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In deformable registration, the geometric framework -large deformation diffeomorphic metric mapping or LDDMM, in short -has inspired numerous techniques for comparing, deforming, averaging and analyzing shapes or images. Grounded in flows, which are akin to the equations of motion used in fluid dynamics, LDDMM algorithms solve the flow equation in the space of plausible deformations, i.e. diffeomorphisms. In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme. The central idea is to represent time-dependent velocity fields as fully connected ReLU neural networks (building blocks) and derive optimal weights by minimizing a regularized loss function. Computing minimizing paths between deformations, thus between shapes, turns to find optimal network parameters by back-propagating over the intermediate building blocks. Geometrically, at each time step, ResNet-LDDMM searches for an optimal partition of the space into multiple polytopes, and then computes optimal velocity vectors as affine transformations on each of these polytopes. As a result, different parts of the shape, even if they are close (such as two fingers of a hand), can be made to belong to different polytopes, and therefore be moved in different directions without costing too much energy. Importantly, we show how diffeomorphic transformations, or more precisely bilipshitz transformations, are predicted by our algorithm. We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations. We thus provide essential foundations for more advanced shape variability analysis under a novel joint geometric-neural networks Riemannian-like framework, i.e. ResNet-LDDMM.

INTRODUCTION AND RELATED WORK

T HE deformable registration problem involves finding a single coordinate system in which to pinpoint several different shapes. This allows, for example, for the statistical analysis of shape data that takes into account their geometric properties. Many applications of this principle can be found in computational anatomy, in which the shapes are extracted from medical images (MRI, PET scans,...) [START_REF] Modersitzki | Numerical methods for image registration[END_REF]. Various methods have been used to register different shapes or anatomical organs (see for example [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF] and [START_REF] Vialard | Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation[END_REF]). The LD-DMM (large deformation diffeomorphic metric mapping) approach is one of the most popular for estimating plausible transformations (diffeomorphisms). Taking advantage of the group structure of the manifold of diffeomorphisms of R 3 , it also comes with a proper metric for comparing shapes based on a certain kinetic energy of the deformation [START_REF] Dupuis | Variational problems on flows of diffeomorphisms for image matching[END_REF].

Problem Formulation

In the present work, we will restrict our study to discrete, unparametrized surfaces and more generally point sets/clouds of R 3 , denoted by q = (x 1 , x 2 , . . . , x n ) T ∈ R n×3 , i = j ⇒ x i = x j (n is the number of vertices/points in the point cloud or the meshed surface). In the language of shape analysis, this means that we work on the socalled spaces of landmarks. Given q S = (x 1 , . . . , x n ) T (source/template shape) and q T (target/reference shape), two point sets representing the same physical object or Manuscript received February, 2021; revised XXX, 2021.

anatomical organ (liver, kidney, femur, heart, hippocampus, brain cortex, or simply a hand) of the human body, our goal is to find a reasonable transformation φ : R 3 → R 3 such that a transformed version of the template shape φ.q S = (φ(x 1 ), . . . , φ(x n )) T is similar to the reference q T . If the transformation φ is diffeomorphic (i.e. smooth with smooth inverse), then (φ, q) → φ.q is the associated group action on the space of landmarks [START_REF] Younes | Shapes and diffeomorphisms[END_REF]. In our special case of point sets, this smooth action is given by φ.q = (φ(x 1 ), . . . , φ(x n )). That is, the i-th landmark of φ.q is the position of the i-th landmark of q after being moved in R 3 by φ.

A common way to model the deformable registration problem is to consider the minimization of an energy functional (Eq. ( 1)) over the set of plausible deformations φ, J (φ; q S , q T ) = D(φ.q S , q T ) Data term

+ R(φ)

Regularizer [START_REF] Modersitzki | Numerical methods for image registration[END_REF] where D(., .) is the data term that measures the discrepancy between the deformed shape φ.q S and the target shape q T . The term R(.) plays the role of a regularizer and thus controls the plausibility of the solution φ * . In several applications, particularly when analyzing the anatomical parts/organs of the body, it is desirable to have a deformation φ that preserves local and global topology, preventing the deformation from creating holes or folding when applied to the source shape. This is true for diffeomorphisms, for example. It is also true for the slightly more general bilipshitz maps, which are essentially diffeomorphisms as well; they are homeomorphisms Φ such that both Φ and Φ -1 have a bounded rate of change (specifically, they are differentiable almost everywhere, with invertible differential). To better understand the advantage of transformations that are (essentially) diffeomorphisms over simple displacements, we will compare in the following the elastic deformation models [START_REF] Broit | Optimal registration of deformed images[END_REF] and the LDDMM framework introduced for the first time in [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF] to deal with large deformations.

-Elastic deformation models, pioneered by C. Broit [START_REF] Broit | Optimal registration of deformed images[END_REF], compute a deformation x → φ(x), x ∈ R 3 by perturbations v(x) from the identity, such that, φ(x) = Id(x) + v(x) = x + v(x).

However, for large deformations, these models cannot guarantee diffeomorphic transformations (i.e., topologypreserving and invertible mappings).

-LDDMM and variants, introduced by Beg et al. in [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF], compute diffeomorphic transformations through the integration of smooth, time-dependent velocity fields f : [0, 1] × R 3 → R 3 over time. Accordingly, time-dependent transformations φ : [0, 1] × R 3 → R 3 are derived. They are governed by an Ordinary Differential Equation (ODE), known as the flow equation [START_REF] Dupuis | Variational problems on flows of diffeomorphisms for image matching[END_REF] formulated as follows (Eq. ( 2)): φ(t, x) = f (t, φ(t, x)), φ(0, x) = x for all x ∈ R 3 and t ∈ [0, 1],

(

where φ = ∂φ ∂t denotes the partial derivative over the variable time t and φ(0, x) is the initial state taken to be the identity (diffemorphism) of x. Under adequate assumptions on f (globally Lipschitz in space for fixed t, with a time-dependent Lipshitz constant integrable in time, for example), f → φ f is a well-defined mapping into the space of time-dependent (essentially) diffeomorphisms of R 3 by the Cauchy-Lipshitz theorem. A smoother f also yields a smoother φ f (and, hence, a diffeomorphism), as seen in [START_REF] Trouvé | An infinite dimensional group approach for physics based models in pattern recognition[END_REF] and [START_REF] Dupuis | Variational problems on flows of diffeomorphisms for image matching[END_REF] (see also [START_REF] Younes | Shapes and diffeomorphisms[END_REF], Theorem 8.7). The goal is then to find an optimal trajectory φ(t, .) connecting φ(0, .) = I R 3 (starting point) to the end point φ(1, .) by finding a minimizer f * : [0, 1] × R 3 → R 3 of the following updated version of Eq. (1):

f * = argmin f (t,.)∈A 1 2σ 2 D(φ f (1).q S , q T ) + 1 2 1 0 f (t, .) 2 A dt. (3) 
Here, A is the space of admissible velocity fields (i.e. with the smoothness condition) which give rise to Diff A (R 3 ), defined by Diff A (R 3 ) = {φ f (1), f ∈ L 1 ([0, 1], A)}, the Group of Diffeomorphisms associated to A.

From the formulation above, we obtain the following interesting geometric interpretations and properties, -The quantity S t = f (t, .) 2 A is the kinetic energy of the whole system at the time step t (refer to [START_REF] Younes | Shapes and diffeomorphisms[END_REF]).

-For q, q two sets of landmarks with the n points, n ∈ N,

d n A (q, q) = inf f (t,.)∈A { 1 0 f (t, .) A dt, q = φ f .q}
is a metric on the space of landmarks with n points. One can even deduce a metric d A on Diff A itself in a similar way, making (Diff A , d A ) a complete metric space ( [START_REF] Trouvé | An infinite dimensional group approach for physics based models in pattern recognition[END_REF] and [START_REF] Younes | Shapes and diffeomorphisms[END_REF], Theorem 8.15). This is a very important characteristic of the LDDMM method and can be used to assess the similarity of various objects by analysis of the velocity fields f that induce the transformation φ(1), which aligns these objects.

-The measure of the kinetic energy of paths in the space of considered shapes is used as a regularizer term in the registration problem formulated in Eq. (3). Thus, the functional Eq. ( 3) to be minimized is the sum of a first term defined as a geometric norm of the control (kinetic energy of the deformation) and of a data term providing a geometric distance to the target shape. The weighting factor 1/2σ 2 balances the influence of the data attachment D and the regularizer term R of the general formulation in Eq. ( 1).

