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Information-Theoretic Sensor-Based Predictive Control for
Autonomous Vehicle Navigation: A Proof of Concept

David Pérez-Morales1 and Vincent Fremont2

Abstract— This paper explores the feasibility of an
Information-Theoretic Sensor-Based Predictive Control (IT-
SBPC) approach for autonomous navigation in presence of
pedestrians. Our technique relies solely in sensor data expressed
relative to the vehicle and therefore no localization is inherently
required. By combining the advantages of the information-
theoretic framework and sensor-based formalism, the proposed
technique drives the vehicle safely and smoothly towards the
desired goal. Several real-time simulated scenarios, showing
that the car is able to reach the goal with centimeter-level
accuracy, validate the effectiveness of our approach.

I. INTRODUCTION

Vehicles and Intelligent Transportation Systems have fol-
lowed a quick mutation thanks to the growing use of electric
technology and the emergence of autonomous navigation
techniques. The hype created around self-driving vehicles
even lead parts of the industry to overestimate their arrival
[1] as commercial products. In spite of the efforts from the
industry and academia to reach fully autonomously driving
capabilities (level 5), there’s not yet a system with such
capacities [2]. According to different studies, pedestrian
populating environments present the major challenges due to
the ethical, social and legal considerations that arise [3], [4].
Moreover, crowded environments present challenges even
for experienced drivers. Therefore, being able to navigate
safely and effectively under such conditions would represent
a major milestone towards fully autonomous driving.

In order to deal with pedestrian populating environments,
Model Predictive Path Integral (MPPI) Control techniques
appear as an interesting path to explore due to the pre-
diction step inherently considered. MPPI control algorithms
and its derivatives have been extensively investigated for
autonomous navigation tasks [5], [6], [7]. Some of the key
features of this type of techniques are that it is a derivative-
free method optimal control method that can naturally deal
with non-linear, non-convex and non-smooth system dynam-
ics and cost functions. Moreover, it is straightforward to
impose constraints on both the state and control inputs of
the system.

Another interesting alternative for autonomous navigation
tasks is the use of sensor-based control techniques. In par-
ticular, they have been proven to be valid for navigation [8],
dynamic obstacle avoidance [9] and for parking applications
in static [10] and dynamic environments [11]. A key benefit
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of these techniques is their great robustness against modeling
and calibration errors, particularly when then pose of the
robot doesn’t need to be reconstructed. Moreover, because
they rely only in locally perceived information, they do not
suffer from potential localization issues.

In this work we aim to provide a proof of concept that
combines the advantages of the Information-Theoretic Model
Predictive Control (ITMPC) framework [6] and the sensor-
based formalism [12] by proposing an Information-Theoretic
Sensor-Based Predictive Control approach capable of navi-
gating towards a given goal while avoiding collision with
(potentially dynamic) surrounding obstacles. Given that this
work is a proof of concept, a single obstacle is considered in
the environment. Moreover, dynamic obstacles are assumed
to be pedestrians.

In the next section the kinematic model of the vehicle,
the multi-sensor formalism and the interaction model that
allows to describe the navigation task and collision avoidance
constraints are presented. Afterwards, the control strategy is
presented in Section III. The simulation setup is described
in Section IV and the obtained results are presented in
Section V. Finally, some conclusions are given in Section VI.

II. MODELING AND NOTATION

A. Car-like robot model and notation

Considering the well-known kinematic model of a car
with rear-wheel driving [13], the vehicle’s twist is defined
by the following column vector (elements separated by a
semicolon):

vm = [vxm ; θ̇m], (1)

where vxm and θ̇m are, respectively the longitudinal (along
xm) and rotational velocities expressed in the moving base
frame Fm. Additionally, one can link the steering angle δ to
θ̇m using the following equation:

θ̇m =
vxm tan δ

lwb
. (2)

where lwb is the distance between the front and rear wheel
axles. Therefore, it is possible to consider as the actual con-
trol input of the robotized vehicle the following expression:

vr = [vxm ; δ] (3)

Nonetheless, in order to minimize the chattering produced
by the stochastic nature of the proposed approach, the time
derivative of (3) is considered as the input of the transition
model introduced in the next section:

u = [v̇xm ; δ̇] (4)
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Fig. 1. (a) Kinematic model diagram for a car-like rear-wheel driving
robot. (b) Robotized Renault ZOE used as a basis for the simulation model
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Fig. 2. (a) Multi-sensor model. (b) Perceived pedestrian and its estimated
orientation.

