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A Loosely Coupled Vision-LiDAR Odometry using Covariance
Intersection Filtering

Songming Chen1, Vincent Frémont1

Abstract— This paper presents a loosely-coupled sensor
fusion approach, which efficiently combines complemen-
tary visual and range sensor information to estimate
the vehicle ego-motion. Descriptor-based and distance-
based matching strategies are respectively applied to visual
and range measurements for feature tracking. Nonlinear
optimization optimally estimates the relative pose across
consecutive frames and an uncertainty analysis using
forward and backward covariance propagation is made
to model the estimation accuracy. Covariance intersection
filter paves the way for us to loosely couple stereo vision
and LiDAR odometry considering respective uncertainties.
We evaluate our approach with KITTI dataset which shows
its effectiveness to fierce rotational motion and temporary
absence of visual features, achieving the average relative
translation error of 0.84% for the challenging 01 sequence
on the highway.

I. INTRODUCTION

Accurate state estimation and a good knowledge of
the surrounding environment are crucial for autonomous
driving. Many autonomous vehicles use range-based Li-
DAR and/or vision-based stereo cameras to perform the
task of ego-motion estimation. The most frequently used
sensors (Camera and LiDAR) have their own strengths
and weaknesses under different working conditions.
Laser scanners, for example, are good at measuring
distance but are quite sensitive to fog and rain. Cam-
eras are more commonly applied to extract the visual
cues of the scene, but cannot work in low illumination
conditions. Since range and visual sensors appear to be
complementary, their combination allows to compensate
respective shortcomings. The main challenge for long-
term state estimation is error accumulation, especially
in environmentally degenerate scenarios. The fusion of
range and visual sensors could restrict the local uncer-
tainties and allow to confine the odometry drift.

ORB-SLAM [1] is regraded as a typical representative
of vision-based SLAM. Oriented FAST and Rotated
BRIEF (ORB) features are extracted and matched for
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real-time state estimation, and meanwhile the bag-of-
words (BOW) dictionary is queried for loop closure and
drift cancellation. This method can accurately localize
the mobile platform and create a sparse feature map
of its surroundings with limited computation resources.
ORB-SLAM2 is proposed in [2] with stereo observations
based back-end which solves the scale ambiguities for
trajectory estimation.

Scan-matching is a fundamental process to estimate
platform motion and to create a 3D map with LiDAR.
A popular approach for LiDAR based localization is
LOAM [3]. It conducts Iterative Closest Point (ICP)
scan-matching for 3D point clouds registration, which
is followed by a global scan-to-map alignment in order
to reduce local errors. Feature alignment problem can
be solved using the well known Levenberg–Marquardt
optimizer.

Despite the success and popularity of ORB2 SLAM
[2] and LOAM [3], they are in fact deterministic al-
gorithms. They do not effectively handle the sources
of uncertainty. As a result, they provide overconfident
state estimation results across frames. The main con-
tribution of this paper is to propose a loosely coupled
sensor fusion approach for vehicle localization with
range and visual sensors. Measurement uncertainties
for visual and range sensors are properly defined for
state estimation. Backward covariance propagation [4] is
utilized to transform the covariance from measurement
domain to estimation domain. At the same time, forward
covariance propagation is leveraged to transform the
uncertainty from manifold space to Euclidean space. The
covariance intersection filtering enables adaptive fusion
of the two sensors given their respective uncertainties.

The remainder of this paper is divided into the fol-
lowing sections. Section II presents the related sensor
fusion approaches to improve the perception and local-
ization performance. The loosely coupled vision-LiDAR
odometry approach is proposed in Section III and tested
with the KITTI odometry benchmark in Section IV.
In Section V, a concise conclusion is given which is
followed by the future work plan.



II. RELATED WORK

A. Enhanced Visual State Estimation

The state estimation result reached by visual-SLAM
algorithms can be further enhanced via integrating Li-
DAR measurements. In [5], depth information from
LiDAR measurements was utilized for visual feature
tracking after LiDAR points being projected onto image
frames. At the same time, visual semantic informa-
tion was used for removing outliers and increasing the
weights of static landmarks. Instead of using visual
feature points, in [6] a SLAM system using visual
photometric information was proposed. Its performance
was enhanced with the involvement of sparse LiDAR
point cloud for depth acquisition. However, as pixel
resolution was much greater than LiDAR point cloud
one, many pixels were not assigned the depth value, thus
extra interpolation was needed to make up the missing
values.

