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Abstract 

The vaporisation frequency response due to pressure oscillations is analysed for a spray of 

repetitively injected drops into a combustion chamber.  In the Heidmann analogy, this vaporizing 

spray is represented by the so-called ‘mean droplet’, which is a continuously fed spherical droplet 

at rest inside the combustion chamber. Only radial thermal convection and conduction effects are 

considered inside the vaporizing mean droplet since the feeding is realized symmetrically with 

the same liquid fuel, using a point source placed at the centre. This feeding process, at some 

liquid-liquid heat transfer coefficient, is now considered as a proper boundary condition of the 

generalized feeding regime, which controls the whole fuel injection process into the chamber. 

Effects due to the variation of the heat transfer coefficient are analysed for the evaporating mass 

response factor, calculated on the basis of the Rayleigh criterion. A chaotic response is especially 

noticed in the process when the heat transfer coefficient is fixed at unity. 

Keywords: heat transfer coefficient, truncated expansion, double confluent Heun equation, 

transfer function. 

Réponse en fréquence de l'évaporation des gouttes : une solution analytique 

approximative pour les régimes d'injection mixtes 

Résumé 

La réponse en fréquence de l'évaporation de masse aux oscillations de pression est analysée pour 

un jet de gouttes répétitivement injectées dans une chambre de combustion. Dans l'analogie de 

Heidmann, ce jet de gouttes en évaporation est représenté par la 'goutte moyenne' qui est une 

goutte sphérique continuellement alimentée placée dans la chambre de combustion. 

L'alimentation est réalisée avec un coefficient de transfert thermique liquide-liquide en 

employant un point source placé au centre de la goutte, de telle manière que seuls les effets 

radiaux de convection et de conduction thermiques soient pris en compte à l'intérieur de la 

gouttelette pendant le processus. Ce procédé d'alimentation est maintenant regardé comme 

représentant un régime d'alimentation généralisé du processus réel d'injection de combustible 

liquide dans une chambre de combustion. Utilisant une analyse linéaire basée sur le critère de 

Rayleigh, le facteur de réponse en masse d'évaporation est évalué. Les effets dus à la variation 

du coefficient de transfert thermique sont analysés. En particulier, une réponse chaotique est 

notée dans le système quand le coefficient de transfert thermique est fixé à un.  

Mots clés: coefficient de transfert thermique, développements limités, équation 

doublement confluente de Heun, fonction de transfert.  
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1 Introduction 

Combustion instabilities related to pressure oscillations are due to the coupling between 

acoustic waves and other combustion phenomena as evaporation, heating... In confined 

devices, the coupling between acoustic field and heat or mass release at certain frequency levels 

may lead to engine failure or other catastrophic consequences [1]. On the contrary, new blends 

of fuels can be engineered to undergo preferential instabilities leading to homogeneous 

combustion with higher efficiency [2]. The present paper aims at contributing to the linear 

analysis of subcritical combustion instabilities in diffusion flame models, by analytical 

approaches based on the mean spherical droplet configuration as in [3]. In the following 

section, a brief description is made of the unperturbed state corresponding to the vaporization 

of the continuously fed spherical droplet in a stable environment. In Section 3, the linear 

analysis for harmonic perturbations in pressure is performed and a double confluent Heun 

equation (see [4]) is derived from the energy equation of the liquid phase. An approximate 

analytical expression of the temperature profile inside the mean droplet is then obtained for the 

generalized or mixed injection regime and the mass response factor is defined. Results are 

discussed in Section 4 and briefly recalled in the conclusion. 

