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Abstract 

This work is devoted to a theoretical analysis of evaporating mass frequency response to 

pressure oscillations of a spray of repetitively injected drops into a combustion chamber. A 

single stationary spherical droplet continuously fed with the same liquid fuel, so that its volume 

remains constant in spite of the evaporation, the so-called ‘mean droplet’ in the Heidmann 

analogy, represents this vaporizing spray of droplets. The feeding is realized with a liquid-

liquid heat transfer coefficient by using a source point placed at the mean droplet centre, in 

such a way that only radial thermal convection and conduction effects are allowed inside the 

droplet during the process. This feeding procedure is now viewed as a proper boundary 

condition that is a mixed or a generalized feeding regime controlling the whole process of 

liquid fuel injection into the combustion chamber. Drawing upon a linear analysis based on the 

Rayleigh criterion, the evaporating mass response factor is evaluated. Effects due to the 

variation of the heat transfer coefficient and of the process characteristic times are analysed. 

Especially, an abrupt increase in the response function is related to the influence of the value of 

a particular fuel thermodynamic coefficient. 
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1 Introduction 

 

Combustion instabilities still nowadays a challenging area in combustion research though 

their modelling and control have been investigated in many published works by various 

research teams during the past decades. Combustion instabilities result from the coupling 

between acoustic waves and combustion. In confined devices, the coupling between acoustic 

field and heat or mass release at certain frequency levels may lead to engine failure or other 

catastrophic consequences [1, 2]. On the contrary, new blends of fuels can be engineered to 

undergo preferential instabilities leading to homogeneous combustion with higher efficiency 

[3]. Combustion instabilities can occur in both premixed and diffusion flames. The present 

study is mostly concerned with subcritical diffusion flame models. In these latter, many 

causes were identified as being responsible for exciting or damping the mass release 

frequency response [4, 5]: period of ambient pressure oscillations which is closely related to 

the combustion chamber geometry, liquid fuel injection and atomization mechanisms with 

diverse boundary conditions, vaporization characteristic times that are obviously dependent 

on thermal convection and conduction processes, etc.  

Compared with the other processes associated with combustion chamber, vaporization has 

been pointed as the slowest [6], and hence may be the rate-controlling process. The 

evaporating mass frequency response of droplets to ambient pressure oscillations are 

generally computed by using classical droplet evaporation theories [3], on the basis of the 

Rayleigh criterion [7], by assuming simplifying assumptions. Most of the theoretical studies 

in the area are based on single vaporizing droplet models as for example [6, 8, 9]. Then, by 

means of numerical simulations, the dynamic response of the vaporization frequency 

response of spray droplets to ambient pressure oscillations can be taken as a statistical 

consequence of the vaporization characteristics of each individual droplet in the array. 

Among previous numerical works on vaporization frequency response of sprays, Tong and 

Sirignano [10] examined the effects of oscillating gas pressure and velocity on vaporization 

rates of continuously injected droplets during combustion instability. They concluded that 

self-sustained acoustical oscillations can occur in the combustor when vaporization is a 

controlling phenomenon. More recently, de la Cruz Garc’ıa et al. [11] investigated on the 

self-excited oscillations in a kerosene spray flame and concluded that the combustor stability 

strongly depends on the fuel distribution, degree of evaporation, and mixing before the main 

reaction zone. Progress has also been made in analytical modelling of vaporization frequency 

response of spray droplets. Haddad and Majdalani [12] provided a closed-form analytical 

solution for the transverse vorticoacoustic wave in a circular cylinder with headwall injection. 

Likewise, researchers have recently reported improved analytical models for spray 

combustion instability in diverse configurations as for example Greenberg and Katoshevski 

(see [13] and references therein). In all the above-mentioned studies, the actual changing 

volume due to the vaporization of the injected droplets has been taken into account.  

One of the analytical approaches for evaluating the vaporization frequency response of 

spray droplets can stem from Heidmann analogy of a spherical vaporizing droplet of constant 

volume [14]. This configuration consists of representing the spray of repetitively injected 

drops in the combustion chamber by a motionless mean droplet. The single vaporizing 

droplet is continuously supplied at a stationary flow rate with the same liquid fuel. This 

classical model can permit to include most of the above-mentioned mechanisms that 

intervene in combustion instability phenomena, in a single theoretical analysis. Heidmann 

and Wieber first based their model on the hypothesis that, the mean spherical droplet 

summarizes the oscillatory rate of vaporization of an array of repetitively injected droplets in 

the combustion chamber [14]. However, an infinite thermal diffusivity of the liquid phase is 

https://www.researchgate.net/researcher/2111179209_Lei_Yuan
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assumed, and the mean droplet has a uniform temperature whatever the feeding process 

adopted. This classical model was refined by Prud’homme et al. [15]. A finite thermal 

diffusivity of the liquid is taken into account but, the feeding process at the mean droplet 

centre is assumed adiabatic, and the radial thermal convection term that appears in the energy 

equation of the liquid phase is neglected (pure conduction model). In [16], Anani and 

