
HAL Id: hal-03413631
https://hal.science/hal-03413631v1

Submitted on 14 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hierarchical Resilience Enhancement Framework for
Interdependent Critical Infrastructures

Xing Liu, Yiping Fang, Enrico Zio

To cite this version:
Xing Liu, Yiping Fang, Enrico Zio. A Hierarchical Resilience Enhancement Framework for Interde-
pendent Critical Infrastructures. Reliability Engineering and System Safety, 2021, 215, pp.107868.
�10.1016/j.ress.2021.107868�. �hal-03413631�

https://hal.science/hal-03413631v1
https://hal.archives-ouvertes.fr


1 
 

Xing Liu & Yi-Ping Fang 

Chair on Risk and Resilience of Complex System 
Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay 

3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France 
E-mail: yiping.fang@centralesupelec.fr 

 

Enrico Zio 

Centre for Research on Risk and Crises (CRC), Mines ParisTech Sophia Antipolis, PSL Research Uni-
versity, 06904 Sophia Antipolis, France; 

Dipartimento di Energia - Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy 
E-mail: enrico.zio@polimi.it 

Abstract Resilience is becoming a key concept for risk assessment and safety management 

of interdependent critical infrastructures (ICIs). This work proposes a resilience enhancement 

framework for ICIs. With reference to the accidental event, ex-ante and ex-post solutions for 

enhancing system resilience are analysed and included into a hierarchical model of resilience 

enhancement strategies (RES). To provide specific resilience enhancement solutions for ICIs, 

we integrate the hierarchical model with a model predictive control-based dynamic model of 

ICI system operation. The relationships between the solutions implemented and their impacts 

on the system parameters are discussed. A multi-objective optimization (MOO) problem is 

defined, with the objectives of simultaneously minimizing RES cost and maximizing ICIs re-

silience. The fast non-dominated sorting genetic algorithm NSGA-II is used to solve the MOO 

problem. For exemplification, a case study is considered, involving interdependent natural gas 

network and electric power grid. The results show that the resilience enhancement framework 

is effective in finding optimal RESs for given ICIs.  

Keywords: Critical infrastructure, Resilience, Control-based dynamic model, Multi-

objective optimization 
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1 Introduction 

In recent years, the concept of resilience has increasingly attracted interest in the domains of 

safety management, risk analysis and reliability engineering, and from practitioners of differ-

ent industrial sectors [1–3]. The word resilience is originated from the Latin word “resiliere”, 

which means to “bounce back” [1,4]. In the physical sciences, resilience or elasticity refers to 

the ability of a substance or material to resume its natural shape after deforming by the ap-

plication of forces [5,6]. In ecological systems, resilience is the ability to retrain system identi-

ty, to absorb changes and disturbances, retain the same function and relationships between 

individuals [7]. For engineering systems, e.g., infrastructures, resilience is referred to the abil-

ity of the system to sustain or restore its basic functionality following a risk source or an 

event (even unknown) [8]. The resilience of an engineering system is the result of a number of 

appropriate protection activities with respect to the occurrence and development of an acci-

dent [1,9]. 

Critical infrastructures (CIs) are engineering systems that provide devices vital for the na-

tional economy and the living quality of people: examples are electrical power grids, transpor-

tation systems, telecommunication systems, natural gas pipelines, water supply networks, etc. 

These systems do not function separately, as their efficient operations rely on the services 

provided by others [10,11]. The CIs are designed to live and evolve for a very long time, ex-

posed to a changing environment and subject to disruptions. The interactions and interde-

pendencies among CIs are of different ways and to different degrees [12] and represent “two-

sided swords” for their operations. On one side, the exchanges of commodities and services 

make the operations of CIs more efficient; on the other side, they create potential vulnerabili-

ties for the cascading failures (an initial failure originated in one CI propagates to disrupt 

other connected CIs,) [13,14]. The safety, reliability and resilience of interdependent CIs 

(ICIs) are, then, very important characteristics to assess and manage [15,16]. 

The above justifies the attention devoted to modelling, analysing and enhancing the resilience 

of ICIs [1,3,6]. Most resilience enhancement suggestions are tailored to the different applica-
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tions of interest, and as aimed at increasing the robustness of system elements, optimizing 

the allocation of redundancies, modifying the system topology, adding self-healing mecha-

nisms, improving maintenance or repair scheduling, facilitating structures retrofitting, im-

proving communication quality, enhancing staff training, etc. [17–22]. Most existing ap-

proaches are ad hoc, focusing on developing specific types of enhancement for specific CIs 

mainly from the perspective of optimization. These studies can be categorized under two 

main lines: i) pre-disruption investment optimization [23–27], aiming at enhancing CIs resili-

ence via optimum preventive measures, e.g. hardening and upgrading vulnerable components 

or deploying redundancy before a specific disruptive event strikes the system, and ii) post-

event emergency response and recovery planning [28–33], aiming at mitigating system loss 

through emergency responses right after disruptions and, then, restoring a system to normal 

operation as quickly and efficiently as possible, e.g., through optimum resource allocation and 

task scheduling. However, these approaches fall short of accounting for the coordination of 

resilience measures at different stages, and a framework is missing that provides a compre-

hensive and quantitative scheme to the decision-makers, when they design, upgrade or rebuild 

CIs for improving the system resilience.  

To fill the gap, in this work, we propose a quantitative framework for resilience enhancement 

of ICIs. We first discuss the options for resilience enhancement strategies (RES) and organize 

them into a hierarchical model, which is, then, integrated with a control-based dynamic mod-

elling framework for ICIs [34]. Then, we address the RES optimization problem with respect 

to the minimization of cost and the maximization of the system resilience.  

In the hierarchical model, the resilience enhancement strategies are combinations of physical 

or organizational activities implemented in the different phases of accident evolution. For 

example, before the onset of an initiating disruptive event, pre-event preparedness and miti-

gation activities can be arranged to minimize the impact of the disruption and attenuate its 

consequences [19,35]. After the occurrence of the disruptive event, recovery activities can be 

activated by post-event measures on the basis of the consequence of the event [28,36]. Efforts 
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in aspects of communication, organization and management can also improve mitigation and 

restoration activities [22]. Note that the proposed model does not explicitly consider the prob-

abilities of different failure scenarios; instead, it adopts a “safe-to-fail” paradigm [37] by focus-

ing on the capacity of a system to reorganize and recover from disasters. This is in line with the 

emphasis given to system resilience when facing so-called high-impact low-frequency events, for 

which it is really difficult, if not impossible, to have meaningful quantifications of the probabili-

ties of those events. 