2 Stabilized state description 

2.1 General assumptions 

Individual spherical fuel droplets are repetitively injected into a subcritical combustion 

chamber. The distance between the droplets is supposed large enough, so that no interaction 

occurs between the droplets or between the droplets and the wall. Assuming velocity-stabilized 

hypotheses as in [5], the liquid fuel vaporizing spray is represented in an idealized physical 

configuration by a mean spherical droplet at rest in the combustion chamber. The mean droplet, 

placed at a specified location in the combustion chamber (pressure anti-node and velocity 

node), is supposed to summarize the frequency response of individual drops in the spray. The 

vaporizing mean droplet has a constant average radius Sr  since its instantaneous evaporating 

mass M  is continuously restored with an average mass flow rate M  of the same fluid by using 

a point source placed at the centre. The choice of the Arithmetic Mean Diameter configuration 

is motivated by the analytical approach of the problem since it leads for the mean droplet to 

conservation equations with fixed boundary conditions. From now on, all barred quantities 

indicate mean values corresponding to the stabilized state whereas all primed quantities will 

denote perturbed quantities i.e. ' ( ) /x x x x= − . 

The local feeding rate M  is distributed throughout the droplet (see Figure 1(a)) in such 

a way that, except for the radial thermal convection effect from the droplet centre to its 

evaporation surface, other convective transport or liquid recirculation phenomenon within the 

droplet are negligible. The spherical symmetry of the mean droplet is maintained at every 

moment during the process, and the thermal dilatation of the liquid is negligible so that the 

density L , the specific heat Lc  and the thermal conductivity Lk  of the droplet will be treated 

as constant. At the mean droplet centre, a generalized or mixed boundary condition is 

considered, that is the liquid fuel is injected with a positive heat transfer coefficient h . The two 

extreme cases of this injection process are the adiabatic feeding regime ( 0h = ) where zero 

temperature gradient is assumed at the droplet centre, and the isothermal feeding regime ( h = 

) where the droplet centre is kept at a constant temperature ST . The latter is the mean value of 

https://www.sciencedirect.com/topics/mathematics/mixed-boundary-condition
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the spatially uniform but time-varying temperature ST
 
of saturated vapour at the stabilized 

droplet surface.  

 

 

Figure 1. (a) The mean vaporizing droplet, continuously fed by a point source placed at its 

centre. (b) Boundary conditions for the supplied droplet. 

 

In the immediate vicinity of the droplet surface, the gas phase is made up of 

stoichiometric reaction products evolving in a quasi-steady state. Equilibrium conditions at the 

droplet/gas interface are assumed for the stabilized state and there is no gas diffusion into the 

droplet. Far from the mean evaporating droplet, the ambient environment inside the chamber 

is at constant subcritical temperature CT
 
and pressure Cp . The boundary conditions at the 

supplied droplet surface are shown in Figure 1(b). Subscripts L  and l  refer to liquid phase, 

whereas subscripts S  and C respectively indicate the droplet surface and the conditions for the 

combustion chamber far from the droplet. The heat flux transferred to the liquid is designated 

by LQ and the binary diffusion coefficient of fuel vapour in air is denoted by D  . The density 

and the thermal conductivity of the gas mixture around the droplet surface are respectively 

designated by   and k . The mass fraction of species j  being denoted by jY , the gaseous 

mixture near the surface is composed of fuel species j F=  and of combustion products diluted 

species j A=  proceeding from the flame front at infinity. For reason of simplicity, we have 

considered a mono-component droplet with only fuel species, that is 1FLY =
 
and 0ALY = .  

2.2 Characteristic times 

The residence time of the continuously fed droplet can be equated to the mean lifetime of an 

individual vaporizing droplet in the spray. This time replaces the notion of the free droplet 

lifetime in the present situation of constant volume and is identified to the ratio /v M M = , 

where M  represents the mean value of the actual mass M  of the supplied droplet and M  is 

the stationary feeding rate. The transfer time by thermal diffusion process is defined as 
2 /T S Lr = , where /( )L L L Lk c =  is the thermal diffusivity of the liquid and Sr the constant 

average radius. It is then convenient to use the timescale ratio 9 / /v T v T    = = , which will 

be called from now on, the thermal exchange ratio or more briefly the exchange ratio, as it is 

of the same order of magnitude as1/ LPe ,
 LPe

 
being the Péclet number of the liquid phase. The 

              (a)           M                                 (b)   
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coefficient 9 is kept for comparison purposes with results obtained in [3]. During the 

vaporization, intrinsic or external pressure-related oscillations can cause departure from 

stabilized-state conditions. The frequency of such ambient pressure oscillations is a major 

characteristic time of the process. In the case of small harmonic perturbations in pressure, a 

linear analysis can be performed. The frequency of the harmonic oscillations in ambient 

pressure will be denoted by  . In order to provide a parameter depending on the residence 

time v , which may be used to characterize the frequency response for classical fuels, a reduced 

frequency u defined as 3 vu = will be considered.  

