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Information-Theoretic Sensor-Based Predictive Control for
Autonomous Vehicle Navigation: A Proof of Concept

David Rerez-Morale’ and Vincent Fremo#t

Abstract—This paper explores the feasibility of an of these techniques is their great robustness against modeling
Information-Theoretic Sensor-Based Predictive Control (IT- and calibration errors, particularly when then pose of the
SBPC) approach for autonomous navigation in presence of a1 doesn't need to be reconstructed. Moreover, because

pedestrians. Our technique relies solely in sensor data expressed th | v in | I ived inf i thev d t
relative to the vehicle and therefore no localization is inherently €Y Tely only in locally perceived information, they do no

required. By combining the advantages of the information- Suffer from potential localization issues.
theoretic framework and sensor-based formalism, the proposed In this work we aim to provide a proof of concept that

technique drives the vehicle safely and smoothly towards the combines the advantages of the Information-Theoretic Model
desired goal. Several real-time simulated scenarios, showing Predictive Control (ITMPC) framework [6] and the sensor-
that the car is able to reach the goal with centimeter-level . . . .
accuracy, validate the effectiveness of our approach. based formalism [12_] py proposing an Informatlon-Theoretm.
Sensor-Based Predictive Control approach capable of navi-
. INTRODUCTION gating towards a given goal while avoiding collision with

Vehicles and Intelligent Transportation Systems have folPotentially dynamic) surrounding obstacles. Given that this
lowed a quick mutation thanks to the growing use of electri¥/rk is a proof of concept, a single obstacle is considered in
technology and the emergence of autonomous navigatidhe environment. Moreover, dynamic obstacles are assumed
techniques. The hype created around self-driving vehicld@ b€ pedestrians. _ _ _
even lead parts of the industry to overestimate their arrival In the next section the kinematic model of the vehicle,
[1] as commercial products. In spite of the efforts from thdéhe multi-sensor formalism and the interaction model that
industry and academia to reach fully autonomously driving!lows to describe the navigation task and collision avoidance
capabilities (level 5), there's not yet a system with suclgonstraints are presented. Afterwards, the control strategy is
capacities [2]. According to different studies, pedestriaﬁrese”t?d in Section Il The_ simulation setup is describe_d
populating environments present the major challenges dueifb Section IV and the obtained results are presented in
the ethical, social and legal considerations that arise [3], [436_ection V. Finally, some conclusions are given in Section VI.
Moreover_, crowded_ environments pres_ent challenges_even Il. MODELING AND NOTATION
for experienced drivers. Therefore, being able to navigat
safely and effectively under such conditions would represe
a major milestone towards fully autonomous driving. Considering the well-known kinematic model of a car

In order to deal with pedestrian populating environmentgVith rear-wheel driving [13], the vehicle's twist is de ned
Model Predictive Path Integral (MPPI) Control techniqued®y the following column vector (elements separated by a
appear as an interesting path to explore due to the préémicolon):
diction step inherently considered. MPP!I control algorithms Vm = [V 3 m ] 1)
and its derivatives have been extensively investigated f%herevxm

autonomous navigation tasks [5], [6], [7]. Some of the key 'y 4.4 rotational velocities expressed in the moving base
features of this type of techniques are that it is a der'Vat'VeffameFm. Additionally, one can link the steering angleo

free method optimal control method that can naturally dea_lm using the following equation:

with non-linear, non-convex and non-smooth system dynam-

. Car-like robot model and notation

and _,, are, respectively the longitudinal (along

ics and cost functions. Moreover, it is straightforward to = Vy,, tan : @
impose constraints on both the state and control inputs of lwb
the system. wherely, is the distance between the front and rear wheel

Another interesting alternative for autonomous navigatioaxles. Therefore, it is possible to consider as the actual con-
tasks is the use of sensor-based control techniques. In pal input of the robotized vehicle the following expression:
ticular, they have been proven to be valid for navigation [8], B _
dynamic obstacle avoidance [9] and for parking applications Ve = [V ] ®)
in static [10] and dynamic environments [11]. A key benet Nonetheless, in order to minimize the chattering produced