In a previous work by the authors, a control-based ICIs modelling framework has been pro-

posed to describe and predict the dynamic behaviours of ICIs under disruptions [34]. Within 

the proposed modelling framework, uncertain system parameters affecting system resilience 

are defined, including system initial conditions, parameters in time dimension and parameters 

related to the failure-recovery process of vulnerable elements. In this work, the contributions 

of the factors in the hierarchical model of RESs on the system performance are discussed. 

The cost functions of resilience enhancement activities are defined. The optimal RES can be 

formed by formulating a multi-objective optimization (MOO) problem, with the objectives of 

the minimization of the cost of RES and the maximization of the total resilience 𝑅֏ . 

Considering the nonlinear and nonconvex nature of the proposed MOO problem, it is solved 

by the fast non-dominated sorting genetic algorithm NSGA-II [38]. 

The main contributions of the present study are summarized as follows: 1) a hierarchical  

model is proposed for identifying in a systematic way the various options of resilience 

enhancement strategies (RES) for ICIS, 2) which is then integrated with a model predictive 

control-based dynamic framework to model the transient behaviors of ICIs under adverse 

perturbations; 3) a multi-objective optimization model is proposed to find the optimal RES 

combinations for the considered cost functions, providing a unified framework for analyzing 

the tradeoffs of different RES options. 

The present work is organized as follows. Section 2 introduces the control-based dynamic 

modelling framework, including the dynamic equations, the uncertain system parameters and 
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the resilience metric. Section 3 presents the hierarchical model of RES, where the factors of 

RES are included and discussed. The cost functions and the correlations between the activi-

ties in RES are defined. Section 4 presents the formulation of the multi-objective optimiza-

tion problem and introduces the NSGA-II algorithm for the solution. In Section 5, the pro-

posed resilience enhancement framework is applied to a case study concerning a gas network 

and a power network. Finally, Section V concludes the present work with some future per-

spectives.  

2 Modelling framework 

2.1 Control-based dynamic model for ICIs 

CIs are often characterized by hierarchical structures that can be decomposed into parts with 

certain functionalities [39]. We represent ICIs by a directed graph, where the nodes are the 

subsystems, i.e., components or functional sets of components, and the edges are the directed 

links between them. Various resources are produced, consumed, stored and transformed in 

and between the subsystems, through these physical, cyber or logical links. Note that the 

directions of the flows matter in the present study, as the critical infrastructure systems we 

considered, i.e., electrical power distribution networks and gas distribution networks, typically 

can be seen as directed graphs from the substation/sources to the loads. We consider a discre-

tized state space to represent the behaviour of ICIs under nominal conditions and during 

disruptive events [34]: 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑑(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
,  (1) 

where 𝑥 = ॅ𝑥φ …𝑥կ՝
ॆ ∈ 𝑅կ՝ is the vector of the system states, which are the flow levels on 

subsystems and links. 𝑢 = [𝑢φ …𝑢կ
]′ ∈ 𝑅կ՚  is the vector of the control variables, which are 

designated system states for the system controllability, 𝑦 = [𝑦φ …𝑦կ՞
]′ ∈ 𝑅կ՞ is the vector of 

the system outputs, which are the flow levels received by the users, 𝑑 = [𝑑φ … 𝑑կՉ
]′ ∈ 𝑅կՉ is 

the vector of disturbance variables associated with the losses of the system states due to the 
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disruptions. The 𝑁֓ × 𝑁֓ matrix 𝐴 represents the information of the system’s connectivity, 

while the 𝑁 × 𝑁֓ (𝑁 ≤ 𝑁֓) matrix 𝐵 and the 𝑁֔ × 𝑁֓ matrix C encode the flow trans-

mission coefficients. Matrix A is obtained from the topology of the system, and matrices B 

and C are derived from the dynamic equations formulated for each component. The readers 

can refer to [34] for a detailed explanation of the dynamic rules of the flows associated to the 

five types of subsystems (i.e., suppliers, buffers, transporters, converters, and consumers).  

The values of system states and control variables are limited by the capacities of the nodes 

and the links. The constraints are formulated as follows: 

0 ≤ 𝑥(𝑡) ≤ 𝐶𝑃֓,  (2) 

0 ≤ 𝑢(𝑡) ≤ 𝐶𝑃(3)  , 

where 𝐶𝑃֓ and 𝐶𝑃 take values of the capacities of the corresponding elements, i.e., the 

nodes or the links, which vary with time due to the degradation, the damage caused by dis-

ruptions and the recovery activities that follow. The state variable 𝑥(𝑡) for link flows are con-

strained to be nonnegative since we considered directed network model, as explained before. 

For the control vector 𝑢(𝑡), if we take as an example an electrical battery (buffer) which can be 

charged and discharged to adjust the output flow, 𝑢(𝑡) corresponds to controllable output flow 

of the battery at time 𝑡, and the output direction is encoded in the coefficient matrix B (with 

negative elements). In this manner, the control variable 𝑢(𝑡) is always nonnegative. 

Considering that the units of the resources in ICIs are different, we represent the level of rel-

ative insufficient satisfaction 𝑌ք՞
 of user 𝑖֔, by a normalized and non-dimensional variable: 

𝑌ք֔
(𝑡) =

𝐷ք֔
(𝑡) − 𝑦ք֔

(𝑡)

𝐷ք֔
(𝑡)

. 
(4) 

where 𝐷ք֔
(𝑡) is the demand of user 𝑖֔ at time t. Subject to the dynamic equations and con-

straints, we use Model Predictive Control (MPC) to solve the control inputs at each time 

step. The MPC approach realizes a finite-horizon optimization by determining sequences of 

system states and control operations over a prediction horizon 𝑁 for the minimization of the 
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objective function at each time step within 𝑁, and, then, implementing only the first control 

action [40].  

Based on the dynamic model [34], the objective function is formulated to minimize the 

weighted sum of the insufficient satisfaction function 𝑌ք՞
(𝑡) of users 𝑖֔, within the time hori-

zon 𝑁: 

min
۲

ంৃం 𝜔ք՞
𝑌ք՞

(𝑡 + 𝑞|𝑡)

կ՞

ք՞=φ

ৄ

կՖ

=Ј

, 
(5) 

where, 𝜔ք՞
 is the weight assigned to the user 𝑖֔, and ∑ 𝜔ք՞ք՞

= 1. 