2.3 Unperturbed state equations  

The mass balance of the mean droplet is:  

                                                             
d

d

M
M M

t
= −                                                             (1) 

with M  denoting the stationary flow of injection and M the instantaneous flow of evaporation. 

In a stabilized state, one has: , d / d 0M M M t = and M M= .  

The amount of heat LQ penetrating into the droplet is expressed as: 

 

2

,

4

S

l
S L L

r t

T
r k Q Q M

r



= = −


                             (2)    

where ( , )l lT T r t  is the temperature value at radial coordinate r and at time t  inside the mean 

droplet. The external gas heat flux is denoted by Q  and designates the latent heat of 

vaporization per unit mass of the liquid. Equation (2) assures the coupling of the gas and the 

liquid phase solutions at the mean droplet surface. The formulation of the energy conservation 

equation includes both radial thermal convection and conduction data. In these conditions, the 

internal temperature lT  satisfies the following equation:   

( )2

2
0

ll l L
L L L L r

r TT T k
c c v

t r r r
 

 
+ − =

  
                                        (3) 

where rv

 

is the central injection velocity expressed as
2/ 4r Lv M r= with 0 Sr r  .                                                  

This equation is solved, subject to the mixed boundary condition at the droplet centre and 

to the Dirichlet boundary condition at the surface: 

                                           
( )

0,

(0, )

( , ) ( )

l
l S

r t S

l S S

T h
T t T

r r

T r t T t

=

 
= −


 =

          (4)                                        

The parameter 0h   indicates the heat transfer coefficient. We recall for the adiabatic 

centre injection that, 0h =  and the mixed boundary condition is reduced to (0, ) / 0lT t r  = , 

whereas for the isothermal centre injection, h =   and the same condition becomes

(0, )l ST t T= .  
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Assuming quasi-steady hypotheses, the droplet surface is in local evaporation equilibrium 

and the instantaneous mass vaporization rate can be calculated as: 

2 ln (1 ) 4 ln (1 )S M S T

p

k
M D r Sh B r Nu B

c
   = + = +                                  (5) 

where )1/()( FSFCFSM YYYB −−=  and ( ) /( / )T p C S LB c T T Q M= − + are the well-known Spalding 

mass and heat transfer numbers, and 
pc  the specific heat capacity of fuel vapour at constant 

pressure. As mentioned above, parameters  , k , and D  are the density, the thermal 

conductivity and the binary diffusion coefficient of the mixture of vapour and ambient gas. The 

Sherwood and Nusselt numbers Sh

 and Nu  were provided by Abramzon and Sirignano in 

their extended film model [6]. At the droplet surface, the saturated vapour pressure can be 

expressed as ( ) ( )exp /( )sat S Sp T a b T c= − − , where a , b and c  are some coefficients related to 

the fuel thermophysical properties. The pressure satp  and the mole fraction 
FSX of fuel species 

are connected by the relation ( )FS sat Sp X p T= , where
Cp p=

 
denotes the ambient pressure. If 

the molecular weight of species j (= A  or F ) is denoted by 
j , then the mass fraction 

FSY of 

the vapour at the droplet surface can be written as a function of the mole fraction 
FSX

 
as: 

 

                                              F
FS FS

F FS A AS

Y X
X X


=
 +

                                                         (6)                    

 

Since concentrations and temperature values are evolving in the gas phase, the averaged 

properties can be evaluated at some reference concentration ( )j jS r jC jSY Y A Y Y= + −
 
and 

temperature ( )S r C ST T A T T= + −
 
with 1/ 3rA = . Both Sh and Nu  are assumed equal to two 

and the Lewis number / pLe k Dc=  equal to one. 