B. Enhanced LiDAR State Estimation

In many cases, LiDAR scan-matching is used for local
motion estimation and visual hint is utilized for loop
closure validation. The accuracy of LiDAR based local-
ization was improved in [7], with visual feature aided
loop detection to reduce the accumulated drift. In [8], the
visual keyframes were utilized to assist the laser-based
slam to perform local and global bundle adjustments.
Furthermore, the LiDAR scan-to-scan matching can be
improved using the initial guess from visual estimation
as demonstrated in [9].

C. Concurrent Visual-LiDAR State Estimation

There are also many works which coupled both Li-
DAR and visual state estimation process together. Zhang
et al. [10] designed V-LOAM pipeline which used high
frequency vision based odometry as the motion prior
and corrected with high precision, low frequency lidar
scan matching estimation afterwards. The framework in
[11] did not rely on visual estimation as the motion
initial guess for lidar odometry. They took in both
visual and LiDAR measurements, stacking and minimiz-
ing both modalities’ residuals during the optimization
phase. However, as mentioned in Section I, they did not
consider the uncertainty during state estimation process,
which may cause the overconfident estimation prone to
certain sensor modality.

III. PRESENTATION OF THE METHOD

In Fig.1, it can be seen that the proposed sensor
fusion framework starts with a descriptor-based visual
feature tracking module to estimate vehicle ego-motion.
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Fig. 1. Overview of the proposed sensor fusion scheme

Meanwhile, LiDAR distance-based scan-to-scan match-
ing runs in parallel for state estimation. Backward
covariance propagation transforms the uncertainty from
measurement space to estimation space, which helps to
obtain the uncertainty of frame-to-frame state estimation
for both sensor modalities. Covariance intersection filter-
ing ensures that the uncertainty of state does not expand
after the sensor fusion, which combines two frame-
to-frame poses elegantly. Then, the robustified pose is
used for LiDAR point cloud registration. Scan-to-map
matching afterwards further reduces local drift caused
by frame-to-frame estimation. The updated odometry is
the final output which is published at 10Hz frequency.

To denote coordinate systems, this paper’s convention
is to use uppercase letter to indicate different coordinate
frames. In visualization and sensor fusion steps, vehicle
pose is expressed with 3D translation and RPY Euler
angle rotation. However, in order to avoid singularity
problem, we optimize on their manifold which is de-
tailed in Section III-A.1. In the following, coordinate
systems being used are explained.
• Camera sensor coordinate system {Ct} at times-

tamp t is defined at the camera optical center. The
x-axis, y-axis and z-axis point rightward, downward
and forward respectively as the camera configura-
tion in [12].

• LiDAR sensor coordinate system {Lt} at timestamp
t is defined at the LiDAR scanner center. The x-
axis, y-axis and z-axis point forward, leftward, and
upward respectively as the LiDAR configuration in
[12].

• World coordinate system {W} is defined as {C0}
which is the initial frame of the camera coordinate
system, and lidar-camera extrinsics TC

L is assumed
to be known beforehand.

A. State estimation

1) Visual odometry: In feature-based stereo vision
odometry, key points with local descriptors are matched



to deduce the camera motion with scale metrics. Pro-
vided camera intrinsics K, stereo feature points belong-
ing to the previous frame are triangulated in the first
step. And then transformed triangulated points are re-
projected via the perspective projection operation Prl(·),
Prr(·) onto the left and right images respectively con-
sidering the 6 dof state estimation variable Θ̂

Ct−1
Ct

:

Ct x̂i =

 Prl
(

K, Θ̂
Ct−1

Ct
,Ct−1 xi

)
Prr
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where Ct x̂i =
(
ûi,l , v̂i,l , ûi,r, v̂i,r

)T is the prediction in
the current frame and Ct−1xi =

(
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)T is its
correspondence in the previous frame. In general, the
optimal relative camera transformation can be estimated
by minimizing the weighted squared error of measure-
ments and predictions.
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where ‖·‖2

Σ
is the Mahalanobis distance with Σ−1

xi
as the

information matrix for the ith measurement. To handle
estimation parameters that do not belong to Euclidean
spaces, the common strategy is to transfer the error
minimization to its corresponding manifold. In our case,
iterative optimization update for estimated parameters is
made using Lie algebraic perturbation model. Operator
� is a generalization of the normal addition operator,
which is defined as δε� Θ̂, exp(δε)Θ̂, then J̃i(Θ̂) can
be written as

J̃i(Θ̂) =
∂ei(δε� Θ̂)

∂δε

∣∣∣∣
δε→0

(3)

As a result, we can apply the famous Levenberg-
Marquardt method without considering additional con-
straint such as rotation matrix orthogonality.