By solving the optimization problem with MPC, the control action 𝑢(𝑡|𝑡) is obtained from the 

control sequence: 

𝒖 ≜ {𝑢(𝑡|𝑡), 𝑢(𝑡 + 1|𝑡), . . . , 𝑢ि𝑡 + 𝑁 − 1ੵ𝑡ी}, (6) 

as the result of the optimization problem. Then, only the first control action 𝑢(𝑡|𝑡) is intro-

duced in the recursion to calculate the system states at 𝑡 + 1. More details about the control-

based dynamic model for ICIs can be found in [34]. 

2.2 Failure-recovery process and system parameters 

To describe the flow evolution under disruptions, we introduce the system failure-recovery 

process under a generic external threat and associated system parameters, including parame-

ters in the time dimension, parameters related to the failure-recovery process of the vulnera-

ble elements and system initial conditions. The uncertainty of these system parameters 

emerges within the modelling framework due to insufficient or imprecise observations and the 

subjectivity of judgment from experts, etc.  

Figure 1 shows the failure-recovery curve for a system element 𝑖, i.e., a node or a link. In the 

nominal operation mode, the capacity of the element 𝑖 is at the maximum of its state, and 

remains stable at a fixed value; we denote 𝐶𝑃ք
կ  as the nominal value capacity of element 𝑖. 
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Figure 1. Evolution of the capacity of element 𝑖 

At time 𝑡ց , an initiating disruptive event occurs, which results in the failure of element 𝑖 of 

the ICIs. As a consequence of the failure, the nominal capacity element 𝑖, e.g., 𝐶𝑃ք
կ , reduces 

to a degraded state with reduction amount 𝐹ք. Then, the response time 𝐻֍ = 𝑡֍ − 𝑡ց  reflects 

the rapidity of the failure detection and preparedness of emergency actions of the system [41]. 

Thanks to the continuous state representation of the elements in our model, we are able to 

consider a more realistic failure and recovery process and not limit to a binary state process. 

For example, the recovery process of a failed element 𝑖 may be described by a linear function 

with a rate 𝜇ք, which depends on the effectiveness of the recovery activities: 

 𝐶𝑃ք(𝑡) = 𝐶𝑃ք
կ − 𝐹ք + 𝜇ք(𝑡 − 𝑡֍).   (7) 

where 

𝐹ք = অ
0

magnitude of failure
 for  0 ≤ 𝑡 < 𝑡ց

for  𝑡 ≥  𝑡ց
 , (8) 

𝜇ք = অ
0

recovery rate
 for  0 ≤ 𝑡 < 𝑡֍

for  𝑡 ≥  𝑡֍
 . (9) 

The capacities of the system elements are expected to reach their original levels at the end of 

the restoration activities, i.e., 𝐶𝑃ք(𝑡) ≤ 𝐶𝑃ք
կ  for all 𝑡 ∈[𝑡֍, 𝑡փ]. Depending on the application, 

other nonlinear recovery functions also can be considered to describe the recovery process of 

the elements. For example, the recovery speed of components in freight systems goes slower 

and slower, as the easy part is recovered at first and the hard part later [42]. For the sake of 

simplicity of illustration, here, we use linear recovery functions. 
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The failure magnitude 𝐹ք and recovery rate 𝜇ք of vulnerable element 𝑖 are considered as un-

certain variables as well, to reflect the flexibility of the decision on system resilience strate-

gies. The failure magnitude 𝐹ք is limited to the interval [𝐹քֈք։
, 𝐹քֈռ֓

] = [0, 𝐶𝑃ք
կ ]. The recov-

ery rate 𝜇ք varies in ज़𝜇քֈք։
, 𝜇քֈռ֓

ड़, with 𝜇քֈք։
= 𝐹քֈք։

𝐻փֈռ֓
⁄  and 𝜇քֈռ֓

= 𝐹քֈռ֓
𝐻փֈք։

⁄ . 

Moreover, buffering subsystems in the ICIs contribute to system performance by storing re-

sources (for those resources which can be stored), adjusting the supply of resources in nomi-

nal operation and compensating the insufficiency of resources in case of shortage during dis-

ruptive events. To include the functionality of the buffers, we consider the initial inventory 

levels of buffers, i.e., 𝑥գէՎ

֏=Ј , which represents the initial resource level of buffer 𝐵𝐹ք, at 𝑡 = 0. 

2.3 System resilience metrics 

The performance of the CIs can be defined from different perspectives (reliability, availability, 

safety, economics, etc.), e.g., counting the number of operating components [43], the economic 

loss associated to the components and the casualties of people during the disaster [21]. In all 

generality, the ICIs aim at providing stable and reliable services to the users, and a measure 

of their resilience should relate to how they enable and enhance daily life [1]. Therefore, we 

evaluate the actual performance function of ICIs, 𝑃(𝑡), in terms of the weighted sum of the 

states of users, i.e., the flow levels received by users: 

𝑃(𝑡) = ం 𝜔ք֔

կ՞

ք՞=φ

𝑦ք՞
(𝑡). 

(10) 

The performance reference function of the ICIs, 𝑃𝑅(𝑡), is characterized as the weighted sum 

of the users’ demands: 

𝑃𝑅(𝑡) = ం 𝜔ք֔

կ՞

ք՞=φ

𝐷ք՞
(𝑡). 

(11) 

Under nominal operating conditions, the supply to each user, i.e., 𝑖֔, with respect to its de-

mand 𝐷ք՞
 is always achieved, i.e., 𝑦ք՞

(𝑡) = 𝐷ք՞
(𝑡) and, thus, 𝑃(𝑡) maintains values identical 

to the performance reference function 𝑃𝑅(𝑡).  
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The shape of the system performance curve describing resilience is often illustrated as trian-

gular or trapezoidal [21,36,43], as shown in Figure 1.  

 

Figure 2. System performance following the occurrence of a disruptive event 

In a disruption event, besides the critical response time 𝐻֍ = 𝑡֍ − 𝑡ց , another critical time is 

𝐻փ = 𝑡փ − 𝑡ց , i.e., the time horizon of system recovery, where 𝑡փ is the instant when the sys-

tem performance is expected to return to the nominal level. Note that both 𝐻֍ and 𝐻փ are 

uncertain parameters and are functions of the resilience enhancement strategies (RES) im-

plemented, as we discuss in Section 3. 