As such, it is possible to retrieve (3) from (4) with a simple
numerical integration:

vr = vr + tsu (5)

where ts is the sampling period.
It should be noted that, thanks to the multi-sensor-based

formalism considered (introduced in the next subsection), our
closed-loop control law does not need to have any knowledge
about the Cartesian pose of the vehicle.

The vehicle used for simulation, represented by its bound-
ing rectangle in Fig. 1a, is a Renault ZOE (Fig. 1b). Its
relevant dimensional parameters are presented in Table I.

TABLE I
DIMENSIONAL VEHICLE PARAMETERS

Parameters Notation Value
Wheelbase: Distance between the front and
rear wheel axles

lwb 2.588 m

Rear overhang: Distance between the rear
wheel axle and the rear bumper

lro 0.657 m

Total length of the vehicle lve 4.084 m
Total width of the vehicle wve 1.945 m

B. Multi-sensor modeling
For the sake of clarity, the considered multi-sensor mod-

eling (detailed in [14]) is recalled in this subsection.
Let us consider a robotic system equipped with k sensors

(Fig. 2a) that provide data about the robot pose in its
environment. Each sensor Si gives a signal (sensor feature)
si of dimension di with

∑k
i=1 di = d.

In a static environment, the sensor feature derivative can
be expressed as follows:

ṡi = L̆iv̆i = L̆i
iT̆mv̆m (6)

where L̆i is the interaction matrix [12] of si
(dim(L̆i) = di × 6) and iT̆m is the 3D screw
transformation matrix that expresses the sensor twist v̆i
(which is expressed in its corresponding frame Fi) with
respect to the robot twist v̆m, expressed in the mobile frame
Fm which is used as control frame.

Denoting s = (s1; . . . ; sk) the d-dimensional signal of the
multi-sensor system, the signal variation over time can be
linked to the moving vehicle twist:

ṡ = L̆sv̆m (7)

with L̆s = L̆T̆m, where L̆ and T̆m are obtained by
concatenating either diagonally or vertically, respectively,
matrices L̆i and

i
T̆m ∀ i ∈ [1 . . . k].

Planar world assumption: Assuming that the vehicle
to which the sensors are rigidly attached evolves in a plane
and that the sensors and vehicle have vertical parallel z axes,
all the twists are reduced to [vxi ; vyi ; θ̇i] hence the reduced
forms (denoted by the accent ˇ) of the various matrices and
vectors (denoted by the accent ˘) are considered. Ľi is of
dimension di × 3, v̌m = [vxm ; vym ; θ̇m] and iŤm is defined
as:

iŤm=

 cos(mθi) sin(mθi) xi sin(mθi)− yi cos(mθi)

− sin(mθi) cos(mθi) xi cos(mθi) + yi sin(mθi)

0 0 1


(8)

where mti = [xi; yi] and mθi are, respectively, the position
and orientation of Si (frame Fi) with respect to Fm ex-
pressed in Fm. Furthermore, since in the considered model
the control frame Fm is attached to the vehicle’s rear axle
with origin at the point M (Fig. 1a), the robot twist v̌m can
be further reduced to (1). Thus, it is possible to write:

ṡ = Ls vm (9)

where Ls is composed of the first and third columns of Ľs.
Moreover, if the appropriate considerations are taken in the

interaction model, sensor-based control strategies are capable
of dealing with moving features [15]. (7) can be modified to
account for the velocity of moving sensor features as follows:

ṡ = L̆s(v̆m − v̆mo) (10)

where v̆mo is the twist of the moving feature expressed in
the vehicle frame. Furthermore, if at some point a moving
feature becomes static (i.e. v̆mo is null), (10) would simply
become ṡ = L̆sv̆m, expression that can be easily reduced
to (9) with no further impact on the modeling. For this work
we assume that v̆mo is known.