Prud’homme extended the study of this pure conduction model by taking into account the 

isothermal feeding process at the mean droplet centre. Recently, an approximate analytical 

model has been performed by Anani et al. [17] where was relaxed the simplifying assumption 

of a negligible radial thermal convection effect inside the liquid phase. Nevertheless, only the 

two extreme cases of centre injection that are the adiabatic and the isothermal feeding 

regimes were considered. Apart from this latter work, no analytical solution has been found 

and any asymptotical study has been performed for intermediate injection cases where the 

feeding regime at the mean droplet centre is a combination of the two extreme thermal 

forcing types. 

The present paper aims at contributing to the linear analysis of subcritical combustion 

instabilities by analytical approaches based on the mean spherical droplet configuration as in 

[17]. In the following section, a brief description is given of the unperturbed state 

corresponding to the vaporization of the continuously fed spherical droplet in a stable 

environment. In section 3, the linear analysis for harmonic perturbations in pressure is 

performed and a double confluent Heun equation (see [18]) is derived from the energy 

equation of the liquid phase. Then, an approximate analytical expression of the temperature 

field inside the mean droplet is obtained for the generalized or mixed injection regime and the 

mass response factor is defined. Results are discussed in section 4. Throughout the 

discussion, comparisons are made with certain results of models in the literature that account 

for the actual changing volume due to vaporization of individual injected droplets in the 

spray. Finally, key results are recalled in the conclusions. 

 

 

2 Stabilized state description 

2.1 General assumptions 

Individual spherical fuel droplets are repetitively injected into a subcritical combustion 

chamber. The distance between the droplets is supposed large enough, so that no interaction 

occurs between the droplets or between the droplets and the wall. Assuming velocity-

stabilized hypotheses as in [14], the vaporizing spray of droplets is represented by an 

idealized physical configuration of a mean spherical droplet at rest in the combustion 

chamber. The mean droplet, placed at a specific location in the combustion chamber 

(pressure anti-node and velocity node), is supposed to summarize the frequency response of 

individual drops in the spray. The vaporizing mean droplet has a constant average radius Sr ,
 

since its instantaneous evaporating mass m  is continuously restored with the average mass 

flow rate m of the same fluid, by using a point source placed at the droplet centre. The choice 

of the Arithmetic Mean Diameter configuration is motivated by the analytical approach of the 

problem, since it leads for the mean droplet to conservation equations with fixed boundary 

conditions. From now on, all barred quantities indicate mean values corresponding to the 

stabilized state, whereas all primed quantities will denote relative perturbation quantities i.e.

' ( ) /x x x x= − . 
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Figure 1. (a) The mean vaporizing droplet, continuously fed by a point source placed at its 

centre. (b) Boundary conditions for the supplied droplet. 

 

The local feeding rate m is distributed throughout the droplet (see Figure 1(a)) in such a 

way that, except for the radial thermal convection effect from the droplet centre to its 

evaporation surface, any other convective transport or liquid recirculation phenomenon 

within the droplet is negligible. The spherical shape of the mean droplet is maintained at 

every moment during the process, and the thermal dilatation of the liquid is negligible so that 

the density L , the specific heat Lc  and the thermal conductivity Lk  of the droplet will be 

treated as constant. A generalized or mixed boundary condition is considered at the mean 

droplet centre, that is, the liquid fuel is injected with a positive heat transfer coefficient h . 

The two extreme cases of this injection process are the adiabatic feeding regime ( 0h = ) 

where zero temperature gradient is assumed at the droplet centre, and the isothermal feeding 

regime ( h =  ) where the droplet centre is kept at the constant temperature ST . The latter is 

the mean value of the spatially uniform but time-varying temperature ST
 
of saturated vapour 

at the stabilized droplet surface.  