The overall level of system resilience, i.e., the total resilience 𝑅֏, is defined as the proportion 

of the total area between the actual system performance function 𝑃(𝑡) and the time axis (the 

area shaded with downward diagonal stripes in Figure 2, to the square area between the per-

formance reference function 𝑃𝑅(𝑡) and the time axis, for the time period 𝑡ց ≤ 𝑡 ≤ 𝑡փ with 

𝑡փ ≥ 𝑡ց , as shown in Figure 2: 

𝑅֏ =
∫ 𝑃(𝑡)

֏Ս

֏Ջ

𝑑𝑡

∫ 𝑃𝑅(𝑡)
֏Ս

֏Ջ

𝑑𝑡
 . 

(12) 

We point out that many resilience metrics exist in the literature [1,32,44]. Yet, the focus of 

the present study is to provide a comprehensive and quantitative scheme to assist the deci-

sion-makers when they design, upgrade or rebuild ICIs for improving system resilience, and 

different resilience metrics can be incorporated into the proposed framework.  
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3 Hierarchical model of resilience enhancement strategies for ICIs 

3.1 Resilience enhancement strategies 

Different disruptive events may occur in ICIs and some of them are unpredictable and una-

voidable, such as malicious attacks and extreme natural disasters. ICIs are engineering sys-

tems, thus, their system resilience is not an inherent and spontaneous feature like in ecologi-

cal systems, but relies on appropriate protection activities (Hosseini et al. 2016; Francis & 

Bekera 2014). Various approaches and techniques have been proposed from different perspec-

tives to improve system resilience of ICIs [1,3,6].  

To exploit the factors contributing to the resilience enhancement, we propose a hierarchical 

model of RES as shown in Figure 3. This hierarchical model has multiple layers, where stra-

tegic goals, tactical principles, precise activities and interactions among them are displayed.  

In the second layer of the hierarchical model, the goal of resilience enhancement is decom-

posed into mitigation and recovery, which are two main system capacities for enabling resili-

ence. Also, they refer to the two different phases experienced by the system during disruptive 

events [45]. The mitigation capacity is the ability of the system to resist disorder [46], and is 

the complement of the system vulnerability to hazards [47]. Before the onset of the initiating 

disruptive event, or activated at the beginning of the disruption propagation phase, the miti-

gation activities are arranged to minimize the impacts of the disruption and attenuate its 

consequences [35]. Recovery activities are, instead, implemented as post-event measures, after 

the occurrence of the disruptive event, to steer the system performance quickly from adverse 

consequences and bring it back to the nominal level, at least [22,48].  

In the third layer, there are the four resilience enhancement principles for achieving the miti-

gation of undesirable impacts from the disruptions and the restoration in the aftermath of 

the disruptions. The two important principles for building the mitigation capacity of a system 

are increasing the effectiveness of system response to disruptions and reducing the impacts of 

disruptive events. For example, in electrical power distribution systems, the duration of an 
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outage is highly related to the effectiveness of the power grid company’s response [49]. The 

reduction of the consequence of disruptions refers to the reduction in the range of influence 

and severity of consequences of the disruptions [50,51]. Enhancing system recoverability 

amounts to improving the capability of the system to restore its performance within a short 

time and at a low cost [45]. In the aftermath of a disruption, optimal recovery decisions are 

sought to return the system performance back to its nominal level [4,25,30]. Strengthening 

organization and coordination capacity is another important principle for the improvement of 

system resilience throughout disruptive events, although its effects are sometimes indirect 

[50,52]. 

 

Figure 3. The hierarchical model of resilience enhancement strategies 

In the last layer, we include the actions/activities which need to be put in place and executed 

for the achievement of the third layer principles. The effectiveness of the system’s response is 

supported by hazard identification [53] and early detection of failure [54]. To achieve disrup-

tion reduction, adequate prevention measures can be allocated once vulnerable are-
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as/elements have been identified [55]. The modification of topology can be effective to reduce 

the impact of disruptions [56]. For example, in elected power distribution systems, looped 

configurations can prevent the propagation of disturbances more than the radial distributions 

when a component fails [49]. The allocation of redundancies and implementation of appropri-

ate storages (for the CIs which produce and transport storable resources, such as water, gas 

and electricity in the case of renewable energy systems), are also activities that can serve to 

reduce the consequences of disruptions [21,48]. In the organisational aspect, staff training can 

enhance the situational awareness and, then, the efficacy of operations [52]; better quality of 

communication within and between infrastructures have a significant effect on the conse-

quences of disruptive events [48]; for the users, increasing their emergency awareness, e.g., 

reducing their expectations/needs after the occurrence of adverse events, and enhancing their 

emergency preparedness, e.g., hospitals hold small-scaled storages of resources that will be 

used in case of disruptive events, can improve system resilience [49]. To improve system re-

coverability, we can improve repair techniques to increase the repair rates of included compo-

nents [28] and optimize the repair sequence [4,57,58]. 

The proposed hierarchical model includes the main principles and associated representative 

activities in the RES. Note that the model stands for any arbitrary external disruption, as 

the ICIs are continually facing new forms of stresses and challenges from changing environ-

ments.  

3.2 Effects and costs of resilience enhancement actions on ICIs  

A RES is a combination of activities implemented at the local level. To combine the hierar-

chical model of RESs with the MPC-based dynamic modelling framework for ICIs, the sys-

tem parameters need to be associated with the effect of the resilience enhancement activities. 

Although there exist some literature on the costs of system maintenance, reliability or protec-

tion strategies and their effects [59–61], the studies of the correlations between the cost of 

resilience strategies and their effects are relatively rare, perhaps owing partly to the unpre-

dictable timing of events that challenge resilience, as well as to the difficulties in gaining ac-
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cess to data from organizations concerning their responses to these events. In fact, these rela-

tionships or correlations can be analysed and quantified through expert-based approaches 

which convert and aggregate expert judgements into numerical values [62,63] or statistical 

analysis based on empirical field data [64]. Although these methods are out of the scope of 

this paper, for the sake of an example, we list activities and impacts on system parameters in 

Table I.  

Economical costs of these activities are constraints of RES. To find the optimal system resili-

ence enhancement strategies, it is necessary to balance the expenditures of current actions 

and the potential losses from future disruption occurrences [55]. We define the cost functions 

TABLE I. Effects of resilience enhancement activities on ICIs 

Activities  Impacts of activities Affected parameters 

Hazards identification 
Aid to the prediction and early awareness 
of potential accidents. 

𝐻֍, 𝐹ք 

Failure detection 
Detect the position and magnitude of 
failure efficiently and accurately. 

𝐻֍  

Key components identi-
fication 

Identify the key components, for protect-
ing them. 