This elegant LDDMM framework has served (and is serving) as a starting point for several approaches in the literature which can be categorized into: (i) relaxation methods (e.g. [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF]), which compute velocities for multiple points in time, and (ii) shooting methods (e.g. [START_REF] Vialard | Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation[END_REF]) which take advantage of the conservation of momentum (and in particular a constant kinetic energy S * t = f * (t, .) 2 A ) and determine the evolution of the transformed template based solely on the initial velocity. Importantly, both approaches define an admissible Hilbert space A of velocity fields as an RKHS (Reproducing Kernel Hilbert Space). The kernel is taken to be the Green's kernel K = L -1 , (where L is a differential operator which defines the inner product of A as well as the induced norm . A ) [START_REF] Younes | Shapes and diffeomorphisms[END_REF]. In practice, smoothing of the velocity fields is achieved by convolution with suitable kernels, e.g., Gaussian kernels with positive scale. With this definition of A as an RKHS, we complete the formulation of the conventional LDDMM framework.

Related Work

We restrict our review to two categories: (1) diffeomorphic registration methods primarily derived from LDDMM and variants. We focus, in particular, on recent end-to-end unsupervised deep neural network approaches for predicting diffeomorphic transformations; (2) non-rigid point cloud registration methods which densely match a source shape with a target shape without imposing any constraint on the output transformation. These approaches require, in general, initial correspondence. First, however, we discuss in more details the rich literature of LDDMM and its variants.

Large Deformation Diffeomorphic Metric Mapping

Under the LDDMM formulation, we can distinguish two paradigms [START_REF] Polzin | A discretize-optimize approach for lddmm registration[END_REF]. Firstly, the optimize-then-discretize schema which first derives the Hamiltonian of the continuous problem, then, deduces optimality conditions of continuous optimization problems using the calculus of variations (e.g. [START_REF] Arguillère | Registration of multiple shapes using constrained optimal control[END_REF], [START_REF] Arguillere | Diffeomorphic surface registration with atrophy constraints[END_REF] [START_REF] Younes | Evolutions equations in computational anatomy[END_REF], [START_REF] Gris | A sub-riemannian modular framework for diffeomorphism-based analysis of shape ensembles[END_REF], [START_REF] Vialard | Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation[END_REF], [START_REF] Charon | The varifold representation of nonoriented shapes for diffeomorphic registration[END_REF], [START_REF] Miller | Hamiltonian systems and optimal control in computational anatomy: 100 years since d'arcy thompson[END_REF], and [START_REF] Miller | Coarse-to-fine hamiltonian dynamics of hierarchical flows in computational anatomy[END_REF]). Ultimately, these conditions are discretized and solved, typically using Gradient Descent. In computational anatomy, LDDMM algorithms (both relaxation and shooting) achieve accurate registration results, but are costly in running time (counting hours on CPU) and memory. As a response to this, the discretize-thenoptimize paradigm was born. It involves first discretizing the objective functional and constraining equations, and then solving the discrete optimization problem using numerical optimization methods (e.g. [START_REF] Modersitzki | FAIR: flexible algorithms for image registration[END_REF], [START_REF] Mang | A lagrangian gauss-newton-krylov solver for mass-and intensity-preserving diffeomorphic image registration[END_REF] and [START_REF] Polzin | A discretize-optimize approach for lddmm registration[END_REF]). Within the optimize-then-discretize paradigm, solving the Hamiltonian of the continuous LDDMM problem guarantees diffeomorphic transformations, but after discretization this property could be violated. In contrast, under the discretize-then-optimize paradigm, piecewise diffeomorphic transformations, invertible and topology-preserving transformations are achieved as shown in [START_REF] Polzin | A discretize-optimize approach for lddmm registration[END_REF]. Both approaches require a predefined Gaussian kernel with a fixed scale of deformation.

Similar to LDDMM, the SVF (Stationary Velocity Fields) framework is an alternative for finding a diffeomorphic transformation between shapes. It was first introduced by Arsigny et al. in [START_REF] Arsigny | A logeuclidean framework for statistics on diffeomorphisms[END_REF]. As LDDMM, SVF works on a vector space of images and a Lie group of diffeomorphic transformations. SVF generalizes the principal logarithm to nonlinear geometrical deformations which falls into parameterizing diffeomorphisms with stationary speed vector fields. Despite its satisfactory results in practice, the logarithm is well-defined only for transformations close enough to the identity (as the Lie group exponential map is usually not surjective), which makes the registration results under large deformations uncertain. That is, the optimal transformation is not smooth with regard to the images, so that a small change in images may lead to a large change in the path connecting them. Furthermore, the underlying space (of the SVF framework) is not a Riemannian manifold and there is no Riemannian metric, geodesic, or connection involved. While an LDDMM curve is obtained by integrating a timedependent vector field specified by the Riemannian metric, an SVF curve is an integral curve of a stationary vector field, in the corresponding Lie algebra. Hence, SVF works on the structure of the Lie group of diffeomorphic transformations instead of the underlying Riemannian manifold [START_REF] Kobatake | Computational anatomy based on whole body imaging[END_REF]. In the literature, the SVF framework is always considered an approximation of the shooting formulation of LDDMM.

Deep Neural Network Methods

Most recent end-to-end unsupervised deep learning diffeomorphic registration approaches are inspired from the SVF framework. Indeed, they make use of spacial transformer networks (or STNs), first introduced in [START_REF] Jaderberg | Spatial transformer networks[END_REF], to warp the source (moving image) to the target (fixed image) by optimizing a loss function including both an image similarity term and a regularization on the transformations term. One pioneering approach is called VoxelMorph and works on (structured) 3D medical images [START_REF] Dalca | Unsupervised learning for fast probabilistic diffeomorphic registration[END_REF], [START_REF] Dalca | Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces[END_REF]. The Network, a UNet, consists of two steps. First, it approximates posterior probability parameters representing the velocity field mean and variance using a convolutional encodingdecoding scheme. Second, obtained velocity fields are transformed into diffeomorphic transformation using differentiable squaring and scaling integration layers. Similarly, Krebs et al. proposed in [START_REF] Krebs | Learning a probabilistic model for diffeomorphic registration[END_REF] to use a conditional variational autoEncoder (CVAE) to infer a low-dimensional probabilistic deformation model under constraints making the transformations symmetric and diffeomorphic. The main idea is to build the target by warping the source image, where the latent space encodes deformations. Again, successive differentiable squaring and scaling layers, as previously used in [START_REF] Dalca | Unsupervised learning for fast probabilistic diffeomorphic registration[END_REF], generate diffeomorphic transformations. The decoder extracts velocities and diffeomorphisms at different scales and a Gaussian smoothing layer is applied on the filter maps (latent variables) to smooth the initial velocity. Taking advantage of symmetric approaches, Mok and Chung proposed in [START_REF] Mok | Fast symmetric diffeomorphic image registration with convolutional neural networks[END_REF] a symmetric diffeomorphic neural network (SDNN) which is an unsupervised symmetric image registration method which maximizes the similarity between images within the space of diffeomorphic maps and estimates both forward and inverse transformations simultaneously. On top of this, they proposed a selective Jacobian determinant regularization that imposes a local orientation, consistency constraint on the estimated deformation fields. Also, inspired by the SVF framework, Bone et al. have proposed in [START_REF] Louis | Learning low-dimensional representations of shape data sets with diffeomorphic autoencoders[END_REF] a diffeomorphic autoencoder (DAE). In [START_REF] Shen | Networks for joint affine and non-parametric image registration[END_REF], Shen et al. have proposed a deep-learning framework which combines affine registration and a vector momentum-parameterized stationary velocity field (vSVF). Under the vSVF approach, the goal is also to solve a stationary ODE that represents a one-parameter subgroup of diffeomorphisms. The integration is achieved via multiple scaling and squaring layers. The way to accommodate a convolutional neural network to compute vSVF, under a supervised learning scheme, was first proposed in [START_REF] Rohé | Svf-net: Learning deformable image registration using shape matching[END_REF]. Taking a slightly different direction and inspired by the work of Vialard et al. [START_REF] Vialard | Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation[END_REF], Niethammer et al. have proposed in [START_REF] Niethammer | Metric learning for image registration[END_REF] to learn a spatially-varying regularizer. They built their unsupervised registration model on top of vSVF [START_REF] Arsigny | A logeuclidean framework for statistics on diffeomorphisms[END_REF]. Their approach jointly optimizes the regularizer (parameterized by a deep CNN) and the registration parameters of the vSVF model. To allow much freedom, Shen et al. have proposed in [START_REF] Shen | Region-specific diffeomorphic metric mapping[END_REF] a Region-specific Diffeomorphic Metric Mapping (RDMM) to allow for spatially-varying regularization. Unlike spatially-invariant regularizers, spatiallyvarying regularization allows anticipating different levels of deformations at different image locations. It was observed experimentally that RDMM may locally exhibit stronger deformations than LDDMM or vSVF.