3 Linear analysis for small perturbations 

3.1 Linear analysis of the liquid-phase equations 

Splitting up the flow variables into steady and unsteady parts can be realized by writing 

f f f = − , where f  is a flow parameter, f is its mean value, f is the absolute perturbation, 

and ' /f f f=   is the corresponding relative perturbation. The heat flow at the surface, 

Equation (2), is then given by: 

 

                                           
'

2

,

4

S

l
S L S L L L L

r t

T
r k T Q Q Q Q

r



= = − = 


                                 (7)                    

 

as 0LQ = . For the perturbed temperature '( , ) [ ( , ) ( , )] / ( , )l l l lT r t T r t T r t T r t= − , the energy 

conservation equation, Equation (3), can be rewritten as: 
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' ' 2 '

2

( ) 3 ( )
0l S l l

L

rT r T rT

t r r r




   
+ − = 

   
                                     (8) 

 

where /v T  =

 

is the thermal exchange ratio (see section 2). The perturbed boundary 

conditions in the mixed feeding regime are deduced from Equation (4) as follows: 

 

                                              

'
'

0,

' '

(0, )

( , ) ( )

l
l

Sr t

l S S

T h
T t

r r

T r t T t

=

 
=




=

             (9)                                        

 

Introducing now small harmonic perturbations of frequency    in the form of 
ˆ' ( )exp(i )f f r t= , the ambient pressure Cp

 
becomes ˆ' exp(i )Cp p t= , while the 

temperature is expressed as 
' ˆ ( ) exp(i )l lT T r t= , and the heat transferred into the droplet as 

ˆ ( )exp(i )L LQ Q r t =  . Equation (8) is then transformed into:  

 

                                             

2
2

2

ˆ ˆ3 d d ( )ˆi 0
d d

L S l l
l L

r T rT
r T r

r r


 


+ − =                                        (10) 

or equivalently into:  

 

                                          
2

2

ˆ ˆd d ( )1ˆi 0
3 d d

l l
T l

T T
T


 

  
+ − =                                                     (11) 

where ˆ
lT is taken as a function of the reduced radius variable

 

/ Sr r =

 

( 0 1  ). The 

boundary conditions in the generalized feeding regime, Equation (9), can then be written in 

connection with  as: 

                                                             
0

0

ˆd ˆ
d

ˆ ˆ(1)

l

S

l S

T h
T

r

T T




=


=




=

                                           

(12) 

where 0T̂ depends on the initial temperature of the injected liquid fuel.  

We now consider the complex number 1/ 2

0 (1 i)( / 2 )Ls  = − , conjugate of 

1/ 2

0 (1 i)( / 2 )Ls  = + , 
0s  and 

0s−  being the roots of the characteristic equation 
2i 0Ls − =

obtained from Equation (10), when neglecting the convective term ˆ(3 / )d / dL S lr T r  . For any 

given value of the heat transfer coefficient 0h  , a solution of Equation (11) subject to 

conditions Equation (12) can be sought in the form of 

0
ˆ ( ) ( ){1 cos[ exp(i arctan )]}l ST J s r h   = − , with 

2 1/ 2exp(iarctan ) (i 1) /( 1)h h h= + + , and J

referring to a function to be determined. From the second-order truncated expansions of sine 
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and cosine functions that are 
0 0sin( )S S   and 2

0 0cos( ) 1 ( ) / 2S S  −  with 

0 0 exp(iarctan )SS s r h= , it is deduced that the function J  approximately verifies the 

following double confluent Heun equation:  

 

 

                               
2

2 2 2 2

02 2

d ( ) 3 d( ) (i )
2 2 ( ) 0

d d 1
S

J J h h
s r J

h

 
   

  

− 
+ − − = 

+ 
                          (13) 

 

By using Maple notation, a solution of Equation (13) can be expressed as:
 

5

1 2
0 1 2 3 4( ) exp( 3( ) ) HeunD( , , , , ) /J C x x x x x  −= − , where 0C is an arbitrary constant and 

1 2 3 4HeunD( , , , , )x x x x x  is the double confluent Heun function with its corresponding four 

parameters: 1 0x = , 2 2 2 2 2

2 [ ( 1) 9 9 24 (i 1) ]/ 4 ( 1)x h h uh h h  = − + − − − + + ,

 2 2 2

3 [9 (9 24i ) 24 ]/ 2 ( 1)x u h hu h  = − + − − +  and

2 2 2 2 2

4 [ ( 1) 9 9 24 (i 1) ]/ 4 ( 1)x h h uh h h  = − − + − − − + +
 
and the variable 

2 2( 1) /( 1)x  = − + . 