𝐹ք  

Topology modification Increase the robustness of elements. 𝐹ք  

Redundancy allocation Increase the robustness of elements. 𝐹ք  

Storage Increase the storage of buffer nodes. 𝑥գէՎ

֏=Ј   

Staff training Increase the efficiency of operators. 𝐹ք, 𝐻֍, 𝜇ք 

Communication 
Establish efficient communication channels 
for operators. 

𝐹ք, 𝐻֍, 𝜇ք 

Preparedness of users Increase the tolerance of users. 𝐻փ  

Repair techniques 
Improve repair efficiency of failed ele-
ments. 

𝜇ք  

Repair sequence 
Improve repair efficiency of failed ele-
ments. 

𝜇ք  
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for each activity 𝑣. The cost function of an activity has two parts, standard and supplemen-

tary costs: 

𝑐ք՛
= 𝑐ք՛

ց + 𝑐ք՛

֎  (13) 

The standard cost of a certain activity, i.e., 𝑐ք՛

ց , is a fixed value referring to the base invest-

ment cost and operation and maintenance costs [65]. The standard cost allows maintaining 

the standard effect of the activity, e.g., the cost of the failure detection system ensures that 

the response time reaches its average level (𝐻֍
ռ = թ

ՒՆ՝+թ
ՒՎՓ

ϵ
).  

The supplementary costs of the RES activities, i.e., 𝑐ք՛

֎ , determine the effects of the extra 

effort of an activity. It is really challenging, if not possible, to derive a generic cost-

effectiveness relation for the various RES activities of interest. For the sake of simplicity, in 

the present study we consider that the effects of activities vary approximately linearly with 

the supplementary costs in a certain range, i.e., truncated affine functions. This can be re-

garded as a linearized version of the widely used S-shaped utility function [66]. Assuming 

that there are 𝑁 system parameters, there are two possible cases for a system parameter 𝑝քՕ
, 

𝑖 ∈ {1,… , 𝑁}:  

1) for the system parameters which monotonically increase with costs: 

𝑝քՕ
= 𝑝քՕ

ռ + ५𝑝քՕ

ֈռ֓ − 𝑝քՕ

ռ ६ ⋅ ∑ 𝜏ՎՕ

ք՛ ⋅
վՎ՛



դՎ՛
 ՒՆ՝−դՎ՛

 ՒՎՓք՛

. (14) 

2) for the system parameters which monotonically decrease with costs 

𝑝քՕ
= 𝑝քՕ

ռ − ५𝑝քՕ

ֈռ֓ − 𝑝քՕ

ռ ६ ⋅ ∑ 𝜏ՎՕ

֑Վ ⋅
վՎ՛



դՎ՛
 ՒՆ՝−դՎ՛

 ՒՎՓ֑Վ

. (15) 

where 𝑝քՕ

ռ  is the nominal/base level of the system parameter and 𝜏
քՕ

ք՛ is the weight of the con-

tributions of activity 𝑣 to the system parameter 𝑝քՕ
, with ∑ 𝜏

քՕ

ք՛

ք՛

= 1, which depends on the 

level of the contribution of the activities on system parameters. Note that, in reality, the cost 

functions depend on the precise means accountable for the activities and the quantity of the 

consumed materials, e.g., the cost of a section of gas pipeline increases with the length and 
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diameter. The effects of the activities on the system parameters can be estimated by empiri-

cal methods based on field data and/or expert judgement [64]. The proposed cost function 

aims at providing a simple general formulation so that different types of activities can be 

considered. 

4 RES multi-objective optimization and NSGA-II solution 

4.1 RES multi-objective optimization  

Within the system resilience enhancement framework, we incorporate the dynamic model and 

RES hierarchical model within an optimization problem to identify optimal RES for given 

ICIs.  

We formulate a MOO problem to achieve the balance between a RES, which is a combination 

of system resilience activities, and its cost of implementation. The decision variables are the 

supplementary investments/costs of the resilience improvement actions 𝑐ք՛

֎ , which are non-

negative continuous variables. Note that we keep the standard investment/cost 𝑐ք՛

ց  fixed for 

every activity 𝑣,  𝑐ք՛

֎ = 0 represents that no extra effort is devoted to activity 𝑣. The MOO 

problem seeks to simultaneously maximize system resilience and minimize the cost of RES 

implementation. The objective functions to be minimized are  

𝑓φ = 1 − 𝑅֏ = 1 −

∫ ∑ ᇖՎ՞

Վ՞=Թ՞

Վ՞
֔Վ՞

(֏)
ՙՍ

ՙՋ
 տ֏

∫ ∑ ᇖՎ՞

Վ՞=Թ՞

Վ՞
եՎ՞

(֏)
ՙՍ

ՙՋ
 տ֏

, 

(16) 

and 

 𝑓ϵ = 𝐶𝑜𝑠𝑡 = ∑ 𝑐֑Վ

֎
֑Վ

. (17) 

To evaluate the resilience of the system, uncertain system parameters, i.e., the response time 

𝐻֍, the recovery time 𝐻փ, the initial resource level of buffers 𝑥գէՎ

֏=Ј , the failure magnitude 𝐹ք 
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and recovery rate 𝜇ք of vulnerable element 𝑖, are first calculated with equations (14) and (15). 

The ICI dynamic simulation is performed, based on MPC, following the approach in Section 

2, to obtain the system performance functions. Eventually, the resilience level of system 𝑅֏ is 

calculated according to equation (12). The cost is obtained by summing the supplementary 

costs of all activities. The proposed optimization is a non-linear multi-objective problem due 

to the MPC-based dynamic simulation for computing the system performance in 𝑓φ. To ob-

tain the Pareto front, we adopt a population-based global optimization method, i.e., NSGA-

II, to solve the proposed MOO problem.  

4.2 Solving procedure of the RES MOO for ICIs  

NSGA-II is a heuristic optimization technique belonging to the class of Evolutionary 

Algorithms (EAs) and a most effective way of solution for MOO problems [65], also applica-

ble to non-convex and non-smooth problems [38]. In this work, the evaluation of system 

resilience of ICIs is integrated into the MOO problem. The steps to adopt NSGA-II for 

solving the proposed MOO can be summarized as follows: 

Step 1. Initialization of MOO parameters 

Define the values of: the population size 𝑁𝑃 , the crossover probability 𝐶𝑟𝑃 , the mutation 

probability 𝑀𝑃 , and the maximum number of generations 𝑁ֈռ֓; 

Step 2. Generation of initial parent population 

Generate randomly the initial parent population 𝑝ւ=Ј, which is a set containing 𝑁𝑃  vectors. 