Non-rigid Point Cloud Registration Methods

Less constrained, but more efficient approaches have also been developed with the increasing amount of 3D data available and depth-sensors. These approaches solve the problem of matching two 3D point clouds in the presence of non-rigid deformations. They typically adopt the p type robust estimator to regularize the fitting and smoothness. For instance, Amberg et al. (who developed an 2 -regularization method) have extended in [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF] the popular ICP (iterative closest point) algorithm to cover non-rigid transformations. They include in their framework different regularizations, as long as they have an adjustable stiffness parameter. So, thus, the registration loops over a series of decreasing stiffness weights, and incrementally deforms the template towards the target, recovering the whole range of global and local deformations. However, the presence of noise, outliers, holes, or articulated motions between the point clouds can potentially result in alignment errors (we will therefore refer to this approach as N-ICP). Taking another direction, Li et al. proposed in [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF] the RPTS method with 1 -regularization using re-weighted sparsities on positions and transformations to estimate the deformations on point clouds. They formulated the energy function with dual sparsities on both the data term and the smoothness term, and defined the smoothness constraint using local rigidity. Starting from the observation of the existence of an intrinsic articulated subspace in most non-rigid motions, Guo et al. [START_REF] Guo | Robust non-rigid motion tracking and surface reconstruction using l0 regularization[END_REF] proposed an 0 -based motion regularizer with an iterative optimization solver that can implicitly constrain local deformation only on joints with articulated motions. As a consequence, the solution space is reduced to physical plausible deformations. We will refer to this approach as SVR-0 . Recently, in [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF], Yao et al. proposed a formulation based on a globally smooth robust estimator for data fitting and regularization, which can handle outliers and partial overlaps by enforcing sparsity using the Welsch's function. They made use of the majorization-minimization (MM) algorithm to tackle the problem, which reduces each iteration to solve a simple least-squares problem with L-BFGS. Their approach (which we will call QNS) achieves lower registration errors compared to the previous approaches while improving the execution time. While these approaches bring efficient solutions to solve the non-rigid registration problem, they often require good initialization, i.e., a set of labeled landmarks on both meshes. Further, they do not guarantee diffeomorphic transformations between 3D shapes and registering a shape A to a shape B, and inversely, can yield in different matching results.

Contributions and Paper Organization

In this work, we propose a novel joint geometric-neural networks framework for diffeomorphic registration of 3D shapes, and 3D point clouds, in general. Our formulation differs in several aspects from previous end-to-end deep learning approaches. Importantly, we introduce a Riemannian-like framework (that is, a length space), for comparing and deforming 3D shapes, by revisiting the original LDDMM framework using deep residual networks.

-Inspired by the SVF framework, most of end-to-end deep neural network diffeomorphic registration approaches tend to solve a stationary ODE; thus, they are static. They work on the group structure of the underlying Lie group of diffeomorphic transformations and compute stationary vector fields on a fixed tangent space. Consequently, they do not allow a Riemannian metric to be defined or geodesics (minimizing paths) to be computed in the shape space. In contrast, our ResNet-LDDMM is dynamic as it was designed to solve the non-stationary flow equation ODE Eq.( 2) by integrating time-dependent velocity fields. ResNet-LDDMM offers more flexibility and is more suitable for handling large and, to some extent, complex deformations.

-Taking advantage of the functional space of deep neural networks, our ResNet-LDDMM predicts timedependent, regular and smooth velocity fields (the endpoint of the flow is the desired diffeomorphic transformation). The network structure brings a natural regularization at a primary level, in addition to the regularization related to the time-integrated kinetic energy (or the geometric norm of the control). We demonstrate in Sec. 3 how ResNet-LDDMM predicts smooth and regular time-varying velocity fields. So, just like in LDDMM, ResNet-LDDMM does generate (essentially) a diffeomorphism, without defining a Gaussian kernel (with a fixed scale of deformation).

-Appropriately applying the ReLU activation function to predict velocity fields, we reveal how each time-step of our ResNet-LDDMM divides the space (R 3 ) into multiple polytopes (i.e., unbounded polyhedra) in which optimal velocity fields are computed. This provides more flexibility in the registration while maintaining diffeomorphic properties. We describe these nice geometric interpretations (Sec. 3.2) on several examples involving hand shapes and complex anatomical organs.

-Our ResNet-LDDMM makes use of fully connected ReLU networks (operated by 1x1 convolutions on 3D points taken individually). This enables to operate on unstructured 3D data without explicitly considering neighborhood information. This is a fundamental difference from the endto-end deep neural networks approaches described in Sec. 1.2.2, proposed mainly for medical image registration.

-On different internal anatomical organs, we study the performance of our ResNet-LDDMM in comparison with LDDMM [START_REF] Charon | The varifold representation of nonoriented shapes for diffeomorphic registration[END_REF]. We show its superiority in some cases. We compare to other non-rigid registration approaches as N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF], SVR-0 [START_REF] Guo | Robust non-rigid motion tracking and surface reconstruction using l0 regularization[END_REF] and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] on body shapes. We highlight in particular its behavior in the presence of noise and missing data.

To sum up, we provide the initial and essential foundations for the analysis of shapes and their variability analysis under a Riemannian-like framework, called ResNet-LDDMM. The rest of the paper is organized as follows. Sec. 1 formulates the diffeomorphic registration problem. A comprehensive survey is then drawn on non-rigid (diffeomorphic) registration, before summarizing the contributions the present work. In Sec. 2 we describe our ResNet-LDDMM framework from both geometric and (unsupervised learning) neural networks perspectives. For pedagogical purposes, we also provide an algorithmic summary of ResNet-LDDMM (Algo. 1) and how compute minimizing geodesics (Algo. 2). They represent the main ingredients for conducting statistical analysis. How ResNet-LDDMM naturally builds diffeomorphic transformations between shapes is formally elaborated in Sec. 3. Furthermore, we provide a geometric description of the velocity fields accompanied by a qualitative interpretation on the registration methodology behind ResNet-LDDMM. Sec. 4 is dedicated to multiple experiments. It includes, in particular, an ablation study regarding the key features of ResNet-LDDMM. Some concluding remarks and perspectives are drawn in Sec. 5.

RESNET-LDDMM, OR LDDMM REVISITED

The central idea in our ResNet-LDDMM is to make use of a particular family of deep neural networks, i.e. residual deep networks (or ResNets), to solve the flow equation Eq. ( 3). In supervised learning, a residual network [START_REF] He | Deep residual learning for image recognition[END_REF], [START_REF] He | Identity mappings in deep residual networks[END_REF]) has the following form:

h l+1 = h l + f l (h l , θ l ) (4)
where h l is the trainable hidden layer, l ∈ {1, . . . , L}, and θ l ∈ {θ 1 , . . . , θ L } denotes the network parameters. Compared to a standard feed-forward network, where h l+1 = f (h l , θ l ), at the heart of ResNet is the ultimate idea that every additional layer should contain the identity function as one of its elements. Thus, a residual h l+1 -h l is learned instead of transforming the output of the previous layer h l to h l+1 . Recent works have pointed out a striking similarity between this important property in residual networks and the numerical solution of ordinary differential equations On the right, we show the flow of obtaining velocity fields and diffeomorphisms Φ l , including the end point Φ L , achieved by integration. In theory (e.g. [START_REF] Miller | Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms[END_REF]), both orbits [q S ] and [q T ] coincide, so q S can be deformed to a point in the neighborhood of q T , for a given data fit error. Thus, the shape space is nothing else than the orbit of qs.

(e.g. [START_REF] Weinan | A proposal on machine learning via dynamical systems[END_REF], [START_REF] Haber | Stable architectures for deep neural networks[END_REF], [START_REF] Ruthotto | A machine learning framework for solving high-dimensional mean field game and mean field control problems[END_REF]) using the forward Euler method with a given initial value. In fact, training a deep residual network is viewed as a discretization of a dynamical training system governed by a first-order ODE, where the network layers are viewed as time-steps and the network parameters θ l are interpreted as the control to optimize [START_REF] Liu | Deep learning theory review: An optimal control and dynamical systems perspective[END_REF].