2) LiDAR odometry: The same way in LiDAR odom-
etry, edge and planar LiDAR points are tracked to
recover the LiDAR pose. For each LiDAR scan point,
local curvature c is computed to evaluate its smoothness
considering the surrounding area. Let S be a group of
points in the vicinity of xi in the same scan layer.

c =
1

|S| · ‖Lt xi‖

∥∥∥∥∥ ∑
j∈S, j 6=i

(Lt xi− Lt x j
)∥∥∥∥∥ (4)

Edge and planar points are defined based on c values.
The edge line constructed by two edge points at

previous frame (Lt−1x j,
Lt−1xl) ∈ Lt−1E forms the cor-

respondence of Lt xi. Lt−1 x j and Lt−1 x j are selected ac-
cording to nearest neighbour criteria and they belong to

Edge point

Planar point

Relative pose across frames

Projection across frames

Fig. 2. Scheme of edge and planar LiDAR points correspondence
projection

different scan layers to increase the point-to-line fitting
robustness.

The planar patch represented by three points at pre-
vious frame (Lt−1x j,

Lt−1xl ,
Lt−1xm) ∈ Ht−1 forms the

correspondence of Lt xi. We assume that the closest
neighbor of Lt xi is denoted as Lt−1x j. Lt−1xl , Lt−1xm are
second and third nearest neighbors of Lt xi, one belonging
to the same scan layer of Lt−1 x j, and the other in the
consecutive scan layer of Lt−1x j . With the corresponding
relationship of the feature points in hand, according to
Fig. 2, we are able to calculate the distance from a
feature point to its correspondence.

dE =

∣∣(Lt xi− Lt−1x j
)
×
(
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∣∣ (5)
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)
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The optimal LiDAR relative pose can be obtained by
minimizing the weighted sum squared distances of edge
and planar points to their correspondences. Σx−1

Ei
and

Σx−1
Hi

stand for the information matrix of Eith edge and
Hith planar measurement points and we take the same
optimization strategy as in Section III-A.1.
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= argmin
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B. Uncertainty analysis

Robust state estimation should be able to provide
the uncertainty information associated with the vehicle
pose estimates. The sensor fusion phase is driven by the
uncertainties in the estimation domain. Thus, we analyse
the uncertainties coming from visual and range sensors
via forward and backward covariance propagation.



1) Visual sensor uncertainty: Although the optimal
relative pose can be obtained by minimizing Eq. 2, its
accuracy also depends on the precision of the corre-
sponding feature points, more specifically, the level of
the image pyramid they belong to. The image pyramid
[13] is a series of image collections whose resolution
gradually decreases in the shape of a pyramid. The
image pyramid can be sequentially matched to ensure
scale invariance during feature tracking. In our case, the
image pyramid has 8 levels with the same scale factor
1.2 between two consecutive levels. We assume that all
points considered in the optimization procedure are well-
matched pixel features with only zero mean Gaussian
noise N(0,ΣV

xi
), with σxui,l(r)

= σxvi,l(r)
= 1.2level−1 as

standard deviation for ith measurement. Jacobian matrix
J̃i(Θ

∗) is defined in Eq. 3, and it converts the uncertainty
from measurement space to estimation space. Since we
optimize on manifold, let ε = log(Θ∗) a 6d vector in
the Lie algebra space, Jacobian matrix Jm2e = ∂eε

∂ε
is

indispensable to propagate the covariance from manifold
space to Euclidean space for data visualization and
fusion. Then we can obtain the uncertainty of frame-
to-frame relative pose ΣV

Θ∗ through Eq. 8 and the result
is shown in Fig. 3.

Σ
V
Θ∗ = JV
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i=1

(J̃V
i
′
(Θ∗)ΣV

xi

−1J̃V
i (Θ

∗)))−1JV
m2e

′
(8)

2) Range sensor uncertainty: In our case, a Velodyne
HDL-64E is used which provides a (0◦ ∼ 360◦) azimuth
field of view (θ ) and (−24.9◦ ∼ 2◦) elevation field of
view (φ ). According to official velodyne data sheet,
range accuracy can reach up to 2 cm which is quite
small compared with its range limit 120 m. Hence, each
measurement is treated equally and we can set measure-
ment uncertainty ΣL

xi
as identity matrix for each point.