Each vector is also called a chromosome and forms a candidate solution to the optimization 

problem. Each element of the vector is a randomly created string of binary values, each one 

associated with a decision variable, i.e., the activity 𝑣. 

Step 3. Generation of intermediate population 

 Apply the binary tournament selection operator based on the crowed-comparison-operator 

[38] to the parent population 𝑝ւ and obtain an intermediate population 𝑝ւ′. 

Step 4. Generation of offspring population 
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Perform the evolution operations of mutation and crossover on the intermediate population 

with the respective probabilities and obtain the offspring generation 𝑜ւ.  

Step 5. Combination of the parent and offspring populations 

Combine the parent and offspring populations to obtain a union population 𝑢ւ = 𝑝ւ ∪ 𝑜ւ. 

Step 6. Evaluation  

Step 6.1 Evaluation of system behaviour 

For each of the chromosomes in the union population 𝑢ւ, perform the system dynamic simu-

lation by the MPC model presented in Section 2, and return the dynamic evolution of system 

states. 

Step 6.2 Evaluation of objective functions 

Calculate the value of objective functions 𝑓φ and 𝑓ϵ with equations (16) and (17) for each 

chromosome in 𝑢ւ. 

Step 7. Selection of parent population of the next generation 

Select the first 𝑁𝑃  chromosomes from the union population 𝑢ւ based on non-domination and 

crowding distance with respect to their values of objective functions, to be the parent popula-

tion of the next generation. 

Step 8. Stop the algorithm if the current generation number reaches 𝑁ֈռ֓, otherwise go to 

Step 3. 

The process of searching the non-dominated solutions set is shown as in the flowchart of Fig-

ure 4. 



19 
 

 

Figure 4. Flowchart of the NSGA-II algorithm for solving the RES MOO problem 

5 Case study and results 

5.1 Interconnected natural gas distribution network and power grid 

We illustrate a case study of ICIs taken from [67], concerning two interconnected CIs: a natu-

ral gas distribution network and a power grid (Figure 5, solid and dash-dotted lines, respec-

tively). The objective of this system is to provide the necessary amount of gas and electricity 

to the demand nodes. In particular, the gas distribution network supplies gas to two users, 

𝐷φ and 𝐷ϵ, and to two electric power generators, 𝐸φ and 𝐸ϵ, that provide electricity to two 

𝐶𝑟𝑃 
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users of electricity, 𝐿φ, and 𝐿ϵ. 

 

Figure 5 Interconnected natural gas-power systems. 

The natural gas distribution network has two suppliers, 𝑆φ and 𝑆ϵ, whose outputs are as-

sumed to be equal to 90 MCF, i.e., 1000 cubic feet, and 180 MCF, respectively; two buffers 

(gas reservoirs), DSφ and DSϵ; five transporters 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒; and two users 𝐷φ and 𝐷ϵ, 

whose demands, 𝐷եφ and 𝐷եϵ, are equal to 100 MCF and 80 MCF, respectively. The electric 

power network has two converters (electric power generators), 𝐸φ and 𝐸ϵ, that transform gas 

into electricity with a constant coefficient 𝛽, where 𝛽=10 MWh/MCF, i.e., 1 MCF of natural 

gas produces 10 MWh of electricity; two transporters, 𝐺φ and 𝐺ϵ; and two users 𝐿φ and 𝐿ϵ, 

whose demands, 𝐷խφ and 𝐷խϵ, are equal to 500 MWh and 400 MWh, respectively.  

In this case study, 20 IVs (i.e., system design parameters, failure magnitudes and recovery 

rates of these vulnerable elements) affecting the system resilience are defined, and their min-

imum (min), maximum (max), and nominal (nom) values (𝑝քՕ

ռ ) are given in Table II. 

TABLE II. Ranges of uncertain system parameters 

Description of system parameters Symbol [min, nom, max]  Unit measure 

Response time 𝐻֍  [0, 15, 30] hrs 
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Time horizon 𝐻փ  [50, 85, 120] hrs 

Initial storage of buffer 𝐷𝑆φ 𝑥ե֎ȯ

֏=Ј   [1000, 2500, 4000] MCF 

Initial storage of buffer 𝐷𝑆ϵ 𝑥ե֎ɞ

֏=Ј   [2000, 5000, 8000] MCF 

Failure magnitude of supplier 𝑆φ 𝐹φ  [0, 45, 90] MCF 

Recovery rate of supplier 𝑆φ 𝜇φ  [0, 0.9, 1.8] MCF/hrs 

Failure magnitude of supplier 𝑆ϵ 𝐹ϵ   [0, 90, 180] MCF 

Recovery rate of supplier 𝑆ϵ 𝜇ϵ   [0, 1.8, 3.6] MCF/hrs 

Failure magnitude of link 𝐿ռ−ս 𝐹ϯ  [0, 150, 300] MCF 

Recovery rate of link 𝐿ռ−ս 𝜇ϯ  [0, 3, 6] MCF/hrs 

Failure magnitude of link 𝐿ս−վ 𝐹Κ  [0, 85, 170] MCF 

Recovery rate of link 𝐿ս−վ 𝜇Κ  [0, 1.7, 3.4] MCF/hrs 

Failure magnitude of link 𝐿վ−տ 𝐹Θ  [0, 50, 100] MCF 

Recovery rate of link 𝐿վ−տ 𝜇Θ  [0, 1, 2] MCF/hrs 

Failure magnitude of link 𝐿տ−ր 𝐹ϩ  [0, 50, 100] MCF 

Recovery rate of link 𝐿տ−ր 𝜇ϩ  [0, 1, 2] MCF/hrs 

Failure magnitude of link 𝐿զȯ−ըȯ
 𝐹Ϩ  [0, 400, 800] MWh 

Recovery rate of link 𝐿զȯ−ըȯ
 𝜇Ϩ  [0, 8, 16] MWh/hrs 

Failure magnitude of link 𝐿զɞ−ըɞ
 𝐹΅  [0, 200, 400] MWh 

Recovery rate of link 𝐿զɞ−ըɞ
 𝜇΅  [0, 4, 8] MWh/hrs 

  

5.2 Results 

5.2.1 Resilience enhancement activities 

In this case, only the most relevant system parameters, i.e., 𝐹ϯ, 𝐹Ϩ, 𝐹ϵ, 𝐹Κ, 𝐻֍, 𝜇ϯ and 𝐻փ, 

identified by a previous sensitivity analysis [34], are considered variant to the RES activities;  

The other parameters are set as their nominal values in Table II. Note that this setting large-

ly mitigates the complexity of the optimization problem, allowing the analysis to focus on the 

most important parameters. According to the hierarchical model, we identify the relation-
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ships between the RES activities and the system parameters, as shown in Table III.  