C. Interaction model

For the interaction model it is assumed that the system
is capable of perceiving its desired goal and (potentially
dynamic) surrounding obstacles as points in, respectively,
polar (ρ, θ) and Cartesian (x, y) coordinates. Therefore, the
features in polar coordinates and the associated interaction
matrix are denoted as [16]:

sρθ = [ρ; θ], (11)



Ľρθ =

[
− cos(θ) − sin(θ) 0

sin(θ)
ρ − cos(θ)

ρ −1

]
. (12)

Similarly, the features in Cartesian coordinates and the
associated interaction matrix are denoted as [12]:

sxy = [x; y], (13)

Ľxy =

[
−1 0 y
0 −1 −x

]
. (14)

Without entering in matters of social interaction, the
moving obstacle is assumed to be a pedestrian. It is modeled
as a point in Cartesian coordinates with a given orientation
(Fig. 2b).

III. INFORMATION-THEORETIC SENSOR-BASED
PREDICTIVE CONTROL

The ITMPC [6] strategy, which our work is based upon,
is a stochastic Model Predictive Control method that can be
applied to non-linear (with respect to the control input or
the state) systems and with non-convex cost objectives. The
key idea of the approach is to evaluate the cost of thousands
of trajectories (rollouts) sampled from the system dynamics
using a Monte-Carlo simulation in real time.

Let us consider a discrete time dynamical system of the
form

st+1 = f(st,wt) (15)

where s ∈ Rd is the state of the system at time t, wt ∈
Rn is the input to the system at time t and f is the state-
transition function of the system. It is assumed that we have
no direct control over the input variable wt and instead wt

is a random vector generated by a white-noise proces with
density function wt ∼ N (ut,Σ) in which we have a direct
control over the mean ut. This assumption translates to the
low-level controller achieving the set-point with some error
that satisfies a Gaussian distribution.

Given a finite-time horizon t ∈ {0, 1, 2, . . . , T − 1},
the stochastic optimal control aims to find a control input
sequence ũ = {u0,u1, . . . ,uT−1} ∈ Rn×T that minimizes
the expectations E [S(st, w̃)] with respect to all the simulated
rollouts generated using (15). The optimal control problem
can be formulated as:

J = min
ũ∈U

E [S(st, w̃)]

= min
ũ∈U

E

[
φ(sT ) +

T−1∑
t=0

(q(st) + γuT
t Σ−1(ut −wt))

]
(16)

where U is the set of admissible command sequences,
S(st, w̃) is the state-dependent cost to go of a rollout while
φ(sT ) and q(st) are, respectively, the terminal and the state-
dependent running costs, and γ = λ(1 − α) where λ is
the inverse temperature and 0 <= α <= 1 is a parameter
that balances the requirements of low energy (α = 0, ũ is
pushed to zero) and control smoothness (α = 1, ũ is kept
near the current planned control sequence). As noted in [6],
this formulation is closely related to the well-known policy
gradient theorem typically used in reinforcement learning.

Algorithm 1: Information-Theoretic Control
Data: f : Transition mmodel;
K: Number of rollouts;
T : Number of time steps;
ũ = {u0,u1, . . . ,uT−1}: Initial control sequence;
φ, q,Σ, γ, α, λ: Cost functions/parameters;
SGF: Savitzky-Golay convolutional filter;

1 while task not completed do
2 s0 ← GetState();
3 Sk ← InitTrajectoryCost(), Sk ∈ RK ;
4 for k ← 0 to K − 1 do
5 s← s0;
6 Sample εk = {εk0 , εkT−1} ∈ N (0,Σ);
7 for t← 0 to T − 1 do
8 if k ≥ (1− α)K then
9 wt = ut + εkt ;

10 else
11 wt = εkt ;

12 s← f(s,wt);
13 Sk+ = q(s) + γuT

t Σ−1(ut −wt);

14 Sk+ = φ(s);

15 β ← mink[Sk];
16 η ←∑K−1

k=0 exp
(
− 1
λ (Sk − β)

)
;

17 for k ← 0 to K − 1 do
18 wk ← 1

η exp
(
− 1
λ (Sk − β)

)
;

19 for t← 0 to T − 1 do
20 ũ← ũ +

∑K−1
k=0 wkε

k

21 ũ← SGF(ũ);
22 vr ← NumericalIntegration(vr,u0);
23 SendToActuators(vr);
24 for t← 1 to T − 1 do
25 ut−1 = ut;

26 uT−1 = Init(uT−1);

Our Information-Theoretic Sensor-Based Predictive Con-
trol strategy is detailed in Algorithm 1. It starts by getting the
current state of the system and then producing K trajectory
samples. Each rollout is generated by simulating forward
the dynamics using a randomly generated control sequence.
A cost based on the state and inputs is computed for each
rollout. Having computed the cost of each trajectory (which
is initialized to zero), the control sequence is updated based
on the minimum sampled cost and the probability-weighted
average over all the perturbation sequences. Afterwards, the
updated control sequence is passed through a Savitzky-Golay
Filter (SGF). A simple numerical integration (5) is used to
obtain the control input to be sent to the vehicle. Finally, the
control sequence of is slid down in order to warm-start the
next control loop iteration.