In the immediate vicinity of the droplet surface, the gas phase is made up of stoichiometric 

reaction products evolving in a quasi-steady state. Equilibrium conditions at the droplet/gas 

interface are assumed for the stabilized state and there is no gas diffusion into the droplet. Far 

from the mean droplet, the ambient environment of the chamber is at constant subcritical 

temperature CT
 
and pressure Cp . The boundary conditions at the mean droplet surface are 

shown in Figure 1(b). Subscripts L  and l  refer to the liquid phase, whereas subscripts S  and 

C respectively indicate the droplet surface and the ambient conditions of the combustion 

chamber far from the droplet. The heat flux transferred to the liquid is designated by LQ and 

the binary diffusion coefficient of fuel vapour in air is denoted by D  . The density and the 

thermal conductivity of the gas mixture around the droplet surface are respectively designated 

by   and k . The gaseous mixture near the surface is composed of fuel species j F=  and of 

combustion products diluted species j A=  proceeding from the flame front at infinity. By 

denoting the mass fraction of species j  as jY , a mono-component droplet with only fuel 

species will be considered for reason of simplicity, that is 1FLY =
 
and 0ALY = . 

Theoretical studies of the evaporating mass response of spray droplets to acoustic and/or 

velocity perturbations in combustors are mostly based on numerical simulations. But, even 

while assuming certain simplifying assumptions, analytical models that include more 

complex aspects of the problem are needed for providing deep insights in the vaporization 
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frequency response. Those analytical approaches may then serve to improve the development 

of numerical codes, as for instance Computational Fluid Dynamic (CFD) codes. 

Nevertheless, both numerical and analytical models need to be confronted with appropriate 

experimental measurements and more detailed validation databases for validating the 

predictions. Specifications of an experimental design may include several regulations and 

measurement devices [19]. As the present theoretical study is based on the mean droplet 

configuration, experimental facility and methods similar to those described in [20] can 

provide tracks for some experiments. However, the problem is here considered only under its 

analytical aspect. As mentioned in the introduction, the mean droplet model can permit 

including most of the mechanisms that intervene in spray combustion instability, in a single 

theoretical analysis. Therefore, results obtained through approximate analytical solutions are 

still extendable to more complex configuration details. The results may then serve as 

references for full experimental and numerical simulations of spray combustion instability 

which will not need to rely on the simplifying assumptions necessarily adopted here. 

 

2.2 Characteristic times 

The characteristic times controlling heat transfer processes inside the stabilized mean 

spherical droplet are the residence time and the transfer time by thermal diffusion. The 

residence time of the continuously fed droplet can be equated with the mean lifetime of an 

individual vaporizing droplet in the spray. This time replaces the notion of a free droplet 

lifetime in the present situation of constant volume and is identified to the ratio /v M m = , 

where M represents the mean value of the actual mass M of the supplied droplet and m is the 

stationary feeding rate. The transfer time by thermal diffusion process is defined as 
2 /T S Lr = , where /( )L L L Lk c =  is the thermal diffusivity of the liquid and Sr the constant 

average radius. It is then convenient to use the timescale ratio 9 /v T  = , which will be 

called from now on, the thermal exchange ratio or more briefly the exchange ratio, as it is of 

the same order of magnitude as1/ LPe ,
 LPe

 
being the Péclet number of the liquid phase. The 

coefficient 9 permits to obtain later a simple expression of the transfer function and will be 

kept for comparison purposes with results obtained in previous studies [16, 17]. During the 

vaporization, intrinsic or external pressure-related oscillations can cause departure from 

stabilized-state conditions. In the case of small harmonic perturbations in pressure, a linear 

analysis can be performed. The wave period of these ambient pressure oscillations is a major 

characteristic time of the process. The frequency of the harmonic oscillations in ambient 

pressure will be denoted by  . In the first study of the mean droplet [14], the response 

functions were evaluated over fairly wide range of flow conditions. The data was found to be 

correlated with a dimensionless parameter, which is the droplet lifetime or half lifetime 

normalized by the wave period. In the same order, a reduced frequency u  depending on the 

residence time v and defined as 3 vu = will be considered. Here again, the coefficient 3 is 

kept for simplifying later expression of the transfer function and for comparison purposes 

with results obtained in previous studies [16, 17].  

 

2.3 Unperturbed state equations  

The mass balance of the mean droplet can be written:  
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d

d

M
m m

t
= −                                                              

(1) 

with m  and m denoting respectively the stationary flow of injection and the instantaneous 

flow of evaporation. In a stabilized state, one has: , d / d 0m m M t = and M M= . The 

amount of heat LQ penetrating into the droplet is expressed as: 

      

2

,

4

S

l
S L L

r t

T
r k Q Q m

r



= = −


                                               (2)    

where ( , )l lT T r t  is the temperature value at radial coordinate r and at time t  inside the 

mean droplet, Q  is the external gas heat flux and the latent heat of vaporization per unit 

mass of the liquid. Equation (2) assures the coupling of the gas and the liquid phase solutions 

at the mean droplet surface. As the energy conservation equation includes both radial thermal 

convection and conduction data, the internal temperature lT  satisfies the following equation:  