! David Ferez-Morales an@Vincent Fremont are with LS2N, Laboratoire by '.{he .StOChaSth nature_ of the prOpOS.ed approach, thg _tlme
des Sciences du Nurique de Nantes:cole Centrale de Nantes, 1 rue de derivative of (3) is considered as the input of the transition

la Nog, 44321 Nantes, France model introduced in the next section:
1 David.PerezMorales@Is2n.fr
2 Vincent.Fremont@Is2n.fr u=_[vx,:d (4)



where L; is the interaction matrix [12] of s
(dim(L;) = ¢ 6) and ‘T, is the 3D screw
transformation matrix that expresses the sensor twijst
(which is expressed in its corresponding framg) with
respect to the robot twist,,, expressed in the mobile frame
F, which is used as control frame.
Denotings = ( s1;:::; sk) thed-dimensional signal of the
multi-sensor system, the signal variation over time can be
linked to the moving vehicle twist:

®) $=Lsvm (7)
Fig. 1. (a) Kinematic model diagram for a car-like rear-wheel driving
robot. (b) Robotized Renault ZOE used as a basis for the simulation modalith Ly = LT, whereL and T, are obtained by

concatenating either diagonally or vertically, respectively,
matricesL ; and'Tm 8i 2 [1:::Kk].

Planar world assumption:Assuming that the vehicle
z to which the sensors are rigidly attached evolves in a plane
N and that the sensors and vehicle have vertical paabakes,
all the twists are reduced {oy; ; vy, ; <] hence the reduced

forms (denoted by the accentof the various matrices and

vectors (denoted by the accentare consideredL; is of
dimensiond; 3, Vi = [V, ; Vy,, i -m] @nd' T, is de ned
as:

@ ®) 2 cos(" i) sin(™ i) xisin(™ ;) vicos(" i)3

E:'?énztéticfg.) Multi-sensor model. (b) Perceived pedestrian and its estlmateef- o= 4 Sin(m i) COS(m i) Xi COS(ﬂ i) +yi Sin(m i)5

As such, it is possible to retrieve (3) from (4) with a simple 0 0 1 (8)
numerical integration: where™t; = [x;;yi] and™ ; are, respectively, the position

and orientation ofS; (frame F;) with respect toF, ex-

pressed irF,. Furthermore, since in the considered model
wherets is the sampling period. the control frameF, is attached to the vehicle's rear axle

It should be noted that, thanks to the multi-sensor-basegth origin at the pointM (Fig. 1a), the robot twist, can
formalism considered (introduced in the next subsection), owe further reduced to (1). Thus, it is possible to write:
closed-loop control law does not need to have any knowledge

about the Cartesian pose of the vehicle. $= LsVm ©)

ing rectangle in Fig. 1a, is a Renault ZOE (Fig. 1b). Its \joreover, if the appropriate considerations are taken in the
relevant dimensional parameters are presented in Table l.interaction model, sensor-based control strategies are capable

control
frame

\ object
E frame|
m sersor  Object of
0

signal interest

Pedasirian:1

Vy =V + tsu (5)

TABLE | of dealing with moving features [15]. (7) can be modi ed to
DIMENSIONAL VEHICLE PARAMETERS account for the velocity of moving sensor features as follows:
Parameters. _ Notation | Value s= Ls(Vm Vmo) (10)
Wheelbase: Distance between the front andk, 2.588 m
rear wheel axles where v, is the twist of the moving feature expressed in
ﬁﬁg;f;ﬁ?iﬂg'tr?ésﬁggrc%uk;ﬁ;véfen the rfako 0657m the vehicle frame. Furthermore, if at some point a moving
Total length of the vehicle e 4.084 m feature becomes static (i.eno is null), (10) would simply
Total width of the vehicle Wye 1945 m becomes = Lgsvn,, expression that can be easily reduced
] ) to (9) with no further impact on the modeling. For this work
B. Multi-sensor modeling we assume that, is known.