TABLE III. RES activities affecting system parameters 

𝑖֑ Activities 𝑣 Affected parameters 𝑝𝑖𝑝
 Contribution 

1 Identify and predict potential hazards 
𝐹ϯ, 𝐹Ϩ, 𝐹ϵ, 𝐹Κ Secondary 

𝐻֍  Secondary 

2 Improve the efficiency of failure detection 𝐻֍ Primary 

3 
Identify and improve the maintenance of 
key elements  

𝐹ϯ, 𝐹Ϩ, 𝐹ϵ, 𝐹Κ Secondary 

4 Design redundancy for link 𝐿ռ−ս 𝐹ϯ  Primary 

5 Design redundancy for link 𝐿𝐸1−𝐺1
 𝐹Ϩ  Primary 

6 Design redundancy for buffer 𝐷𝑆ϵ 𝐹ϵ  Primary 

7 Design redundancy for link 𝐿ս−վ 𝐹Κ  Primary 

8 Staff training  

𝐹ϯ, 𝐹Ϩ, 𝐹ϵ, 𝐹Κ Secondary 

𝐻֍  Secondary 

 𝜇ϯ  

Secondary 

9 
Establish efficient communication chan-
nels for operators 

𝐻֍  Secondary 

 𝜇ϯ  

Secondary 

10 Emergency education for users 𝐻փ  Primary 

11 Improve repair efficiency for link 𝐿ռ−ս 𝜇ϯ  Primary 

 

In the last column of Table III, we comment on the level of contribution that an activity has 

for improving the corresponding parameters in the considered ICIs. An activity is labeled as 
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“primary” if its implementation can improve solely the affected parameters with a reasonably 

high probability; otherwise, it is labeled as “secondary”. For example, the activity “improving 

the efficiency of failure detection” will likely reduce the response time 𝐻֍, and can thus be 

considered as a “primary” contributor; other activities such as “identify and predict potential 

hazards”, “staff training” and “establish efficient communication channels for operators” can 

indeed, partially contribute to the reduction of the response time, but their impacts are ei-

ther indirect or insufficient. In reverse, the RES activities related to each system parameter 

of ICIs can be obtained as shown in Table IV. In this example, we arbitrarily assign a contri-

bution weight 𝜏
քՕ

ք՛ = 0.7 for the activities that have primary contributions to the system pa-

rameters and the rest of weights values (since ∑ 𝜏
քՕ

ք՛ = 1
ք՛

) is equally distributed to the activ-

ities that have secondary contributions. 

TABLE IV. System parameters affected by RES activities  

𝑖 𝑝𝑖𝑝
 𝑖֑ Activities 𝑣 𝜏𝑖𝑝

𝑖𝑣  

1 𝐹ϯ 

1 Identify and predict potential hazards 0.1 

3 Identify and improve maintenance of key elements 0.1 

4 Design redundancy for link 𝐿ռ−ս 0.7 

8 Staff training 0.1 

2 𝐹Ϩ 

1 Identify and predict potential hazards 0.1 

3 Identify and improve maintenance of key elements 0.1 

5 Design redundancy for link 𝐿𝐸1−𝐺1
 0.7 

8 Staff training 0.1 

3 𝐹ϵ 

1 Identify and predict potential hazards 0.1 

3 Identify and improve maintenance of key elements 0.1 

6 Design redundancy for buffer 𝐷𝑆ϵ 0.7 

8 Staff training 0.1 

4 𝐹Κ 1 Identify and predict potential hazards 0.1 
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3 Identify and improve maintenance of key elements 0.1 

7 Design redundancy for link 𝐿ս−վ 0.7 

8 Staff training 0.1 

5 𝐻֍ 

1 Identify and predict potential hazards 0.1 

2 Improve the efficiency of failure detection 0.7 

8 Staff training 0.1 

9 Establish efficient communication channels for operators 0.1 

6  𝜇ϯ 

8 Staff training 0.15 

9 Establish efficient communication channels for operators 0.15 

11 Improve repair efficiency for link 𝐿ռ−ս 0.7 

7 𝐻փ 10 Emergency education of users 1 

 

In the MOO problem, the decision variables are the supplementary costs of the activities in 

RES, 𝑐ք՛

֎ , as shown in Table III. To simplify the calculation, we consider the normalized value 

for the supplementary cost of resilience improvement activities, with 𝑐ք՛

֎ ֈռ֓ = 1 and 𝑐ք՛

֎ ֈք։ =

0, i.e., the limits of decision variables in the MOO problem. 

5.2.2 Multi-objective optimization 

The parameters of the NSGA-II for the MOO solution are: the population size 𝑁𝑃  = 50, 

crossover probability 𝐶𝑃  = 0.5, mutation probability 𝑀𝑃  = 0.01, and maximum number of 

generations 𝑁ֈռ֓ = 200. Following the steps in Section 4.2, the optimal Pareto front is pro-

duced, as shown in Figure 6. The simulations are carried out by using Yalmip Toolbox [68] 

and CPLEX optimizer [69] on MATLAB 2015a, on an Intel® Core™ 2 Duo CPU E7600 @ 

3.07 GHz. 
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Figure 6. The optimal Pareto front 

Figure 7 displays three representative optimal solutions of RES chosen from the Pareto 

front, with three levels of resilience and cost values:  

 PF 1 is with the minimum value of 𝑓φ and the maximum value of 𝑓ϵ, i.e., the solution 

of highest resilience but also highest cost, 𝑅֏ = 0.9454 and 𝐶𝑜𝑠𝑡 = 8.7107; 

 PF 2 is the best compromise solution obtained using the min-max approach [70] to 

compromise between resilience and cost, 𝑅֏ = 0.8667 and 𝐶𝑜𝑠𝑡 = 3.3275; 

 PF 3 is with the maximum value of 𝑓φ and the minimum value of 𝑓ϵ, i.e., the solution 

of lowest resilience and lowest cost, 𝑅֏ = 0.6447 and 𝐶𝑜𝑠𝑡 = 0.7243. 

