)

∫ σ

0

v(s)
π̄1(s)

π2(s)
dsdσ

corresponds to the average number of people newly infected by a R-class person who has relapsed. It can be
noted that R0 increases with the relapse rate δ.

Some new global stability results are obtained for this age structured SIQRI model including a screening
strategy and a quarantine program; and to highlight the influence of these two public health measures, we
presented a series of simulations based on each parameter separately.

By fixing all the parameters and in particular the screening rate at 0.1 and varying the relapse rate we obtain
– In the case where there is no relapse and R0 < 1. The incidence function decreases to 0 (see Fig. 6), this leads
to the convergence of solutions to the disease-free equilibrium (DFE).
– When we increase the relapse rate to 0.4 we obtain R0 > 1. The incidence function takes strictly positive
values (see Fig. 6), in this case there is convergence of solutions to the endemic equilibrium (EE).

However, when we focus our efforts on the screening program by doubling the screening rate, we can get
R0 < 1 even when we have treatment and when the relapse rate is not zero (δ ∈ {0, 0.1, 0.5}); Figure 9 shows
that the incidence rate becomes approximately identically zero at a final time tf = 400. In this case, the effort
on the screening program gives 10% more individiuals added to the quarantine class.

Finally, by choosing other numerical values for the model parameters, we can get R0 > 1 for every δ ≥ 0. In
this case, Figure 12 shows that the incidence rate increases until 3% relatively to the total population. In fact,

for δ = 0, we have
i(tf , 0)

N(tf )
= 0.73%, while for δ = 0.5, we have

i(tf , 0)

N(tf )
= 3.2%.

This means that when the relapse rate is sufficiently small, the incidence rate is less important and decreases
until 0.73% suggesting a quarantine program.
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Figure 7. The evolution of solution S (left) and R (right) with respect to time t.

Figure 8. The evolution of solutions i (left) and q (right) with respect to time t and age a.

Figure 9. The evolution of i(t, 0) with respect to time t.
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Figure 10. The evolution of solution S (left) and R (right) with respect to the time.

Figure 11. The evolution of solutions i (left) and q (right) with respect to time t and age a.

These different simulations show the effect of the quarantine program on the incidence rate, and by the sequel
on the asymptotic behaviour of the solutions. We can deduce that reducing transmissibility requires an efficient
quarantine program. Moreover, a great effort in screening helps considerably in the detectability of the disease
and in decreasing its spread.

As a perspective, it will be interesting to include in the proposed model, individuals leaving quarantine before
it ends, to the best of our knowledge such a model has never been studied before, the quarantine interruption can
generate many mathematical complications, especially in the construction of a suitable Lyapunov functional.
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Figure 12. The evolution of the incidence i(t, 0) with respect to time t for different values of δ.
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