                                       
( )2

2
0

ll l L
L L L L r

r TT T k
c c v

t r r r
 

 
+ − =

  
                            (3) 

where rv

 

is the central injection velocity expressed as
2/ 4r Lv m r= ; 0 Sr r  .                                              

Equation (3) is subject to a mixed boundary condition at the droplet centre and to the 

Dirichlet boundary condition at the surface: 

                                                     
( )

0,

(0, )

( , ) ( )

l
l S

r t S

l S S

T h
T t T

r r

T r t T t

=

 
= −


 =

                                (4)                                       

The parameter 0h  in Equation (4) indicates the heat transfer coefficient. We recall that, 

0h =  and the mixed boundary condition is reduced to (0, ) / 0lT t r  =  for the adiabatic 

injection centre, whereas h =   and the same condition becomes (0, )l ST t T=  for the 

isothermal injection centre. The mixed boundary condition at the droplet centre can be 

viewed as an idealized modelling of a specifically preheated spray injection process. In real 

liquid fuel injection processes, internal flow evaluations depend on inlet boundary conditions 

(see [21] or references therein). Some studies have shown that the reduction in kinematic 

viscosity resulting from fuel preheating improves the combustion and emissions performance 

of the engine [22, 23]. Now, in subcritical combustion systems, the two extreme cases 

bounding the possible range of a real inlet liquid temperature fluxes are precisely the 

adiabatic and the isothermal feeding regimes. The adiabatic feeding regime at the mean 

droplet centre can be related to an unheated spray feeding process where the mean 

temperature AT  of the injected fuel is connected to standard conditions for temperature and 

pressure. On the contrary, the isothermal feeding regime can be taken into account by 

assuming the injected fuel at the mean temperature ST of the vaporizing droplet surface. This 

injected fuel temperature ST  for the isothermal regime can be related to the liquid wet bulb 

temperature WBT  or to its boiling temperature BT  when WBT estimate is unavailable [24]. 

Therefore, in an actual mixed injection process, an inlet fuel temperature may be stated 

between the extreme values that are AT and ST . During the combustion process, the 
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corresponding rate of heat brought by the injected fuel to the vaporizing array of droplets can 

be investigated by means of a heat transfer coefficient. The present model of a representative 

spherical droplet fed by a mass and heat point source placed at its centre includes among 

other advantages, the possibility to formulate the boundary conditions (Equation (4)) with a 

heat transfer coefficient 0h  . Now, contrary to the classical adiabatic condition, the mixed 

boundary condition doesn’t assure the regularity of the heat flux at the droplet centre and the 

spherical shape of the mean droplet is no more guaranteed in this feeding regime. 

Nevertheless, we assume for both feeding regimes that the mean droplet remains spherical 

with a fixed size during the feeding process. The radial liquid velocity diverges at the mean 

droplet centre, even in the adiabatic feeding regime where this infinite divergence is 

counterbalanced by a zero heat flux at the centre. However, in both adiabatic and mixed 

feeding regimes, the evaluation of the mass response factor only depends on the regularity of 

the internal temperature field at the mean droplet surface. Thus, using simplifying 

assumptions, the present study aims at providing such regular approximate analytical 

solutions, in order to investigate the effect of a heat transfer coefficient, related to fuel 

injection processes, on the vaporization frequency response. 

Assuming quasi-steady hypotheses, the droplet surface is at local evaporation equilibrium 

and the instantaneous mass vaporization rate can be calculated as: 

               2 ln (1 ) 4 ln (1 )S M S T

p

k
m D r Sh B r Nu B

c
   = + = +                                 (5) 

where )1/()( FSFCFSM YYYB −−=  and ( ) /( / )T p C S LB c T T Q m= − + are the well-known 

Spalding mass and heat transfer numbers, and pc  the specific heat capacity of fuel vapour at 

constant pressure. As mentioned above, parameters  , k , and D  are the density, the thermal 

conductivity and the binary diffusion coefficient of the mixture of vapour and ambient gas. 