Inspired by the general formulation and aiming to solve the flow equation Eq. ( 2), we build our ResNet-LDDMM framework. As shown in Fig. 1, our ResNet-LDDMM is an ensemble of L successive identical building blocks. Each building block is composed of three fully connected layers and a point-wise ReLU activation function separating the first two layers. From the LDDMM perspective (right panel of Fig. 1), each building block f l represents a velocity vector field R 3 → R 3 at a discrete time l. The f l are parameterized by θ l . If f l are sufficiently smooth and spatially regular (we postpone this demonstration to Sec. 3), one can then build a diffeomorphic transformation Φ f (1) (by integration of Eq. ( 5)) that moves the initial shape q S to fit q T , which is mathematically equivalent to Φ(1).q S ∼ q T and Φ(1) = Φ L :

Φ l+1 .q 0 = Φ l .q 0 + ∆ L f l (Φ l .q 0 , θ l ), with ∆ L = 1 L . (5) 
Compared to the conventional LDDMM formulation, here, the time-varying velocity vector fields are deep neural networks f l (., θ l ) that should be optimized with respect to a fit error. To this end and if assume a ResNet-LDDMM with number of building blocks L → ∞ (i.e. 1 L → 0), we cast Eq. (3) as:

Θ * , Φ * (1) = argmin Θ={θ t } t∈[0,1] 1 2σ 2 D(Φ Θ (1).q S , q T ) + 1 2 1 0 f t (Φ Θ (t).q S , θ t ) 2 2 dt, (6) 
subject to ∂ t Φ Θ (t, .) = f t (Φ Θ (t, .), θ t ) for a.e. t ∈ [0, 1] and Φ(0, .) denotes the identity map (the neutral element of the group Diff(R 3 )). The family f t (., θ t ) is the ensemble of functions to be approximated by the network which coincides with the time-dependent velocity fields along the time interval [0, 1] and Θ = (θ t ) t∈[0,1] are the whole ResNet-LDDMM parameters. Φ Θ (1) is the final transformation and Φ Θ (t) are the intermediate transformations. The choice of D(., .) will be detailed in the next section (Sec. 2.1). The second term is a regularizer that presents the length of the path connecting q S to Φ Θ (t).q S , on the orbit of q S , which ensures that the optimal vector field stays regular enough to ensure topology preserving transformations.

In the right panel of Fig. 1 we illustrate how ResNet-LDDMM enables a minimizing path (a geodesic) on the orbit of q s . Intermediate shapes are discrete elements of the geodesic outputs of the action of the intermediate diffeomorphisms Φ l on the source shape q S . Φ l are deduced from the optimal vector fields f l (., θ l ) sitting in between the panels of Fig. 1 (colors (cold → hot) reflect the absolute amount of displacement at each time-step and at a vertex-level). 

ResNet-LDDMM Network Architecture

Let us now come back to the architecture of our ResNet-LDDMM. As illustrated in the left panel of Fig. 1, our network takes as inputs (1) the source shape q S , or to be more accurate Φ 0 .q S , where Φ 0 is the identity diffeomorphism of R 3 , and (2) an initial guess Θ 0 = (θ 1 0 , . . . , θ l 0 ), initial parameters of the network and (3) the target shape q T to evaluate the loss function Eq. ( 6). The velocity fields f l (•, θ l ) and the corresponding diffeomorphisms Φ l are predicted by the l-indexed successive building blocks of the network (orange box in Fig. 1). The number of building blocks L in the ResNet-LDDMM coincides with the total number of time-steps in the conventional LDDMM, once discretized.

-Each building block (denoted by f l (., θ l ) and generating the l-th velocity field on R 3 ) consists of three successive fully connected weight layers. Weight matrices W i and bias vectors b i (limited to the first and second weight layers) define point-wise convolution operations, with kernel filters of size 1 × 1(×m), performed separately on all points. This is equivalent to designing a fully connected layer as described in the Network-in-Network [START_REF] Lin | Network in network[END_REF]. We will denote m as the width of individual building blocks. Subsequently, a ReLU activation function is applied to the output of the first weight layer within each building block. The last weight layer reduces the dimensionality of the output of the previous layer to get velocity vectors in R 3 (so, the width of this layer is exactly 3). While the weight layers conduct affine transformations of the input (output of the previous building block), ReLU reduces to zeros all negative outputs of the first layer, thus dividing the space R 3 into m-half spaces for more flexible prediction of the velocity fields (this point will be detailed in Sec. 3.2).

-The identity map, which connects successive building blocks of our ResNet-LDDMM allows the network to focus predicting the difference Φ l -Φ l-1 , and thus timedependent velocity fields. This specific architecture allows a forward Euler scheme to solve the non-stationary ODE (flow equation Eq. ( 2)). Intuitively, an individual building block f l will move each point x l ∈ q l into x l+1 ∈ q l+1 such that passing the three successive connected layers results in

x l+1 -x l =f l (x l , θ l ).∆ L =W l 3 (W l 2 (ReLU (W l 1 x l + b l 1 ) + b l 2 ).∆ L (7)
Here W l i are the set of filters and b l i biases which compose the weight layers and ReLU is an element-wise activation function.

-The loss function J (Θ) given in Eq. ( 6) to be minimized consists of a data term and the integration of instantaneous kinetic energy terms as a regularization term. While the data term pushes the deformed template Φ L .q S closer to the target q T by minimizing an appropriate distance between point clouds, the regularization controls activities of the building blocks, i.e. their outputs. These terms are balanced with the 1/2σ 2 parameter defined in Eq. ( 6).

-As a data attachment term, we use either a pointwise distance called the Chamfer's distance (CD) (Eq. ( 8)) or a global distance measure referred to us the Earth mover's distance (EMD), the Wasserstein distance or the Optimal Transport (OT) costs (Eq. ( 9)). The former measures the squared dis-tance between each point in one set to its nearest neighbor in the other set and vice verse. Mathematically, it is formulated as follows: Eq. ( 8),

D CD (q 1 , q 2 ) = x∈q1 min y∈q2 x -y 2 + x∈q2 min y∈q1 x -y 2 . (8)
The second distance introduced in [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF], is measures the discrepancy between distributions when accounting for their respective geometries [START_REF] Feydy | Optimal transport for diffeomorphic registration[END_REF]:

D MED (q 1 , q 2 ) = min ξ x∈q1 min x∈q1,y∈q2 x -ξ(y) 2 , ( 9 
)
where ξ denotes an arbitrary permutation over all y ∈ q 2 while x ∈ q 1 remain fixed and ξ * is the optimal labeling minimizing Eq. ( 9). In practice, the iterative Sinkhorn's Algorithm 1 is used to approximate the EMD distance, i.e. an Optimal Transport with Entropic Constraints (the reader is directed to [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] and [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] for more details). Importantly, we note that both distances are differentiable almost everywhere [START_REF] Feydy | Optimal transport for diffeomorphic registration[END_REF]. The choice of distance used in the data term depends on the data itself and the nature of the deformations (also the application), as we will discuss in Sec. 4. -Following LDDMM algorithms (e.g. [START_REF] Younes | Evolutions equations in computational anatomy[END_REF] and [START_REF] Miller | Geodesic shooting for computational anatomy[END_REF]), our regularizer is a summation over all kinetic energies of the system at all time-steps S(f

) = 1 2 1 0 S t (f t )dt, where, S t (f ) = f t (Φ Θ (t, .), θ t ) 2 2 .
The main difference is that while LDDMM makes use of the . A of the RKHS induced by Gaussian Kernel K with a fixed deformation scale, our ResNet-LDDMM uses the . 2 on the neural functions 1. We used the implementation available here.

f l (., θ l ). Similar to LDDMM, ResNet-LDDMM generates geodesics by minimizing the amount of energy spent to get close to q T from q S , when traveling along the Orbit of q S . We summarize the steps of our ResNet-LDDMM in Algo. 1.

Algorithm 1: ResNet-LDDMM.

Require: Source shape q S , Target shape q T , L: # of building blocks, η: learning rate, ∆ L = 1/L: time-step, E:# of iter., m: ResNet's width (# of filters), σ (see Eq. ( 6)) . l ← 1, e ← 0, Φ 0 = I R 3 Set Θ = {θ l } l∈1..L ← Θ 0 (initial guess) Set q 0 ← Φ 0 .q S (initial state) while e < E (epoch) do while l < L (building block

) do Compute v l ← f l (Φ l-1 .q l-1 , θ l )∆ L Update Φ l ← Φ l-1 + f (Φ l-1 .q l-1 , θ l )∆ L end while Compute q L ← q 0 + L l=1 v l (Φ L ← Φ 0 + L l=1 v l )
Evaluate the loss function J (Θ e ) (Eq. ( 6)) at epoch e Update Θ e+1 ← Θ e -η∇ Θ J (Θ) end while Compute Θ * minimizer of Eq. ( 6) using ADAM. Ensure: Φ * (., 1) ← Φ L parameterized by Θ * : final transformation; {f l } l : flow of velocity fields.

We show in Fig. 2 both paths from a source shape (on the left) and a target shape (on the right). We illustrate the flows of velocity fields obtained for L = 10 intermediate timesteps. We can see also how close are the deformed sources to the target shapes (from the absolute spatial deviations). The examples involving hands, shown in Fig. 3, are particularly interesting (because of the nature of deformations possible for the hand) and challenging at the same time (as different neighboring fingers can exhibit opposite movements). Note that here we make use of D CD as the data attachment term. The last example, depicted in a red box, shows a case where ResNet-LDDMM fails at matching corresponding fingers. In fact, while the transformation is a diffeomorphism (by swapping the index and middle fingers), an incorrect registration result is obtained. Algo. 2 summarizes the steps for building a geodesic path connecting a source shape to a target shape using the output of Algo. 1.