The key difference with the work presented in [6] is the
use of a numerical integration step in the transition model
(Algorithm 2) and to obtain the final control input vr to be
sent to the vehicle. As acknowledged in [6], the stochastic



Algorithm 2: Transition Model f
Data: s,w: State and input;
vr: Current control input;
vmax, δmax: Maximum control input values;
ts: Sampling period;

1 vr ← NumericalIntegration(vr,w);
2 vr ← ClampMaxValues(vr);
3 vm ← BuildTwist(vr);
4 sρθ ← sρθ + Lsρθ ts vm;
5 sxy ← sxy + Ľsxy ts (v̌m − v̌mo);

TABLE II
CONTROL-RELATED PARAMETERS

Parameter Value
Control frequency 20 Hz
T 80
K 4500
λ 3.5
α 0.99
Σ diag(0.00125,0.0035)
Init(uT−1) (0,0)
InitTrajectoryCost() 0
vmax ≤ 2.7778m/s
δmax 0.5236 rad

nature of the Information-Theoretic Model Predictive Control
strategy can lead to significant chattering. We found that even
after applying a SGF to the control sequence, the non-smooth
behavior of the control was still strongly present, especially
when the vehicle starts relatively far away from the goal. By
using the aforementioned numerical integration step (5) we
managed to considerably reduce this effect.

IV. SIMULATION SETUP

In order to evaluate the performance of our proposed
IT-SBPC approach we make use of an in-house developed
fast prototyping environment using the same software ar-
chitecture as the one inside the real vehicle. In addition
to behaving nearly identically (form a software architec-
ture point of view) to the real car, this fast prototyping
environment simulates as well the dynamics of the vehicle
leading to rather realistic simulations. Moreover, to simulate
the pedestrian we make use of a modified version [17] of the
open source crowd simulator pedsim ros [18]. The pedestrian
generated by pedsim ros is aware of the vehicle and thus its
behavior/motions are influence by it.

Considering that the task is to reach a goal while avoiding
collision, the state-dependent cost function is defined as:

q(s) = eTQe + vT
mRvm + 104C (17)

where e = sρθ−s∗ρθ, with s∗ρθ being the desired value (i.e. the
goal to be reached) of sρθ. Q and R are weighted matrices
that regulate the influence of, respectively, the different
elements of the task sensor features and of the vehicle’s twist.
These matrices are defined as:
Q = diag(0.55, 1.0) (18a) R = diag(2.5, 30.0) (18b)

Finally, to avoid collision with the obstacle perceived
as sxy , C = w(x)w(y), where w(s) is a generic smooth

Fig. 3. Generic smooth weighting function w(s)

weighting function (Fig. 3) that depends on the current
value of a given sensor feature. The activation boundaries
ss

±
, s± of w(s) are defined such that they describe two

bounding rectangles for the vehicle 1.0 m and 4.0 m longer
and 0.7 m and 3.7 m wider than lve and wve respectively.
These bounding rectangles are denoted by the red and orange
ones in Figs. 4a-7a. The size of the smaller bounding
rectangle has a direct impact on the safety distance to
the obstalce while the size of the larger one affects the
distance at which the vehicle starts to react to the obstacle.
The sizes chosen were found empirically aiming to balance
safety and comfort requirements while avoiding being overly
convservative. The minimum w− and maximum w+ values
of w(s) are, respectively 0 and 1. The rest of the control-
related parameters are given in Table II.

It should be noted that, contrary to the typical real-time
implementations of MPPI-like techniques which make use
of GPUs [19], [6], [20], our implementation runs on a single
core of an AMD Ryzen 9 5950X.