The Sherwood and Nusselt numbers Sh

 and Nu  were provided by Abramzon and Sirignano 

in their extended film model [25]. At the droplet surface, the saturated vapour pressure can be 

expressed as ( ) ( )exp /( )sat S Sp T a b T c= − −  with a , b and c  being some coefficients related to 

the fuel thermophysical properties. The pressure satp  and the mole fraction 
FSX of fuel 

species are connected by the relation ( )FS sat Sp X p T= , where
Cp p=

 
denotes the ambient 

pressure. If the molecular weight of species j (= A  or F ) is denoted by 
j , then the mass 

fraction 
FSY of the vapour at the droplet surface can be written as a function of the mole 

fraction 
FSX

 
as: 

                                           F
FS FS

F FS A AS

Y X
X X


=
 +

                                                    (6)                    

Since concentrations and temperature values are varying in the gas phase, the averaged 

properties can be evaluated at some reference concentration ( )j jS r jC jSY Y A Y Y= + −
 
and 

temperature ( )S r C ST T A T T= + −
 
with 1/ 3rA = . Both Sh and Nu  are assumed equal to two 

and the Lewis number / pLe k Dc=  is equal to one. 
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3 Linear analysis for small perturbations 

3.1 Linear analysis of the liquid-phase equations 

Splitting up the flow variables into steady and unsteady parts can be realized by writing 

f f f = − , where f  is a flow parameter, f is its mean value, f is the absolute 

perturbation, and ' /f f f=   is the corresponding relative perturbation. The heat flow at the 

surface, Equation (2), is then given by: 

                                           
'

2

,

4

S

l
S L S L L L L

r t

T
r k T Q Q Q Q

r



= − = = 


                                 (7)                    

as 0LQ = . The energy conservation equation (Equation (3)) can be rewritten for the 

perturbed temperature '( , ) [ ( , ) ( , )] / ( , )l l l lT r t T r t T r t T r t= −  as: 

                                              
' ' 2 '
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0l S l l
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rT r T rT

t r r r



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+ − = 

   
                                    

(8) 

where 9 /v T  =

 

is the thermal exchange ratio defined in section 2. The perturbed boundary 

conditions in the mixed feeding regime are deduced from Equation (4) as follows: 

                                               

'
'

0,
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(0, )
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l
l

Sr t

l S S

T h
T t

r r

T r t T t

=

 
=
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

=

                     (9)                                        

Introducing now small harmonic perturbations of frequency   in the form of 
ˆ' ( )exp(i )f f r t= , the ambient pressure, temperature and heat transferred into the droplet 

are respectively expressed as ˆ' exp(i )Cp p t= , 
' ˆ ( ) exp(i )l lT T r t=

 
and 

ˆ ( )exp(i )L LQ Q r t =  . Equation (8) is then transformed into:  

                                    

2
2

2

ˆ ˆ3 d d ( )ˆi 0
d d

L S l l
l L

r T rT
r T r

r r


 


+ − =                                        (10) 

or equivalently into:  

                               
2

2

ˆ ˆd d ( )1ˆi 0
3 d d

l l
T l

T T
T


 
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+ − =                                                     (11) 

where ˆ
lT is taken as a function of the reduced radius variable / Sr r = ,

 

( 0 1  ). The 

boundary conditions in the generalized feeding regime, Equation (9), can then be written in 

connection with  as: 

                                                  
0

0

ˆd ˆ
d

ˆ ˆ(1)

l

l S

T
hT

T T


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
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       (12) 

where 0T̂ depends on the initial temperature of the injected liquid fuel.  
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We now consider the complex number 1/ 2

0 (1 i)( / 2 )Ls  = − , conjugate of 

1/ 2

0 (1 i)( / 2 )Ls  = + , 
0s  and 

0s−  being the roots of the characteristic equation 
2i 0Ls − =

obtained from Equation (11), when neglecting the convective term ˆ(1/ 3 )d / dlT  . For a 

given value of the positive heat transfer coefficient h , a solution of Equation (11) subject to 

Equation (12) can be sought in the form of 0
ˆ ( ) ( ){1 cos[ exp(i arctan )]}l ST J s r h   = − , with 

2 1/ 2exp(iarctan ) (i 1) /( 1)h h h= + + , and J referring to a function to be determined. From the 

second-order truncated expansions of sine and cosine functions that are 
0 0sin( )S S   and 

2

0 0cos( ) 1 ( ) / 2S S  −  by writing 
0 0 exp(iarctan )SS s r h= , it is deduced that the function 

J  approximately verifies the following double confluent Heun equation:  

                
2

2 2 2 2

02 2

d ( ) 3 d( ) (i )
2 2 ( ) 0

d d 1
S

J J h h
s r J

h

 
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  

− 
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                              (13) 

By using the Maple notation, a solution of Equation (13) can be expressed as 
5

1 2
0 1 2 3 4( ) exp( 3( ) ) HeunD( , , , , ) /J C x x x x x  −= − , where 0C is an arbitrary constant and

1 2 3 4HeunD( , , , , )x x x x x  is the double confluent Heun function with its corresponding four 

parameters: 1 0x = , 2 2 2 2 2

2 [ ( 1) 9 9 24 (i 1) ]/ 4 ( 1)x h h uh h h  = − + − − − + + ,

 2 2 2

3 [9 (9 24i ) 24 ]/ 2 ( 1)x u h hu h  = − + − − + and 

2 2 2 2 2

4 [ ( 1) 9 9 24 (i 1) ]/ 4 ( 1)x h h uh h h  = − − + − − − + + .
 