Algorithm 2: Optimal Trajectory on the Orbit of q S . Require: Source shape q S ; Target shape q T ; σ (Eq. ( 6)). 1: l ← 1 2: Compute Φ(1), {f l } l using Algo. 1. Compute ql ← f l (., θ l ) ( ql ∈ T q l ([q S ]): the instantaneous shape's speed, [q S ]: Shape Space) 5:

Update the shape q l+1 ← q l + ql (on S) 6: end while Ensure: Discrete steps q l , l ∈ {1, . . . , L} of an optimal trajectory connecting q 0 ← q S to q L ∼ q T . Now, to complete the picture and demonstrate the performance of ResNet-LDDMM in registering anatomical parts of the human body, we provide in Fig. 4 several examples of optimal deformations. Shapes are 3D triangulated surfaces obtained from manual segmentation of MRI images (of different subjects). These include the whole heart, the liver, the femur, a heart's valve, the brain cortex and left and right ventricles (LV+RV) of the heart. In each row, we show the source shape on the left, the target shape on the right and discrete steps from the geodesic path connecting them generated via ResNet-LDDMM and Algo. 2.

DYNAMIC

AND

GEOMETRIC

ANALYSIS OF RESNET-LDDMM, AND HOW IT BUILDS DIFFEOMORPHISMS

Regularity of the Deformations

Each building block f (•, θ l ) of ResNet-LDDMM can be seen as a vector field on R 3 , that is, a mapping R 3 → R 3 . This yields the transformations Φ l : R

3 → R 3 ∀x ∈ R 3 , l ∈ {1, . . . , L}, Φ 0 (x) = x, Φ l (x) = Φ l-1 (x) + f (Φ l-1 (x), θ l ).∆ L . (10) 
Then, applying Φ l separately to each point of the source shape q 0 , we get the deformed shapes q l = Φ l .q 0 . Moreover, for a given x ∈ q 0 , each f l is actually computed explicitly (using Eq. ( 11)) by,

f (x, θ l ) = w l 3 (w l 2 ((w l 1 x + b l 1 ) + + b l 2 )), (11) 
with w l i matrices whose entries are made up of the parameters θ l , along with the real numbers b l j , and r + = max(r, 0) = ReLU (r), for every real number r, is the ReLU function. Hence, each f (•, θ l ) is Lipshitz, and for every x, y in R 3 , we get

f (x, θ l ) -f (y, θ l ) 2 = w l 3 w l 2 ((w l 1 x + b l 1 ) + -(w l 1 y + b l 1 ) + ) 2 ≤ w l 3 w l 2 ((w l 1 x + b l 1 , 0) + -(w l 1 y + b l 1 , 0) + ) 2 , ( 12 
)
where . is the matrix operator norm. Then, since the ReLU function is 1-Lipshitz, that is, a + -b + 2 ≤ a-b 2 for every a, b, we get

f (x, θ l ) -f (y, θ l ) 2 ≤ w l 3 w l 2 w l 1 x + b l 1 -w l 1 y + b l 1 2 ≤ w l 3 w l 2 w l 1 x -y 2 . (13) 
Now Eq. ( 10) is clearly a Euler scheme at the times t = ∆ L for the flow of a differential equation of the form

∀x ∈ R 3 , t ∈ [0, 1], Φ 0 (x) = x ∂ t Φ(t, x) = w 3 (t)w 2 (t)(σ(w 1 (t)x + b 1 (t)) + b 2 (t)), (14) 
with each coefficient of w i and each b j bounded in t. If we denote f (t, x) = w 3 (t)w 2 (t)(σ(w

1 (t)x + b 1 (t)) + b 2 (t))
the time-dependent vector field whose integration yields Φ(t, x), we immediately see that for each t, f : x → f (t, x) is Lipshitz with, for every t, x and y,

f (t, x) -f (t, y) 2 ≤ w 3 (t) w 2 (t) w 1 (t) x -y 2 ≤ max t∈[0,1] w 3 (t) w 2 (t) w 1 (t) x -y 2 , (15) 
where • denotes the operator norm for linear operations, with the same reasoning as in Equation ( 13). The Cauchy-Lipshitz theorem ensures that Φ exists for every (t, x) and is (essentially) a diffeomorphism, or more precisely a bilipshitz transformation. In other words, ResNet-LDDMM does generate an approximation Φ L of (essentially) a diffeomorphism Φ(1, •) of R 3 , just like in LDDMM. As an additional remark, Gronwall's lemma shows that if we denote C = max t∈[0,1] w 3 (t) w 2 (t) w 1 (t) , we have

Φ(t, x) -Φ(t, y) 2 ≤ exp(tC) x -y 2 , t ∈ [0, 1], x, y ∈ R 3 . ( 16 
)
Going back to ResNet-LDDMM, a quick induction can be used to show that, denoting C(Θ) = max l∈{1,...,L} ( w l 3 w l 2 w l 1 ) with Θ = (θ 1 , . . . , θ L ) an instance of ResNet-LDDMM, we have

f (x, θ l ) -f (y, θ l ) 2 ≤ C(Θ) x -y 2 , and Φ l (x) -Φ l (y) 2 ≤ exp(l∆ L C(Θ)) x -y 2 , l ∈ {1, . . . , L}, x, y ∈ R 3 . ( 17 
)
The regularizer term in the cost function (Eq. ( 6)) then ensures that during the optimization, the constant C(Θ) does not go to infinity. As a final note, should smoothness be required,the ReLu can be replaced by a smooth approximation g with bounded differential (e.g. LeakyReLU). In this case, the velocity fields will be as smooth as g and the transformation Φ will then truly be a diffeomorphism. However, as shown in our various experiments, this does not appear necessary, and doing so intrinsically causes the loss of one of the strong points of our approach compared to classical LDDMM: the absence of a scale (see Sec. 4.2).

Geometric Description of the Velocity Fields and Interpretation

For fixed l, the vector fields f l (•, θ l ) given by the l-th building block have a nice geometric interpretation, which helps understand the way ResNet-LDDMM functions work and the areas in which it improves upon some of the classical LDDMM's weaknesses. For readability, we will omit the index l for now. Recall that m denotes the width of the network. For a fixed parameter θ of a building block f (•, θ) of our network (i.e., a velocity field x → f (x, θ)), the first layer is the affine transformation

L 1 : x ∈ R 3 → w 1 x + b 1 ∈ R m , with w 1 being an m × 3 matrix and b 1 = (b 1,1 , . . . , b 1,m ) in R m .
Let us now note n 1 , . . . , n m ∈ R 3 the vectors whose transposes are the lines of w 1 ; that is,

w 1 = (n 1 , . . . , n m ) T . Then L 1 (x) T = (n T 1 x + b 1,1 , . . . , n T m x + b 1,m ). The second layer L 2 : R m → R m is a ReLU function, so that L 2 • L 1 (x) T =((L 2 • L 1 ) 1 (x), . . . , (L 2 • L 1 ) m (x)) =((n T 1 x + b 1,1 ) + , . . . , (n T m x + b 1,m ) + ) (18) 
Geometrically, a vector n ∈ R 3 and a number b ∈ R define an affine plane P of R 3 through the equation n T x + b = 0, x ∈ R 3 . This separates R 3 into two half spaces:

E + = {x ∈ R 3 , n T x + b ≥ 0}
on the side of P towards which n is pointing, and E -= {x ∈ R 3 , n T x + b < 0}, on the other side of P . Then, for any x in R 3 , we have that the function 

+ = n T x + b if x ∈ E + , 0 if x ∈ E -. (19) 
Then we notice that for k = 1, . . . , m, the k-th component of

L 2 • L 1 is just (L 2 • L 1 ) k = D n k ,b k .
Hence, the choice of parameters for the first two layers is equivalent to choosing m oriented affine planes P 1 , . . . , P m with corresponding Cartesian equations n T k x + b k = 0, k = 1, . . . , m, and half-spaces E ± k , obtaining the corresponding components D k = D n k ,b k . The third and fourth layers of the building block simply combine into an affine transformation R m → R 3 . Therefore, each of the three components of the entire building block f (., θ) : R 3 → R 3 is just an affine combination of the functions D k . In other words, for some vectors a 1 , . . . , a m and c in R 3 , we have

f (x, θ) = a 1 D 1 (x) + • • • + a m D m (x) + c. ( 20 
)
Now, take a finite sequence of symbols = ( 1 , . . . , m ) with each k being either + or -, and consider the subset

T = ∩ k=1,...,m E k k .
The domain T is a polytope, that is, a possibly unbounded polyhedron. Then, for every k such 

+ b k ) + c =   k, k =+ a kn T k   x + k, k =+ b k + c =A x + c . (21) 
In other words, on each T , f (•, θ) is just an affine vector field. In conclusion, each building block of our network, that is, each velocity field we use to construct our final transformation, is just a globally continuous (even globally lipshitz), piece-wise affine mapping, defined on a partition by 2 m disjoint polytopes of R 3 .