We recall that the quantity 3 vu =  is the ambient pressure frequency defined in the precedent 

section. Finally, the condition ˆ ˆ(1)l ST T=
 
at the mean droplet surface leads for this feeding 

regime to an approximate analytical solution expressed as: 
2

0 1 2 3 4 2

5

2
0

1ˆ {1 cos[exp(i arctan ) ]}HeunD , , , ,
13 1ˆ ( ) exp 1

2
{1 cos[exp(i arctan ) ]}

S S

l

S

T h s r x x x x

T

h s r







 


 −
−  

  +   = −  
   −

     (14)                                                

 

The above approximate analytical solution presents an essential discontinuity at 0 = , 
since, once 0h  , the temperature gradient is not null at the droplet centre. Now, the 

calculation of the mass response factor only includes regularity conditions at the droplet surface 

1 =  and these conditions are well verified by this approximate solution. Thus, the flow 

condition at the droplet surface (Equation (7)) can be rewritten as 

1

ˆd ˆ4
d

l
S L S L

T
r k T Q






=

=   and 

then be applied to the solution Equation (14). That leads to: 

 

                                           ( )ˆ ˆ4 , ,SL S L SQ r k T T E u h  = −                                                     (15) 

where E  is expressed in function of  u ,   and h as: 

 

                         ( ) 0
0

0

sin[exp(i arctan ) ] 3 5
, , exp(i arctan )

cos[exp(i arctan ) ] 1 2 2

S
S

S

h s r
E u h s r h

h s r



= − +

−
               (16) 

 

with 1/ 2

0 (1 i)(3 / 2 )Ss r u = − , 3 vu = and /v T  = . 
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3.2 Gas-phase linearized equations 

 

The linearized equations for the liquid/gas interface initially presented in [7] are here briefly 

recalled. Introducing the harmonic perturbations, the ambient pressure is given by

ˆ' exp(i )Cp p t= and the mass flow rate by 
ˆ

' exp(i )M M t= .
 
Consequently, the equations of 

the gas phase (see subsection 2.3) imply:  

iˆ ˆ ˆ( )
1 i

S C

u
M b T p

u
= −

+
                                        (17) 

and: 

                           ˆ ˆˆ( )L C SQ M ap µT = −                          (18) 

where 3 vu = and ˆ exp(i )L LQ Q t =  . The coefficients involved in these equations are: 

1
,C

C S

T
a

T T






−
= +

−
 

2
,

( )

S

S

T
b b

T c
=

−
  

2S

C S S

T c
b

T T T c
 = − +

− −
 

 and 

(1 ) ln(1 )

M

M M

B

B B
 =

+ +
 

with 
( )

AC FS F

AS FS FC F FS A AS

Y Y

Y Y Y X X



=

−  +
  

The parameter   stands for the constant isentropic coefficient and the latent heat of 

vaporization  per unit mass of the liquid is given by:
 

2 2/ ( )S F Sb RT T c=  − , where R
 

denotes the universal gas constant. 

3.3 Mass response factor 

According to the Rayleigh criterion, when the ambient pressure perturbation 

( )'p p p p= −  induces a perturbation in the evaporating mass ( )'q q q q= − , the mass 

response factor N is defined as ˆ ˆ( / ) cosN q p = , where q̂  and p̂ are the moduli of mass 

release q and pressure p and   is the phase difference between 'q  and 'p . Therefore, a 

reduced mass response factor can be defined as the real part of the transfer function 
ˆ ˆ/ ( )CZ M p= . By using Equations (15)-(18) Z is deduced in function of u ,   and h as: 

i ( , , )
( , , )