The variable x
 
is expressed in 

function of  as
2 2( 1) /( 1)x  = − + . We recall that the quantity 3 vu =  is the ambient 

pressure frequency defined in the precedent section. Thus, for the mixed feeding regime, the 

boundary condition ˆ ˆ(1)l ST T=
 
at the mean droplet surface leads to the following approximate 

analytical solution: 

2

0 1 2 3 4 2

5

2
0

1ˆ {1 cos[exp(i arctan ) ]}HeunD , , , ,
13 1ˆ ( ) exp 1

2
{1 cos[exp(i arctan ) ]}

S S

l

S

T h s r x x x x

T

h s r







 


 −
−  

  +   = −  
   −

            (14)                                 

This approximate analytical solution presents an essential discontinuity at 0 = , since the 

temperature gradient is not null at the droplet centre when 0h  . Now, the calculation of the 

mass response factor only includes regularity conditions at the droplet surface 1 =  and 

these conditions are well verified by the solution expressed in Equation (14). Thus, the flow 

condition at the droplet surface (Equation (7)) can be written as 

1

ˆd ˆ4
d

l
S L S L

T
r k T Q






=

=   and 

then be applied to the solution in Equation (14). That leads to: 

                                ( )ˆ ˆ4 , ,SL S L SQ r k T T E u h  = −                                                         (15) 

where E  is expressed in function of  u ,   and h as: 

           ( ) 0
0

0

sin[exp(i arctan ) ] 3 5
, , exp(i arctan )

cos[exp(i arctan ) ] 1 2 2

S
S

S

h s r
E u h s r h

h s r



= − +

−
                       (16) 

with 1/ 2

0 (1 i)(3 / 2 )Ss r u = − , 3 vu = and 9 /v T=   . 
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3.2 Gas-phase linearized equations 

The linearized equations for the liquid/gas interface initially presented in [15] and used in 

[16, 17], are here briefly recalled. Introducing the harmonic perturbations, the ambient 

pressure is given by ˆ' exp(i )Cp p t= and the perturbed mass flow rate will take the form of 

ˆ' exp(i )m m t= .
 
Consequently, the equations of the gas phase (see subsection 2.3) imply:  

                                         
i ˆˆ ˆ( )

1 i
S C

u
m b T p

u
= −

+
                                                        (17) 

and 

                                                 ˆ ˆˆ( )L C SQ m ap µT = −                                (18) 

where 3 vu = and ˆ exp(i )L LQ Q t =  . The coefficients involved in these equations 

are: 

1
,C

C S

T
a

T T






−
= +

−
 

2
,

( )

S

S

T
b b

T c
=

−
  

2S

C S S

T c
b

T T T c
 = − +

− −
 

 and 

(1 ) ln(1 )

M

M M

B

B B
 =

+ +
 

where 
( )

AC FS F

AS FS FC F FS A AS

Y Y

Y Y Y X X



=

−  +
  

The parameter   stands for the constant isentropic coefficient and the latent heat of 

vaporization  per unit mass of the liquid is given by 2 2/ ( )S F Sb RT T c=  − , where R
 

denotes the universal gas constant. 

 

3.3 Mass response factor 

It is assumed that the mean spherical droplet is at rest in the combustion chamber. The 

acceleration or velocity frequency response relatively to the ambient environment is 

negligible, and only the evaporating mass response due to the ambient acoustic forcing is 

considered. The mass response factor is studied by using a linear analysis for harmonic 

perturbations in pressure. According to the Rayleigh criterion, when the harmonic oscillations 

in pressure ( )'p p p p= −  induces a perturbation in the evaporating mass flow rate 

( )'q q q q= − , the mass response factor N  can be expressed as the ratio of the magnitude of 

the mass perturbation to the magnitude of the pressure perturbation: 

                                                 ,

2

,

'( , ) '( , )

( '( , )) V

V t

V t

q V t p V t dt dV
N

p V t dt d
=



                                          (19) 

The double integral is taken over the wave period of time t  in the finite volume V . 