The optimization of the final network, ResNet-LDDMM, can therefore be thought of as searching for:

1) The optimal partition of R 3 into polytopes by m planes at each step 2) The correct affine transformation on each of these polytopes.

While there are obviously some additional constraints (for example, the transformations need to be globally continuous), this description gives a good representation of what ResNet-LDDMM does. As a result, different parts of the shape, even if they are close in R3 (such as two fingers on a hand) can be made to belong to different polytopes, and therefore be moved in opposite directions without costing too much energy (see Fig. 5).

IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss both qualitative and quantitative registration results of our ResNet-LDDMM on different kinds of datasets. We compare some of our results to those obtained using a Varifold-type LDDMM implementation [START_REF] Charon | The varifold representation of nonoriented shapes for diffeomorphic registration[END_REF] (described in Sec. 1.2.1). As an ablation study, we will discuss the influence of the regularization term, the impact of the network width, i.e. the parameter m and the key role that the ReLU activation function plays inside the building blocks f l , in Sec. 4.3. Next, we will study the robustness of ResNet-LDDMM to noise and missing data. Herein, we compare our results to state-of-the-art non-rigid registration techniques -N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF], SVR-0 [START_REF] Guo | Robust non-rigid motion tracking and surface reconstruction using l0 regularization[END_REF] and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF], previously reviewed in Sec. 1.2.3. First, we provide the implementation details of our framework.

Implementation Details

Our basic ResNet-LDDMM architecture consists of an ensemble of L=10 building blocks, thus, we consider 10 timesteps to solve the Flow Equation. Each generates a time (or block)-dependent field of velocity vector f l . As discussed previously, each building block consists of three weight layers and only one ReLU layer transforming the output of the first weight layer. The width m of the first two layers is fixed to 900 (the width of the last layer is exactly 3 to ensure f l (., θ l ) : R 3 → R 3 ). The third weight layer could be viewed as a dimensionality reduction layer from R m → R 3 where our velocity fields naturally reside. Our initial guess (network parameters) Θ 0 = {θ 1 0 , . . . , θ L 0 } are obtained using Xavier initialization. Prior to our non-rigid registration method, a rigid alignment (which finds the best translation and rotation between q S and q T ) using the wellknown Iterative Closest Point algorithm is performed. All hand experiments reported in the paper are produced using the Wasserstein distance D MED as part of the loss function.

This distance accounts for the geometry of the data and is thus suitable for large deformations. It is approximated using Sinkhorn's algorithm2 (i.e. optimal transport with entropic constraints), as described in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. The main difficulty of approximating D MED is to find the best regularization parameter ( * = 8.10 -6 is the best in the hands experiments) and we set the minimum steps in Sinkhorn's loop to 200. For remaining experiments, we used the Chamfer's distance D CD to evaluate the data term 3 . Finally, optimal parameters of our ResNet-LDDMM are computed using the ADAM optimizer with a learning rate η = 10 -5 , β 1 = 0.9, β 2 = 0.999 and β 1 = 10 -8 . We consider σ = 0.1 in all experiments.

Qualitative Comparison to LDDMM

Both LDDMM and ResNet-LDDMM produce a topologypreserving transformation (i.e. a diffeomorphism) of the whole ambient space R 3 . However, there are several differences between the two make the ResNet approach both easier to run and more adapted to certain problems, particularly those involving very distinct motions in different areas of the considered shape. This is because LDDMM methods require choosing a certain "scale". For a discrete surface, when using a Gaussian kernel K(x, y) = exp( x-y 2 2σ 2 ), the scale is σ, and every vector field generated will be a sum of Gaussian vector fields with fixed variance σ, each centered at a point on the shape (see [START_REF] Arguillère | Registration of multiple shapes using constrained optimal control[END_REF] for example). As a result, moving points within distances less than σ in different directions requires a lot of energy, so such movements generally do not appear when minimizing the functional Eq. ( 3). However, the scale cannot be too small, or the motion will no longer need to preserve the topology of the triangulated surface. As a result, two main difficulties appear in LDDMM that the ResNet version improves upon.

-First, in LDDMM, one must find a "good" scale σ, which cannot be too small or too large, in order to allow a wide enough range of motions while still preserving the smoothness of the deformation. That is much less of a problem with ResNet-LDDMM: the size of the polytopes on which the velocity fields are computed not fixed, and so the algorithm automatically computes polytopes and polyhedrons of appropriate sizes. The role of scale falls instead on the width m of the network, However, we will see that the results are not particularly sensitive to a change of width less than an order of magnitude, and simply choosing a width of a few hundred yielded good results on every case we tested (see Sec. 4.3). We show in Fig. 7 both results of LDDMM and ResNet-LDDMM operating on pathological hearts (last row of Tab. 2). We can clearly see the qualitative superiority of our method in terms of deformations of the source shape to fit the target. It should be noted that this may simply be because we did not find the ideal scale for the LDDMM-matching, but that leads us to another, very different aspect in which ResNet-LDDMM seems superior: the computational time. On a CPU, each simulation of LDDMM takes a couple hours, while the ResNet version converges in minutes. Further there is no automated way to find the best scale, so finding the correct one for LDDMM simply requires testing several values (with a bit of intuition to avoid bad Solve the Flow Equation (ODE) ∂tφ(t, .) = v(t, φ(t, .)) s.t. at t = 0, φ(0, .) = q S and φ(1, .) is a Diffeomorphism. Paradigm optimize-then-discretize (Hamiltonian formulation) discretize-then-optimize (Euler discretization) Admissible space (A, . A ): predefined RKHS induced by the chosen scale functional space of NNs f l (., θ l ) Kinetic energy

S(v) = 1 2 1 0 Av, v A dt = 1 2 1 0 v 2 A dt S(f ) = 1 2 l,i f l (x i , θ t ) 2 Optimization
Pontryagin's Maximum Principle (PMP) then GD Backpropagation (BP) with ADAM Velocity vectors Generated by convolution with the kernel Piece-wise affine in multiple polytopes Parameter of the model Positive parameter σ (not robust) Width m (robust) Best on Shapes with important features on a single scale Shapes can be of varying scale Computational cost Large computational time Efficient computational time ones). Hence, finding the best scale can sometimes take several days, and so we often settle one that is simply "good enough". Whether the results of Tab. 2 are due to not finding the correct scale, or to our ResNet beating the best scale is up to debate, but regardless the ResNet results were obtained on the first try, which for practical applications is a clear improvement. For synthetic heart, we report the results of rigid ICP instead of LDDMM as the high data resolution do not allow such simulations.

-Second, there may not even be a good scale in the LDDMM framework to compare certain shapes. This is generally caused by points belonging to very different parts of the shape that also happen to be very close, such as two fingers on a hand. Such matching problems are generally much harder for the usual LDDMM, because one needs to choose big enough scales of deformation in the reproducing kernel to ensure regularity of the shape. This can either prevent necessary deformations from occurring, or force the transformation to first separate and unnaturally expand the fingers during the first half of the transformation. This is also a well-known problem when tackling multiple shapes (see [START_REF] Arguillère | Registration of multiple shapes using constrained optimal control[END_REF] for example). This problem is particularly obvious in Fig. 6 when matching various hand positions, especially (but not only) in the intermediate deformation steps. On the other hand, thanks in part to only requiring bi-lipshitz regularity, ResNet-LDDMM can move two parts of the shape (such as two fingers) in opposite directions while keeping the regularization term small by encasing each part within distinct polytopes. Fig. 5 illustrates how ResNet-LDDMM performs better than LDDMM for the case of a hand. That is, the True Registration Error (see Sec. 4 for definition) is much lower, and the geodesic much more plausible in the case of ResNet-LDDMM compared to LDDMM.

-As a final difference between the methods, LDDMM is quadratic with respect to the resolution (i.e., the number of points), and is notoriously time-consuming to run. While matching two shapes usually takes a acceptable amount of time, matching hundreds (or even thousands) for adequate statistical analysis can quickly become impossible. Significant advances have been made using GPUs and the free library KeOps 4 on this front [START_REF] Charlier | Kernel operations on the gpu, with autodiff, without memory overflows[END_REF], but it is still timeconsuming to perform such an analysis, especially when one needs several retries to find the correct scales for the reproducing kernel. On the other hand, ResNet-LDDMM is much faster, especially at high resolution; the network itself actually has linear complexity with respect to the 4. www.kernel-operations.io resolution. Only the data attachment terms have quadratic complexity. Combined with the lack of needing compute a correct scale, this new method seems like a clear winner in this area (at least for more than a few hundred points). Tab. 1 summarizes the key differences between LDDMM and ResNet-LDDMM.