 

Figure 7. Three representative optimal solutions chosen from the Pareto front 

TABLE V. Cost of RES activities associated with the three optimal solutions of Figure 7 
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𝑖֑ 
𝑐ք՛

֎   

PF 1 PF 2 PF 3 

1 0.9912 0.0283 0.0196 

2 0.9863 0.9873 0.0059 

3 0.9599 0.0293 0 

4 0.9453 0.0802 0.0029 

5 0.8690 0.6158 0.0704 

6 0.8866 0.1134 0.0303 

7 0.9316 0.6716 0.0459 

8 0.8935 0.0635 0.0323 

9 0.5259 0.0098 0.0049 

10 0.7146 0.7146 0.0577 

11 0.0068 0.0137 0.0059 

 

Each optimal solution in the Pareto front represents an optimal RES, i.e., a combination of 

resilience enhancement activities. Focusing on these the optimal solutions of Figure 7, the 

decision variables, i.e., the supplementary costs of the resilience improvement activities, are in 

Table V. The normalized supplementary investment 𝑐ք՛

֎  might not provide direct guidance for 

practical implementation. However, this setting is general enough to be applicable in various 

CI systems and can be used to determine the relative investment/cost for different resilience 

enhancement actions, e.g., 29.7% of the total investment should be allocated to 𝑖֑ = 2 in PF 

2 according to Table V. Moreover, the corresponding optimal values of the system variables, 

i.e., 𝐹ϯ, 𝐹Ϩ, 𝐹ϵ, 𝐹Κ, 𝐻֍, 𝜇ϯ and 𝐻փ, can be derived, as shown in Table VI. Recall that the 

physical meanings of the system variables are reported in Table II, e.g., 𝐹ϯ = 8.08 means that 

link 𝐿ռ−ս loses 8.08 MCF of natural gas transmission capacity. By comparing the optimal 

parameter values to their nominal values in Table VI, one can find that 𝐹Ϩ is the most re-

duced one in PF3, indicating that the mitigation RESs aiming at reducing 𝐹Ϩ, i.e., 𝑖֑ =
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1, 3, 5, 8, should be given top priority when the available resource is very limited (the lowest 

cost in PF 3). In the best compromise solution PF 2, the mitigation RESs aiming at reducing 

𝐹Κ, i.e., 𝑖֑ = 1, 3, 7, 8, and the response/restoration RESs aiming at reducing 𝐻֍, i.e., 𝑖֑ =

1, 2, 8, 9, should, then, be emphasized besides 𝐹Ϩ. 

TABLE VI. The optimal system parameters associated with the three optimal solutions of Figure 7 

𝑝ֆ 
Optimal values 

Nominal value 
PF 1 PF 2 PF 3 

𝐹ϯ 8.08 139.77 148.92 150 

𝐹Ϩ 42.89 222.72 346.74 400 

𝐹ϵ 8.54 81.77 87.63 90 

𝐹Κ 5.39 44.01 81.82 85 

𝐻֍ 1 5 15 15 

𝜇ϯ 3.65 3.07 3.03 3 

𝐻փ 110 110 87 85 

 

We implement the three RESs obtained from the optimal Pareto Front solutions and observe 

the system performance in three corresponding enhanced scenarios. The evolutions of the 

performance function of the ICIs in the case of these three optimal RES solutions are dis-

played in Figure 8. As shown in this Figure, the curves of system performance corresponding 

to the three solutions are consistent with the results of the MOO. The scenario that imple-

ments the RES of PF 1 has the best resilience performance. In this scenario, the lowest level 

of satisfaction function is the highest among the three scenarios and it is the first to recover 

to the nominal state. The optimal set of RES in PF 2 achieves a trade-off between the cost 

and the effects of the improvement of system resilience. The scenario corresponding to the 

RES of PF 3 is the least resilient (but also the cheapest).  

Also, it is shown in Figure 8 that recovery curves have turning points due to different recov-
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ery start and end instants of the users’ states and chattering behaviours caused by the ran-

domness of MPC problem solution. One turning point typically represents the end of the re-

covery of a user, i.e., the demand of the user is satisfied. The recovery start and end instants 

of the users are related to the importance weights as well as the distances between the users 

and the failed elements, which are determined by the system topology.  

 

Figure 8. Evolution of the performance functions for three optimal RESs of Figure 7 

Note that MOO finds the Pareto-optimal set of solutions, which provide the decision-maker 

with a comprehensive view of the possible tradeoffs among different objectives. In practice, the 

decision-maker will select one solution from the Pareto front based on his/her preferences over 

the different objectives. For instance, one can choose the least costly solution, which gives a 

certain level of system resilience, e.g., 𝑅֏ ≥ 0.9. 

6 Conclusion 

In this work, we have proposed a resilience enhancement framework for ICIs, which includes 

resilience enhancement strategies hierarchical modelling, decomposition and optimization. 

We have constructed a hierarchical model of RES based on a Model Predictive Control-based 

dynamic modelling framework for ICIs. The factors relevant to RES are decomposed into 

multiple layers, including strategic goals at different stages of a disruptive event, tactic prin-
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ciples to achieve the goals and practical activities taken to enhance the local performance at 

subsystem or component-level. The goal of resilience enhancement is decomposed into mitiga-

tion and recovery, which are two main system capacities of the protection that refer to two 

different phases of the accident evolution during disruptive events. Four resilience improve-

ment principles are considered: increasing effectiveness of the system response, reducing the 

consequence of disruptions, enhancing system recoverability and strengthening organizational 

preparedness. The practical activities related to these refer to hazard identification, failure 

detection, vulnerable areas/elements identification, topology modification, allocation of re-

dundancies and storages, staff training, communications within and between CIs, prepared-

ness by users, improving repair efficiency and sequences. The relationships between different 

factors are identified and analysed. 

To quantify the efforts of RESs, the cost functions associated with the activities have been 

defined. Then, the optimal RESs for ICIs are obtained by solving a MOO problem, which 

minimizes the cost and maximizes the total resilience 𝑅֏ of ICIs. We have applied the pro-

posed framework to a case study concerning a gas supply system and a power grid. According 

to the structure and system parameters of the case study, 13 possible RES activities are pro-

posed. A MOO problem is formulated and the optimal configurations of activities, i.e., the 

optimal RESs, for the ICIs are identified by the NSGA-II algorithm. The results show that 

the proposed framework provides insights on the RES for ICIs. 

For future work, it would be interesting to study more sophisticated cost-parameter relations, 

i.e., Eqs. (14) (15), as well as the associated uncertainties (i.e., improvements in related sys-

tem parameters, e.g., link recovery rates, are not necessarily deterministic functions of the 

invested resources). We believe that statistical learning would be a promising framework to 

address this problem given that sufficient historical data is available. 
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