1 i ( , , )

u A E u h
Z u h

u B E u h

 


 

+
=

+ −
         (19) 

where 3( ) /A ab  = −  and 3B  = are some coefficients depending on /L Sc T =  
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and are related to the fuel physical properties. From now on, we will call ‘response factor’ the 

reduced response factor defined as the real part of the transfer function Z  : 

                                                               ( )
N

Z


=                                                         (20)  

 

4 Results and discussion 

 

In this section, all the calculations and curves are performed with the fuel thermodynamic 

coefficients 10A =  and 100B = , corresponding approximately to orders of magnitude of 

values encountered in the classical fuels [7]. Thus, relatively to the heat transfer coefficient h  
that controls the feeding regime, and to the process characteristic times as defined in subsection 

2.2, and again to the influence of the thermodynamic coefficients A  and B , the mean droplet 

mass response factor will be analysed. Figure 2 shows response factor curves as functions of 

the reduced frequency 3 vu =  for arbitrary values of the exchange ratio /v T  = . The five 

columns of diagrams correspond respectively to five values of the heat transfer coefficient: 

0; 0.1; 1; 10h =  and+ .  

First, for 0h =  (Figures 2(a1), 2(a2) and 2(a3)) and for h →+  (Figures 2(e1), 2(e2) and 

2(e3)), the response factor curves seem respectively like those of the adiabatic and of the 

isothermal injection regimes discussed in [3]. In fact, these curves are identical since, for a 

given value of the exchange ratio , calculations show that  

                                                    

0 0 0 0

0

sin( ) 2 cos( ) 3cos( ) 2 3
( , , ) ( , ,0)

(1 cos( ))

S S S S

S

s r s r s r s r
E u h E u

s r

  
 



+ − − +
→ =

−
                        (21)                                               

when 0h → , while  
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s r s r s r s r
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  
 


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−
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as h →+ . The function ( , , )E u h  is defined by Equation (16) and mentioned in Equation 

(19). The above expressions of ( , ,0)E u  and ( , , )E u  +  correspond exactly to those used in 

the calculation of the complex transfer function Z  as found for respectively adiabatic and 

isothermal feeding regimes in [3]. Hence, all the comparative results concerning the two 

extreme cases of injection highlighted in this latter reference are still valid for the present 

analysis.  

Secondly, according to Figures 2(c1), 2(c2) and 2(c3), the response factor curves show 

intriguing fluctuations in their profiles when the heat transfer coefficient h  is fixed at one. In 

that case, when the exchange ratio   is chosen lesser than one, the oscillations become straight 

chaotic although they appear relatively reduced in amplitude compared with the cases where 

  is much greater than one. Indeed, keeping 1h = and increasing the value of the exchange 

ratio   beyond one until a certain threshold value to be hereafter specified, a response factor 

line exhibits some hyperbolic pattern with high peaks value along the reduced frequency axis 

as in Figures 2(c2) and 2(c3). Moreover, once the heat transfer coefficient slightly differs from 

one, the curves tend to show more lower fluctuations in their profiles even if h  remains very 

close to one as for 0.95h = or 1.05h = , and many other examples not illustrated with figures. 

For comparison, a unity value of a heat transfer coefficient may characterise a radiation heat 

transfer processing from the flame to the chamber wall. According to [8] for example, the 

radiative power is highly nonlinear and varies at the first order as the fourth power of the local 
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instantaneous temperature. It may be admitted that, even in fuel injection processes, this 

specific value of the liquid-liquid heat transfer coefficient ( 1h = ) can strongly influence on the 

evaporating mass release response in a perturbed environment. At this point, experimental 

investigations are necessary for further clarifications.  

 

 

Figure 2. Influence of heat transfer coefficient h  on the reduced response factor /N  for 

different values of the exchange ratio   for the mean spherical droplet model with 10A =  and 

100B = . (a1), (a2) and (a3) for 0h = or adiabatic centre. (b1), (b2) and (b3) for 0.1h = . (c1), 

(c2) and (c3) for 1h = . (d1), (d2) and (d3) for 10h = . (e1), (e2) and (e3) for h = + or 

isothermal centre. 