Ablation Study

Here, we study some important features of ResNet-LDDMM. These are the width m of the building blocks (which also defines the number of network parameters), the key role that the ReLU activation function play and the influence of the regularizer on the registration. In the following experiments, we evaluate different parameters using the Average Target Registration Error (TRE), reported in [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] as the RMSE (for Root Mean Square Error). It is given by Eq. ( 22): where ξ(.) is the ground truth registration of each point from the point set Q t to physically match a point in Q s .

TRE = xi∈Qs,ξ(xi)∈Qt x i -ξ(x i ) 2 |Q s | 1/2 , (22) 

Impact of the Network's Width m

We study in Fig. 8 registration results on hand shapes with large deformations separating them when varying our Network's width m (m is also the width of each building block). It is clear from the figure that the higher is the width m, the lower is the TRE, which indicates accurate registration. Indeed, as the width m of each building block is taken to be large, the distribution over functions f l tends to converge towards a Gaussian process. On can appreciate the smoothness of generating velocity fields from the second row of Fig. 8. However, due to the freedom given by the width m, some irregular (with respect to the neighborhood) deformations appear in the deformed source. In fact, the number of polytopes, in which our velocity fields are predicted, depends on the parameter m. Thus, a wide-network isn't necessarily the best choice. Accordingly, in remaining experiments, we set m * = 900 the number of neurons in the first two layers, which provides an acceptable trade-off to obtain smooth flows of velocity fields. 

Influence of the ReLU Activation Function

As we have stated before, the ReLU activation function plays a key role in achieving correct transformations. This is illustrated in the three panels of Fig. 9, where different registration results are reported for ReLU, LeakyRelu and Tanh activation functions. We recall that the activation function is element-wisely applied to the output of the first layer of each building block. It is clear that while the ReLU family allows computing a good transformation and achieve accurate registration, Tanh doesn't (It is also the case the in absence of activation function). ReLU activation function not only dictates how the space needs to be divided to compute the velocity fields (for a different phalanx of the fingers, in this case), but it also improves the optimization (by speeding up the training) as it forces several outputs (of the first layer) to be zero. This makes the ReLU activation function a key ingredient in our ResNet-LDDMM architecture. In our experiments, we make use of the LeakyReLU version. 

Role of the Regularizer

We end our ablative study by revealing the role of the regularizer in our joint geometric-neural network framework, ResNet-LDDMM. We recall that following the LD-DMM formulation, our regularizer is also the summation of all the kinetic energy of the system at all time-steps, i.e. S(f ) = 1 2 1 0 S t (f t )dt, where S t (f ) = f t (φ(t, .), θ t ) 2 2 . To make this clear, we vary the parameter σ in Eq. ( 6), where 1/2σ 2 is the weight of the data term, and we report registration results as shown in Fig. 10. We recall that σ and the weight given to the data term vary inversely (thus, the higher σ, the higher the regularizer contribution). It is clear in Fig. 10 that our regularizer reduces the kinetic energy of the whole system while trying to connect the source to the target. That is, for all values of σ, the final transformation is plausible with quite regular and smooth time-dependent velocity fields. However, an optimal choice σ * allows a minimizing path to be found and enables Φ(1).q S to be in the neighborhood of q T . Accordingly, we set σ * = 0.1 as it guarantees, in general, a good balance between a low kinetic energy and an accurate registration.

Anatomical Registration Experiments

We mainly consider the datasets released in [START_REF] Suwelack | Physics-based shape matching for intraoperative image guidance[END_REF] and [START_REF] Duchateau | Model-based generation of large databases of cardiac images: synthesis of pathological cine mr sequences from real healthy cases[END_REF].

The first one, contains three liver models that have been deformed by means of a non-linear bio-mechanical For each model, the original mesh as well as the deformed mesh are provided. From the second dataset, we select the sequence of a deforming healthy heart (generated from the STACOM2011 Challenge data 5 using the model described in [START_REF] Duchateau | Model-based generation of large databases of cardiac images: synthesis of pathological cine mr sequences from real healthy cases[END_REF]). In Tab. 2, we report the TREs for the three pairs of livers (original and deformed counterparts, i.e. #i → #iDef). We also report the TREs of registering frames F#8, F#16, F#24 and F#33 to F#0, taken from the a whole pumping cycle of a healthy heart. We notice similar results achieved by ResNet-LDDMM and LDDMM on these particular examples. The LDDMM implementation applied here consists of a Varifold-type data term [START_REF] Charon | The varifold representation of nonoriented shapes for diffeomorphic registration[END_REF] with scale 4, with σ = 0.25 and a scale in the Gaussian kernel equal to 8. One can clearly see that on anatomical shapes, D CD in the data term achieves better results than D MED . We report TREs of three methods on segmented hearts (Fig. 7). Through Fig. 11 and Fig. 12 we provide some qualitative evaluations of our ResNet-LDDMM framework operating on complex anatomical shapes (a heart valve and a cortex). The outputs of our algorithm exhibit smooth and regular velocity vector fields. Final absolute displacements to reach the target from the source are also reported (arrow colors 5. http://www-sop.inria.fr/asclepios/data/STRAUS/meshes/ indicate the amount of displacement in R 3 ). The very challenging problem of registering cortex shapes can be noted from Fig. 12. 

Human Body Registration Experiments

We come now to a second kind of comparison involving human body shapes and a set of state-of-the-art non-rigid registration techniques, N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF] and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] operating on 3D point clouds. We point out that, while our ResNet-LDDMM does not require any correspondence initialization, these techniques need a good initialization to work properly. In the interesting study presented in [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF], initialization is often achieved by providing several pairs of corresponding feature points, determined either using the SHOT feature, or through manual labeling. For fair comparison, we use the same data from [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF]. Due to the high resolution of the meshes, we make use of the Chamfer's distance D CD (Eq. ( 8)) to evaluate the data term. We notice that, for our LDDMM formulation, the transformed source will fall to a point in the near neighborhood of the target shape for a given error tolerance defined by the data attachment term. This is important as we do not expect better accuracy, i.e. lower TREs than those achieved by nonrigid registration techniques. Accordingly, in the following tables, our TREs are highlighted in bold when they are found to be lower than of those of the other approaches.

Registration Modulo Small and Large Deformations

First, we report the registration results of our ResNet-LDDMM in the presence of both small and large deformations between the source shape and the target shape. A nearest neighbor initialization was provided for N-ICP, RPTS, SVR-0 and QNS to solve the small deformation problem. In contrast, large deformations use SHOT and diffusion pruning to get initial correspondence (we refer the reader to [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] for the optimal parameters of these algorithms). In both experiments ResNet-LDDMM achieves competitive results without requiring any initial corresponding pairs. Another important difference is that, while ResNet-LDDMM is a Riemannian-like framework with a propor distance to compare shapes and algorithms to compute geodesics, non-rigid registration techniques cited above does not. They do not even guarantee diffeomorphic transformation.

TABLE 3

Small deformations -Comparison to N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF], SVR-0 [START_REF] Guo | Robust non-rigid motion tracking and surface reconstruction using l0 regularization[END_REF] and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] -TREs (in meters) on examples taken from [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF]. The behavior of non-rigid registration techniques under the presence of noise and outliers in the target shape as well as their ability to recover missing data are important considerations. In the next paragraphs we report some results regarding these aspects and compare with our framework.

Pair

Robustness to Noise in the Target

Following the interesting experiments reported in [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] where a Gaussian noise is added, either sparsely or densely, to the target surface, taken from the "jumping" subset of [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF], we report our registration results compared with N-ICP, RPTS and QNR [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF]. In Tab. 5, we consider both experiments with dense noise (with two different variance [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF]) and sparse noise (5% or 50% of vertices affected).

TABLE 5

Robustness to noise -Comparison to N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF], and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] As a mandatory initialization step, N-ICP, RPTS and QNS use SHOT and diffusion pruning for the first and third rows and 60 manually selected labeled landmarks for reaming experiments. Again, these experiments confirm the competitiveness of ResNet-LDDMM. Fig. 13 zooms on our result reported in the second row of Tab.5. It shows the geodesic path and the deformed shape (end point). One can appreciate how smooth and noiseless is the deformed source, while the target shape is very noisy.

Robustness to missing data in the Target

Here, we study the behavior of our approach to missing data in the target. We report in Tab. 6 ResNet-LDDMM results compared to N-ICP, RPTS, SVR-0 and QNR. The original models are taken from the "bouncing" dataset of [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF]. Target models have been built by removing some parts from the original model (an example is provided in Fig. 14, right bottom corner).