Finally, all the simulations presented in the next section
start with the goal placed at 51 m straight ahead of the
car and s∗ρθ = [1; 0]. The goal placement was chosen in
order to let the car smoothly reach its maximum allowed
velocity before having to perform any avoidance maneuver.
s = [sρθ; sxy] is assumed to be already expressed in the
control frame Fm.

V. RESULTS

A. Static obstacle

We start the assessment of our approach with the easiest
case: A static obstacle placed between the starting and
desired positions, specifically at 25 m straight ahead of the
car. As it can be seen in Fig. 4, the vehicle successfully and
smoothly (Fig. 4d) reaches the goal while avoiding collision
with the static obstacle by slightly turning to the right to then
later turn left to keep moving towards the goal. The linear
velocity vxm (Fig. 4b) is generally smooth. The steering
angle δ (Fig. 4c) starts slightly unstable but it gets more
stable as the linear velocity approaches the maximum value
and it remains stable even when avoiding the obstacle. The
final error is e = [−0.0162;−0.0057].

B. Pedestrian with parallel motion, same orientation

We now move to a case where a simulated pedestrian is
present in the environment. Its motion is parallel to what
the ideal motion of the vehicle would be if no obstacles
were to be present. At the moment when the vehicle has
to avoid the pedestrian, both agents have mostly the same
orientation. Similarly to the previous case, the vehicle suc-
cessfully reaches the goal while avoiding collision (Fig. 5),
this time by slightly turning to the left to then later turn right
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Fig. 4. Static obstacle
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Fig. 5. Pedestrian with parallel motion, same orientation

to keep moving towards the goal. The collision avoidance
maneuver seems natural (Fig. 5a), i.e. not steering away
from the pedestrian too soon nor too late, thanks to the
pedestrian’s motion being considered in the predictions. The
comments on the control and task features signals from the
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Fig. 6. Pedestrian with parallel motion, opposite orientation

previous case apply for this one as well. The final error is
e = [−0.0210;−0.0001].

C. Pedestrian with parallel motion, opposite orientation

We now present a different case considering the same
simulated environment as in the previous one. This time the
vehicle and the pedestrian have mostly opposite orientations
at the moment of the collision avoidance maneuver. Again,
the vehicle successfully reaches the goal while avoiding
collision (Fig. 6). The evolution of the control and task
features signals is very similar to the previous case. The
final error is e = [−0.0193;−0.0019].

D. Pedestrian with perpendicular motion

Finally we consider a case where the pedestrian and
vehicle motions’ are mostly perpendicular. In this case as
well the car successfully reaches the goal while avoiding
collision (Fig. 7). This time our approach predicts that, given
the pedestrian’s motion, the best option to avoid collision
is to turn slightly to the left, even if that means that at
some point the car steers towards the pedestrian (Fig. 7a)
because, by the time the car would reach the line traced
by the pedestrian, it would have already moved downwards
and thus no collision occurs. The general comments on the
evolution of the control and task features signals from the
previous cases apply as well for this one. The final error is
e = [−0.0160;−0.0083].

VI. CONCLUSIONS

In this work we have presented an approach that combines
information-theoretic and sensor-based control techniques
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Fig. 7. Pedestrian with perpendicular motion

in order to navigate towards a given goal while avoid-
ing collision with obstacles. On the one hand, the sensor-
based formalism allows to define the navigation task and
collision avoidance constraints without inherently requiring
any knowledge of the car’s nor pedestrian’s position in a
reference fixed frame. On the other hand, the information-
theoretic framework allows to naturally handle non-linear
and non-smooth dynamics by forward simulating thousands
of trajectories in order to find an optimal control sequence.

The obtained results are rather encouraging as the vehicle
consistently manages to reach the goal without colliding with
the obstacle in many different scenarios. Moreover, the car
consistently achieves rather small final ||e|| ≤ 0.021 values.

Thanks to the relatively lightweight computations required
by the sensor-based formalism, our implementation is able
to run on a single CPU core of an AMD Ryzen 9 5950X.
Nonetheless, in order to handle multiple obstacles future
implementations would require some level of parallelization,
be it on CPU or GPU. Future work will focus on this issue.

Another interesting research path is to investigate different
cost functions to deal with arbitrarily shaped obstacles and
social interaction with pedestrians and other vehicles in
order to deal with the navigation challenges (safety, comfort,
efficiency) that multiple surrounding agents (pedestrians,
vehicles, etc) would cause.
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