 

Thirdly, for a given value of the exchange ratio  , almost identical curve profiles are 

obtained when the not null transfer coefficient h  remains much lesser than one as for 

0 0.1h  . Likewise, when 10h  , the response curve profiles seem unaffected by the 

variation of the transfer coefficient h  at   fixed. Indeed, Figures 2(d1), 2(d2) and 2(d3) for 

10h =  show very similar profiles respectively with Figures 2(e1), 2(e2) and 2(e3) for h = +

. This behaviour can be explained by considering the expression of ( , , )E u h defined by 

Equation (16) and the rate of variation of the term 2 1/ 2exp(iarctan ) (i 1) /( 1)h h h= + + , precisely 

that of the inner function arctan h  for 0h  . Since its rate of variation near 0h =  can be 

                      (a1)                                 (b1)                              (c1)                                  (d1)                                (e1) 

 

           

                      (a2)                                 (b2)                              (c2)                                  (d2)                                (e2) 

 

 

                      (a3)                                 (b3)                                (c3)                                  (d3)                                (e3) 
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equated to one, the function arctan h

 

tends rapidly enough to zero as h  tends to zero. 

Consequently, the term exp(iarctan )h tends fast to one as h  tends to zero. But, when h  

increases over one, the same function arctan h  becomes asymptotically close to the value / 2  

which is approximately reached as h  approaches the value 10. Then, the term exp(iarctan )h

tends slowly to the imaginary value i. On one hand, the first limit leads to the expression of

( , ,0)E u  , giving by Equation (21) and corresponding to the transfer function Z found in the 

adiabatic feeding case. As this convergence is rapid, the curve profiles, although unaffected by 

the variation of h  in a deleted neighbourhood of zero, seem noticeably different from those 

obtained for the adiabatic injection regime ( 0h = ). This is readily confirmed by comparisons 

of Figures 2(a2) and 2(a3) for 0h =  with Figures 2(b2) and 2(b3) for 0.1h = . On the other 

hand, the second limit leads to the expression of the function ( , , )E u  +
 
which intervenes in 

the isothermal injection transfer function (see Equation (22)). As the convergence is now 

asymptotic, the mass response factor curves for 10h =  seem very similar to those obtained for 

the isothermal injection regime ( h = + ). In brief, one may admit that whenever a not null heat 

transfer coefficient h  is introduced in the injection process, high and nonlinear instabilities 

may intervene in the vaporization response. As a comparative example, the continuous supply 

of fuel to the chamber has been theoretically and experimentally identified as an important 

factor for producing or driving combustion instabilities [9, 10]. Finally, the  rapid changes in 

the curve profiles leading to non positive response factor representations, especially for 10h 

, are not related to some particular values of the heat transfer coefficient but may rather be 

related to a specific value of the thermal exchange ratio   as highlighted in [3]. A more detail 

analysis needs to be carried out also on this point. 

 

5 Conclusion 

Through the introduction of a heat transfer coefficient in the liquid fuel injection process, 

this study has extended to a more generalized feeding regime the results on the vaporization 

frequency response to ambient pressure oscillations. An idealized configuration of a mean 

droplet has permitted to compute the mass frequency response for a vaporizing spray. The 

effects of the liquid heat transfer coefficient are found effective for driven or dampen 

instabilities.  Except for the case where the heat transfer coefficient is equal to one, the curves 

exhibit a single abrupt peak response whenever positive response exists in the system. The 

results are also found similar to those previously obtained in the adiabatic and isothermal 

feeding regimes. However, as shown by the present study, a chaotic vaporization frequency 

response may occur during subcritical combustion processes provided that certain specific 

boundary conditions are imposed. The results are also found similar to those previously 

obtained in the adiabatic and isothermal feeding regimes. Indeed, mass response factors in such 

extreme cases of fuel injection are recovered as simple limit points. The results obtained in this 

study can be easily generalized to many combustion systems, since the involved parameters 

are reduced and used in their non dimensional form. The above-mentioned results may be 

beneficial for instability control in combustion processes. 
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