Considering sinusoidal oscillations which are uniform over a finite volume, the response 

factor is defined as ˆ ˆ( / ) cosN q p = , where q̂  and p̂ are the modules of mass release 'q

and pressure 'p , and   is the phase difference between 'q  and 'p . Therefore, a reduced 

mass response factor can be defined as the real part of the transfer function ˆ ˆ/ ( )CZ m p= . By 

using Equations (15)-(18) the expression of Z is deduced in function of u ,   and h as: 
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i ( , , )

( , , )
1 i ( , , )

u A E u h
Z u h

u B E u h

 


 

+
=

+ −
                                              (20) 

where 3( ) /A ab  = −  and 3B  = are some coefficients depending on /L Sc T =  

and are related to the fuel physical properties. From now on, we will call ‘response factor’ the 

reduced response factor defined as the real part of the transfer function Z  : 

                                                   ( )
N

Z


=                                                               (21)  

The response factor includes phase relations since it is positive when the vaporization rate 

and the chamber pressure are either above or below their mean values, and negative when the 

vaporization rate and the chamber pressure are on the opposite sides of their means [7]. 

Moreover, the phase difference   between the vaporization rate and the chamber pressure, 

defined as arg( )Z = , is proved to remain insensitive to the chamber mean pressure 

magnitude [4]. Thus, the phase angle   appears to be one of the key parameters for analysing 

the mass frequency response due to ambient pressure oscillations. 

 

4 Results and discussion 

In this section, all the calculations and curves are performed with the fuel thermodynamic 

coefficients 10A =  and 100B = . These parameter values correspond approximately to orders 

of magnitude of values encountered in the classical fuels [15]. The mass response factor of 

the mean droplet will be analysed relatively to the heat transfer coefficient h  that controls the 

feeding regime, and to the process characteristic times as defined in subsection 2.2, and again 

to the influence of the value of the thermodynamic coefficient B . In each diagram on Figure 

2, response factor curves are shown as function of the reduced frequency 3 vu =  for a set of 

values of the exchange ratio 9 /v T  = . For a given value of the heat transfer coefficient h , a 

quite large number of values of the exchange ratio
 


 
are selected in order to illustrate a fairly 

wide range of curve profiles, among which the one corresponding to a certain critical value of 

  to be later deduced in this analysis. The diagrams are ranged in five columns 

corresponding respectively to five different values of the heat transfer coefficient: 

0; 0.1; 1; 10h =  and + . As already mentioned in the precedent section, the extreme values 

( 0h = and h = + ) are connected to the adiabatic and isothermal feeding regimes at the mean 

droplet centre and the related curves are here illustrated for comparison purposes with 

previous results obtained in [17]. Among the selected values ( 0.1; 1; 10h = ), the value one is 

a particular value (see the discussion below) and can be roughly considered with the two 

other intermediate values as representative of the main types of curve profiles obtained for h  

varying from 0 to + .  

4.1 Effects of the heat transfer coefficient h  

First, for 0h =  (Figures 2(a1), 2(a2) and 2(a3)) and for h →+  (Figures 2(e1), 2(e2) and 

2(e3)), the response factor curves seem respectively like those of the adiabatic and of the 

isothermal injection regimes discussed in [17].  

In fact, these curves are identical since, for a given value of the exchange ratio  , 

calculations show that                                                     
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0 0 0 0

0

sin( ) 2 cos( ) 3cos( ) 2 3
( , , ) ( , ,0)

(1 cos( ))

S S S S

S

s r s r s r s r
E u h E u

s r

  
 



+ − − +
→ =

−
                  (22)                                               

 

 

Figure 2. Effects of heat transfer coefficient h  on the reduced response factor /N  of the 

mean spherical droplet with the fuel thermophysical properties 10A =  and 100B = . (a1), (a2) 

and (a3) for 0h = or adiabatic centre. (b1), (b2) and (b3) for 0.1h = . (c1), (c2) and (c3) for 

1h = . (d1), (d2) and (d3) for 10h = . (e1), (e2) and (e3) for h = + or isothermal centre. 

 

when 0h → , while  

 0 0 0 0

0

2 sin( ) 5 cos( ) 3cos( ) 5 31
( , , ) ( , , )

2 (1 cos( ))

S S S S

S

s r s r s r s r
E u h E u

s r

  
 



+ − − +
→ − = +

−
        (23)                  

                      (a1)                                 (b1)                              (c1)                                  (d1)                                (e1) 

 

           

                      (a2)                                 (b2)                              (c2)                                  (d2)                                (e2) 

 

 

                      (a3)                                 (b3)                                (c3)                                  (d3)                                (e3) 
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when h →+ . The function ( , , )E u h  is defined in Equation (16) and mentioned in 

Equation (20). The above expressions of ( , ,0)E u  and ( , , )E u  +  are exactly the same, 

compared with those obtained in [17] for the calculation of the complex transfer function Z

in adiabatic and isothermal feeding regimes. Hence, all the results concerning the comparison 

of these two extreme cases of injection, as highlighted in this latter reference, are still valid 

for the present analysis.  