TABLE 6

Recovering missing data -Comparison to N-ICP [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS [START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF], SVR-0 [START_REF] Guo | Robust non-rigid motion tracking and surface reconstruction using l0 regularization[END_REF] and QNS [START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] -RMSE (in meters) on examples from [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF]. Fig. 14 focuses on the pair #6 given in Tab. 6. It shows on the top panels different TREs of state-of-the-art registration techniques (N-ICP, RPTS, SVR-0 , and QNS) in addition to our ResNet-LDDMM. At the bottom, we show the geodesic path generated using Algo. 2. The superiority of ResNet-LDDMM in the examples with (*) demonstrates its ability to deal with missing data in the target shape thanks to the shape prior preserved along the geodesic path when fitting to the target. This is visible on the right leg where ResNet-LDDMM achieves less errors. Despite the obscured data located in the higher part of the target shape, errors for all methods, except ResNet-LDDMM, are mainly located on the right leg. This is mainly due the diffeomorphic registration guaranteed by our method.

Pair

CONCLUSION AND FUTURE DIRECTIONS

Grounding on the elegant LDDMM framework for shape registration, combined with powerful deep residual neural networks, we have proposed a novel joint geometricneural network Riemannian-like framework for diffeomorphic registration of 3D shapes. Our registration schema is completely unsupervised, i.e. only source and target shapes are needed. A two-level regularization process was introduced, first by the network's structure and induced highdimensional functional spaces and second by minimizing the time-integrated kinetic energy. This allows the deformed shape to move along its orbit while tolerating an error defined by a data attachment term. Our ResNet-LDDMM geometrically builds time-dependent vector fields by first finding the optimal partition of the space into polytopes, and then predict the correct affine transformation on each of these polytopes. Several experimental illustrations involving both internal anatomical shapes and external human body shapes illustrate the ability of our ResNet-LDDMM framework computing diffeomorphic registrations. We believe that the present research builds an interesting first bridge between the purely geometric, well founded, LD-DMM Riemannian framework and deep neural networks. Several aspects of our ResNet-LDDMM have nice geometric interpretations and, inversely, suitable geometric operations Fig. 13. Geodesic path connecting a source human shape to a deformed shape with a noisy human body shape as a target (last column). are achieved by our network. Our framework also opens the door to designing more efficient solutions in computational anatomy, statistical shape analysis and medical image registration. We leave for future investigation the connection of our ResNet-LDDMM with Kernel Methods through the recent theoretical study of networks with infinite-width.

Fig. 1 .

 1 Fig.1. Overview of our joint ResNet-LDDMM diffeomorphic registration framework -the ResNet architecture is shown on the left, comprising of an ensemble of successive two-layers ReLU networks followed by a dimensionality reduction layer (the ensemble is called a building block). Each predicts a time-dependent velocity field f l (., θ l ). On the right, we show the flow of obtaining velocity fields and diffeomorphisms Φ l , including the end point Φ L , achieved by integration. In theory (e.g.[START_REF] Miller | Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms[END_REF]), both orbits [q S ] and [q T ] coincide, so q S can be deformed to a point in the neighborhood of q T , for a given data fit error. Thus, the shape space is nothing else than the orbit of qs.

Fig. 2 .

 2 Fig.2. A pictorial summary of our diffeomorphic registration results. Top: a geodesic path connecting a source hand shape to a target shape; Bottom: the inverse path (source and target change roles); Center-right: both flows of the time-dependent velocity fields f l (., θ l ), building blocks of our ResNet-LDDMM. Center-left: final Euclidean displacements and registration results.

Fig. 3 .

 3 Fig. 3. Geodesic paths connecting source and target hand shapes modulo deformations (last row -index and middle fingers interchanged).

3 :

 3 while l ≤ L do 4:

Fig. 4 .

 4 Fig. 4. Geodesic paths connecting source (first image) and target anatomical shapes (last image) of different subjects. From top to bottom: whole heart, liver, femur 1-2 (left) followed by femur 2-1 (right), heart valve and LV+RV (left and right ventricles of pathological hearts).
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  n,b (x) =(n T x + b)

  that k = -, D k (x) = 0, and for every other k, D k (x) = n T k x + b k . Plugging this formula into Eq.(20), we get f (x, θ) = k, k =+ ( a kn T k x 3 by 3 matrices

Fig. 5 .

 5 Fig. 5. LDDMM vs. ResNet-LDDMM -registration results of hand shapes with fingers moving in opposite directions.

Fig. 6 .

 6 Fig. 6. Four examples to compare ResNet-LDDMM (ours) to LDDMM.

Fig. 7 .

 7 Fig. 7. Three viewpoints of geodesic paths generated by LDDMM (left) and ResNet-LDDMM (right) between pathological hearts (last row of Tab. 2).

Fig. 8 .

 8 Fig. 8. Impact of the network width m. We vary the value of m from 3 to 3600, corresponding TREs and generated flows of velocity fields.

Fig. 9 .

 9 Fig. 9. Influence of the ReLU activation function on registration results: From left to right: ReLU, LeakyReLU and Tanh (hyperbolic tangent).

Fig. 10 .

 10 Fig. 10. Role of the Regularizer (or parameter σ) in ResNet-LDDMM.

Fig. 11 .

 11 Fig. 11. Registration of heart valves (data from fshapes Toolkit).

Fig. 12 .

 12 Fig. 12. Registration of Cortex shapes (data from the fshapes Toolkit).

Fig. 14 .

 14 Fig. 14. Robustness to missing data in the target shape. Comparison to N-ICP, RPTS, SVR-0 , QNS and a geodesic connecting source and target generated by our ResNet-LDDMM (Algo. 2).

TABLE 1

 1 Key differences between the original LDDMM framework and our ResNet-LDDMM.

Algorithm LDDMM (Large Deformation Diffeomorphic Metric Mapping)

ResNet-LDDMM (or LDDMM Revisited) Problem

TABLE 2

 2 Liver and heart registration -TRE (in millimeters) on the BPSM in silicon liver dataset[START_REF] Suwelack | Physics-based shape matching for intraoperative image guidance[END_REF] and Synthetic Cardiac dataset from[START_REF] Duchateau | Model-based generation of large databases of cardiac images: synthesis of pathological cine mr sequences from real healthy cases[END_REF]. CD ) ours (D MED ) #1 → #1-Def.

	Deformed Liver	LDDMM ours (D 0.35327 0.386471	1.322229
	#2 → #2-Def.	0.28004	0.374769	2.322149
	#3 → #3-Def.	0.25295	0.396076	3.737282
	F#8 → F#0	9.372447	0.826361	2.181144
	F#16 → F#0	6.747137	0.986380	2.566208
	F#24 → F#0	2.942818	0.662351	1.972288
	F#33 → F#0	1.320668	0.469837	1.868704
	Segmented Heart	LDDMM	ours (D CD ) ours (D MED )
	S#5 → S#8	3.10755	2.38700	3.004888

Synthetic 4D Heart Rigid (ICP) ours (D CD ) ours (D MED )

TABLE 4

 4 Large deformations -Comparison to N-ICP[START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF], RPTS[START_REF] Li | Robust non-rigid registration with reweighted position and transformation sparsity[END_REF] and QNS[START_REF] Yao | Quasi-newton solver for robust non-rigid registration[END_REF] -TREs (in meters) on examples taken from[START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF].

		N-ICP	RPTS	SVR-0	QNS	ours (D CD )
	#1 (crane)	0.0083	0.0113	0.0015	0.0020	0.00599
	#2 (march)	0.0160	0.0022	0.0090	0.0117	0.00989
	#3 (samba)	0.0008	0.0031	0.0022	0.0021	0.00257
	#4 (squat)	0.0044	0.0031	0.0044	0.0019	0.00311
	#5 (swing)	0.0093	0.0095	0.0078	0.0076	0.01091
	Pair	N-ICP	RPTS	SVR-0	QNS	ours (D CD )
	#1 (crane)	0.0105	0.0124	-	0.0041	0.045134
	#2 (crane)	0.0196	0.0204	-	0.0093	0.049671
	#3 (swing)	0.0107	0.0108	-	0.0029	0.06033
	#4 (swing)	0.0134	0.0117	-	0.0058	0.05118

  in terms of RMSE (in meters) on examples from[START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF].

	Exp.	N-ICP	RPTS	QNS	ours (D CD )
	5% (sparse)	0.0785	0.0076 0.0079	0.0531
	50% (sparse)	0.0954	0.0269 0.0258	0.0636
	100% (dense)	0.0473	0.0184 0.0159	0.0354
	100% (dense)	0.0680	0.0178 0.0211	0.0288

We use the CPU implementation available here.

We use the GPU implementation available here.