For the sake of clarity, the considered multi-sensor mod- .
eling (detailed in [14]) is recalled in this subsection. C. Interaction model

Let us consider a robotic system equipped withensors For the interaction model it is assumed that the system
(Fig. 2a) that provide data about the robot pose in itis capable of perceiving its desired goal and (potentially
environment. Each sens& gives a signal (sensor feature)dynamic) surrounding obstacles as points in, respectively,

s; of dimensiond, with :<:1 di = d. polar (; ) and Cartesianx{y) coordinates. Therefore, the
In a static environment, the sensor feature derivative cdgatures in polar coordinates and the associated interaction
be expressed as follows: matrix are denoted as [16]:

s =Lvi=Li'Tmnvm (6) s =[5 [ (11)



" #
L = S?r](zs)( ) i')f;(( )) o . (12) _Algorithm 1: Information-Theoretic Control
B — 1 Data: f : Transition mmodel;
K: Number of rollouts;
T: Number of time steps;

Similarly, the features in Cartesian coordinates and the
associated interaction matrix are denoted as [12]:

Sy = [X¥]; (13) ;d; ;5 Cost functions/parameters;
1 0 vy SGF: Savitzky-Golay convolutional lter;
0 1 x (14) 1 while task not completedo
2 so  GetState();
Without entering in matters of social interaction, thes Sk InitTrajectoryCost(),Sx 2 R¥;
moving obstacle is assumed to be a pedestrian. Itis modeled | for k 0Oto K 1do

Ly =

as a point in Cartesian coordinates with a given orientation S  So;
(Fig. 2b). 6 Sample"® = f K; X . g2N(0;) ;
l1l. INFORMATION-THEORETIC SENSOR-BASED | for L Ot(‘,IT )idt?]en
PREDICTIVE CONTROL o ‘ We= U+ K
= k.
The ITMPC [6] strategy, which our work is based upon;g else
is a stochastic Model Predictive Control method that can beg L we = K
applied to non-linear (with respect to the control input or. s f(swy):
the state) systems and with non-convex cost objectives. Tbe S 4= ' (s)t +’ ol MU wy):
key idea of the approach is to evaluate the cost of thousands L =>x*=4d t t t

of trajectories (rollouts) sampled from the system dynamidg | Sk+= (s);
using a Monte-Carlo simulation in real time. 15 Bﬂnk[sk];
Let us consider a discrete time dynamical system of the E_Olexp 1(sy )
form 17 | fork OtoK 1do
St+1 = f (St,Wt) (15) 18 L Wi 1 exp 1 (Sk ) :
wheres 2 RY is the state of the system at tiniew, 2 g fort Oto E 1 do
R" is the input to the system at tinteandf is the state- L ¥ o+ E_Olwk--k

transition function of the system. It is assumed that we have
no direct control over the input variablg; and insteadv, 21 & SGF@);. .
is a random vector generated by a white-noise proces wih | Vr Numericalintegrationy; ; Uo);
density functionw; N (u¢; ) in which we have a direct 23 SendToActuators( );
control over the mean;. This assumption translates to the’* fort 1toT 1do
low-level controller achieving the set-point with some errof° [ ue 1= ug
that satis es a Gaussian distribution. 26 | Ut 1= Init(ur 1);

Given a nite-time horizont 2 f0;1;2;:::;T 1g,
the stochastic optimal control aims to nd a control input
sequencet = fug;ug;:::;ur 192 R” T that minimizes Our Information-Theoretic Sensor-Based Predictive Con-
the expectationE[S(s;; w)] with respect to all the simulated trol strategy is detailed in Algorithm 1. It starts by getting the
rollouts generated using (15). The optimal control problergurrent state of the system and then produdingrajectory

can be formulated as: samples. Each rollout is generated by simulating forward
J = min E[S(st; W)] the dynamics using a randomly generated control sequence.
w2U # A cost based on the state and inputs is computed for each

X1 rollout. Having computed the cost of each trajectory (which

=mnE  (st)+  (a(s)+ ui Hue w) is initialized to zero), the control sequence is updated based

t=0 16) ©On the minimum sampled cost and the probability-weighted
where U is the set of admissible command sequence&§Verage over all the perturbation sequences. Afterwards, the
S(s:w) is the state-dependent cost to go of a rollout whild!pdated control sequence is passed through a Savitzky-Golay

(st) andq(s:) are, respectively, the terminal and the stateFilter (SGF). A simple numerical integration (5) is used to
dependent running costs, and= (1 ) where s obtain the control input to be sent to the vehicle. Finally, the

the inverse temperature afd<= < = 1 is a parameter control sequence of is slid down in order to warm-start the

that balances the requirements of low energy=(0, & is  Next control loop iteration.