Based on such assumption, we obtain the uncertainty
of scan-to-scan relative pose ΣL

Θ∗ through Eq. 9 and the
result is shown in Fig. 4.
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3) Covariance Intersection Filtering: Covariance in-
tersection [14] is a variant of Gaussian process sensor
fusion which can combine two estimates under unknown
correlations. The covariance intersection combination
formulas are given by

Σ
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Θ

=
(
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(10)
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Fig. 3. Visual sensor pose estimation uncertainty along tx and tz for
KITTI sequence 01

where ω ∈ [0,1] minimizes trace of the fused covari-
ance matrix Σ

f used
Θ

at each step. If the Jacobian matrix
is near singular, probably because of local minimal
occurrence or individual sensor failure, then inverting
J̃′i(Θ∗)Σ−1

xi
J̃i(Θ

∗) will lead to unreliable uncertainty es-
timation marked as black dash lines in Fig. 3. Covariance
intersection can ensure that the resulting estimate is
conservative, which efficiently filters out the unstable
estimation. In order to simplify the fusion parameteriza-
tion, only planar translation tx and tz and yaw angle ry
are fused and updated. The fused pose will better register
the lidar map point and we adopt the multi-level voxel
scan-to-map matching as in [11] to reduce the frame-to-
frame estimation drift.

IV. EXPERIMENTAL RESULTS

The KITTI dataset [12] contains stereo sequences and
Velodyne HDL-64E LiDAR point clouds captured in
urban and highway environments. We use the metric
of average relative translation error trel proposed in
[12] for evaluation purpose. To have a fair comparison,
the ORB SLAM2 loop closure module is deactivated.
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Evaluation results are obtained on a laptop with an Intel
i7-9750H CPU and 32GB of RAM. We choose three
typical sequences 01 (Highway), 02 (Urban+Country)
and 07 (Urban) from KITTI dataset to make analysis
and detailed quantitative result is shown in Tab. I 1.

Our Loosely-Coupled Vision-LiDAR Odometry(LC-
VLO) outperforms state-of-the art approaches for chal-
lenging trajectory in sequence 01. When driving on a
highway scenario, few distinctive visual features are
available, see Fig. 5, which makes descriptor-based
feature tracking erroneous and thus causes poor pose
estimation for visual sensor. Our proposed approach
ensures a consistent odometry estimation even moving
at high speed. In sequence 02, our loosely coupled
odometry is not as good as the ORB-SLAM2 due to
lack of horizontal lines or planes to constraint the drift
along the vertical axis. However, it does efficiently
prevent large divergence occurrence like in A-LOAM2

1The sequence 08 is not evaluated due to ground truth flaw with
manual inspection

2Advanced implementation of LOAM, https://github.com/HKUST-
Aerial-Robotics/A-LOAM

method. The large divergence mainly results from A-
LOAM’s inappropriate distance-based matching strat-
egy. Far edge points are more likely to be mismatched
when encountering large rotational motion. It happens
at the middle of sequence 02 where A-LOAM method
loses the tracking of features and fails to confine the
estimation error. Uncertainty analysis is able to detect
the potential deficiencies in the early scan-to-scan step
and mitigate feature misalignment problem. Our LC-
VLO is superior to ORB-SLAM2 and A-LOAM for
sequence 7, which shows that multi-level voxel scan-
to-map matching procedure is indispensable to reduce
frame-to-frame estimation drift. Overall, the proposed
LC-VLO adaptively fuses vision and LiDAR estimation,
which is able to improve estimation performance in
individual sensor degenerate cases, especially for the
challenging KITTI sequence 01 and 02.
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Fig. 5. Few distinctive ORB visual features for tracking on the
highway scenario, KITTI sequence 01

V. CONCLUSION AND FUTURE WORK

In this paper, we use covariance intersection filtering
to robustify the odometry estimation from two data
streams. The effectiveness of the proposed method has
been verified on the public KITTI VO benchmark. The
result shows its robustness to large rotational motion
and temporary absence of visual features as a result
of our anisotropic uncertainty modelling in the sensor
fusion step. Since we perform the sensor fusion in
a loosely-coupled manner, each sensor modality can
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07 sequences

be easily replaced according to personalized demands,
which makes our approach very flexible. As our current
approach does not consider loop closure, we will focus
on exploiting visual semantic hints for robust feature
tracking and place recognition to further ameliorate the

TABLE I
COMPARISON OF ACCURACY ( IN PERCENTAGE ).

Sequence
Metric trel ORB-SLAM2 A-LOAM LC-VLO

00 0.88% 0.77% 0.74%
01 1.40% 2.27% 0.84%
02 0.79% 4.91% 1.50%
03 0.77% 1.24% 0.87%
04 0.45% 1.23% 1.08%
05 0.61% 0.70% 0.43%
06 0.73% 0.62% 0.58%
07 0.90% 0.63% 0.50%
08 –% –% –%
09 0.90% 1.09% 1.01%
10 0.59% 1.69% 0.52%

localization accuracy in the future.
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