pushed to zero) and control smoothness=(1, t is kept The key difference with the work presented in [6] is the
near the current planned control sequence). As noted in [&]se of a numerical integration step in the transition model
this formulation is closely related to the well-known policy(Algorithm 2) and to obtain the nal control input, to be
gradient theorem typically used in reinforcement learning. sent to the vehicle. As acknowledged in [6], the stochastic



Algorithm 2: Transition Modelf ﬂ
Data: s;w: State and input;
v, : Current control input; ’ = o
Vmax max. Maximum control input values;
ts: Sampling period;
v,  Numericallntegration(, ; w);
Vi ClampMaxValues(; );
Vm BuildTwist(v,);
S S +Ls tsVm;
Sxy Sxy T |—sXy ts(Vm  Vmo);

Fig. 3. Generic smooth weighting function(s)

weighting function (Fig. 3) that depends on the current
value of a given sensor feature. The activation boundaries
s° ;s of w(s) are de ned such that they describe two
bounding rectangles for the vehicleO m and 4:0 m longer

and 0:7m and 3:7m wider thanl,e and w, respectively.
These bounding rectangles are denoted by the red and orange
ones in Figs. 4a-7a. The size of the smaller bounding
rectangle has a direct impact on the safety distance to

a A W N -

TABLE I
CONTROL-RELATED PARAMETERS

Parameter Value the obstalce while the size of the larger one affects the

Control frequency | 20Hz distance at which the vehicle starts to react to the obstacle.

L 3200 The sizes chosen were found empirically aiming to balance
3E safety and comfort requirements while avoiding being overly
0.99 convservative. The minimurw and maximumw®* values

' diag(0.00125,0.0035 of w(s) are, respectively 0 and 1. The rest of the control-

Init(ur_1) 0.0) related parameters are given in Table II.

InitTrajectoryCost() | O . .

cr— A ACE _ It should l_)e noted that, _contrary '_[0 the typlcal real-time

max 0:5236rad implementations of MPPI-like techniqgues which make use

of GPUs [19], [6], [20], our implementation runs on a single
nature of the Information-Theoretic Model Predictive Controtore of an AMD Ryzen 9 5950X.
strategy can lead to signi cant chattering. We found that even Finally, all the simulations presented in the next section
after applying a SGF to the control sequence, the non-smoddtart with the goal placed &1m straight ahead of the
behavior of the control was still strongly present, especiallgar ands = [1;0]. The goal placement was chosen in
when the vehicle starts relatively far away from the goal. Byrder to let the car smoothly reach its maximum allowed
using the aforementioned numerical integration step (5) weelocity before having to perform any avoidance maneuver.
managed to considerably reduce this effect. S = [s ;sx] is assumed to be already expressed in the

control frameF,.
IV. SIMULATION SETUP m

In order to evaluate the performance of our proposed V. RESULTS
IT-SBPC approach we make use of an in-house develop@d siatic obstacle

fast prototyping environment using the same software ar- Wi h ¢ h with th .
chitecture as the one inside the real vehicle. In addition '€ start the assessment of our approach with the easiest

to behaving nearly identically (form a software architec 3¢ A static obstacle placed between the starting and

ture point of view) to the real car, this fast prototypingdes"ed_pOSitionS’ speqi ca_IIy at25m s'_[raight ahead of the
environment simulates as well the dynamics of the vehicled" Ai]llt can be dseen 'R F'gh4' thel Ve:.'lde sq(cjgessfulllly _and
leading to rather realistic simulations. Moreover, to simula@ MO0ty (F'_g' 4d) reaches the goal while avoiding collision
the pedestrian we make use of a modi ed version [17] of th ith the static obstacle by slightly turning to the right to then

open source crowd simulator pedsios [18]. The pedestrian ater turn left to keep moving towards the goal. The linear

generated by pedsimos is aware of the vehicle and thus itsVeIOCity Vi (Fig. 4b) is generally smooth. 'I_'he steering
behavior/motions are in uence by it. angle (Fig. 4c) starts slightly unstable but it gets more

Considering that the task is to reach a goal while avoidingt""bl_e as thg linear velocity approach_eg the maximum value
collision, the state-dependent cost function is de ned as: nd it remains stable even when avoiding the obstacle. The

nal errorise=[ 0:0162; 0:0057]
a(s) = e'Qe + v Rv, +10%C (17) _ _ _ _ _
B. Pedestrian with parallel motion, same orientation
wheree=s s ,withs being the desired value (i.e. the
goal to be reached) of . Q andR are weighted matrices resent in the environment. Its motion is parallel to what

that regulate the inuence of, respectively, the differen he ideal motion of the vehicle would be if no obstacles

elements of the task sensor features and of the vehicle's twist, )
. ) were to be present. At the moment when the vehicle has
These matrices are de ned as:

o CE 1. o e an to avoid the pedestrian, both agents have mostly the same
Q = diag0:55/1:0) (18a) R = diag2:5;300) (18b) orientation. Similarly to the previous case, the vehicle suc-

Finally, to avoid collision with the obstacle perceivedcessfully reaches the goal while avoiding collision (Fig. 5),
as sy, C = w(x)w(y), wherew(s) is a generic smooth this time by slightly turning to the left to then later turn right

We now move to a case where a simulated pedestrian is
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Fig. 6. Pedestrian with parallel motion, opposite orientation

previous case apply for this one as well. The nal error is
e=[ 0:0210; 0:0001]

C. Pedestrian with parallel motion, opposite orientation

We now present a different case considering the same
simulated environment as in the previous one. This time the
vehicle and the pedestrian have mostly opposite orientations
at the moment of the collision avoidance maneuver. Again,
the vehicle successfully reaches the goal while avoiding
collision (Fig. 6). The evolution of the control and task
features signals is very similar to the previous case. The
nal error ise=[ 0:0193; 0:0019]

D. Pedestrian with perpendicular motion

Finally we consider a case where the pedestrian and
vehicle motions' are mostly perpendicular. In this case as
well the car successfully reaches the goal while avoiding
collision (Fig. 7). This time our approach predicts that, given
the pedestrian's motion, the best option to avoid collision
is to turn slightly to the left, even if that means that at
some point the car steers towards the pedestrian (Fig. 7a)
because, by the time the car would reach the line traced
by the pedestrian, it would have already moved downwards
and thus no collision occurs. The general comments on the
evolution of the control and task features signals from the
previous cases apply as well for this one. The nal error is

to keep moving towards the goal. The collision avoidance =[ 0:0160; 0:0083]
maneuver seems natural (Fig. 5a), i.e. not steering away

from the pedestrian too soon nor too late, thanks to the

VI. CONCLUSIONS

pedestrian's motion being considered in the predictions. The In this work we have presented an approach that combines
comments on the control and task features signals from tliformation-theoretic and sensor-based control techniques
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Fig. 7. Pedestrian with perpendicular motion

in order to navigate towards a given goal while avoid-[9]
ing collision with obstacles. On the one hand, the sensor-
based formalism allows to de ne the navigation task and
collision avoidance constraints without inherently requiringio]
any knowledge of the car's nor pedestrian's position in a
reference xed frame. On the other hand, the information-
theoretic framework allows to naturally handle non-lineari1]
and non-smooth dynamics by forward simulating thousands
of trajectories in order to nd an optimal control sequence.

The obtained results are rather encouraging as the vehiglél
consistently manages to reach the goal without colliding with
the obstacle in many different scenarios. Moreover, the cafs)
consistently achieves rather small ngéjj 0:021 values.

Thanks to the relatively lightweight computations require 4]
by the sensor-based formalism, our implementation is able
to run on a single CPU core of an AMD Ryzen 9 5950X.
Nonetheless, in order to handle multiple obstacles futw%s]
implementations would require some level of parallelization,
be it on CPU or GPU. Future work will focus on this issue[16]

Another interesting research path is to investigate different
cost functions to deal with arbitrarily shaped obstacles ardv]
social interaction with pedestrians and other vehicles in
order to deal with the navigation challenges (safety, comfort,
ef ciency) that multiple surrounding agents (pedestriand18]
vehicles, etc) would cause.
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