Secondly, according to Figures 2(c1), 2(c2) and 2(c3), the response factor curves show 

intriguing fluctuations in their profiles when the value of the heat transfer coefficient h  is 

fixed at one. In this case, if the value of the exchange ratio   is chosen less than one, the 

oscillations become straight chaotic although they appear relatively reduced in amplitude 

contrary to those obtained when the exchange ratio   is much greater than one. Indeed, 

keeping 1h = and increasing the value of the exchange ratio   beyond one until a certain 

threshold value to be later specified, a response factor line exhibits some hyperbolic pattern 

with high peaks value along the reduced frequency axis as in Figures 2(c2) and 2(c3). 

Moreover, once the heat transfer coefficient slightly differs from one, the curves tend to 

show more lower fluctuations in their profiles even if h  remains very close to one as for 

0.95h = or 1.05h = , and many other cases not illustrated with figures. In comparison, the 

unity value of a heat transfer coefficient may characterize radiation heat transfer processing 

from the flame to the chamber wall. According to [26] for example, the radiative power is 

highly nonlinear and varies at the first order as the fourth power of the local instantaneous 

temperature. It must be admitted that, even in fuel injection processes, this specific value of 

the liquid-liquid heat transfer coefficient ( 1h = ) can strongly influence the evaporating mass 

frequency response of spray droplets. 

 

Thirdly, for a given value of the exchange ratio  , almost identical curve profiles are 

obtained when the not null transfer coefficient h  remains much less than one as for 

0 0.1h  . Likewise, for 10h  , the response curve profiles seem unaffected by the 

variation of the transfer coefficient h  at   fixed. Indeed, Figures 2(d1), 2(d2) and 2(d3) for 

10h =  show very similar profiles respectively with Figures 2(e1), 2(e2) and 2(e3) for h = +

. This behaviour can be explained by considering in the expression of the function ( , , )E u h

defined in Equation (16), the rate of variation of the term 2 1/ 2exp(iarctan ) (i 1) /( 1)h h h= + +  

or more precisely that of its inner function arctan( )h . Since this rate of variation near 0h =  

can be equated to one, the function arctan( )h

 

tends rapidly enough to zero as h  tends to zero. 

Consequently, the term exp(iarctan )h tends fast to one as h  tends to zero. But, if the heat 

transfer coefficient h  increases over one, the function arctan( )h

 

tends asymptotically to the 

value / 2  which is yet approximately reached once the value of h  is near 10. Then, the 

term exp(iarctan )h tends slowly to the imaginary number i. On one hand, the first limit leads 

to the expression of the function ( , ,0)E u  , giving in Equation (22) and corresponding to the 

transfer function Z for the adiabatic feeding regime. As this convergence is rapid, the curve 

profiles, although unaffected by the variation of h  in the deleted neighbourhood of zero, 

seem noticeably different from those obtained for the adiabatic injection regime ( 0h = ). This 

is readily confirmed by comparison of Figures 2(a2) and 2(a3) with Figures 2(b2) and 2(b3), 

for respectively 0h = and 0.1h = . On the other hand, the second limit leads to the expression 

of the function ( , , )E u  +
 
for the isothermal feeding regime (see Equation (23)). As the 

convergence is now asymptotic, the mass response factor curves for 10h =  seem very similar 
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to those obtained for the isothermal injection regime ( h = + ). In brief, one may admit that, 

whenever the injection process is controlled by a positive heat transfer coefficient h , high 

and nonlinear instabilities may intervene in the vaporization frequency response of spray 

droplets. As a comparative example, the process of continuous supply of fuel to the chamber 

has been theoretically and experimentally identified as an important factor for producing or 

driving combustion instabilities [27, 28].   

 

4.2 Effects of process characteristic times 

The vaporization response of a LOX droplet to oscillatory ambient conditions has been 

computed over a wide range of frequencies and the results were applied to prototypical cases 

pertinent to liquid rocket combustion instabilities [6]. It has been shown that the peak 

frequency for the computed response factor is correlated to the droplet lifetime. Indeed, as 

already reported in [16, 17], the peak value of a response factor curve, whenever it exists, 

occurs at the same peak reduced frequency 
pu
 
about three. In mixed feeding regimes ( 0h  ) 

as well as in both extreme cases of adiabatic and isothermal injection regimes, one has 

3 3p vu =   (see among others Figures 2(b1), 2(b2) for 0.1h =  and 2(d1), 2(d2) for 10h =

). This relation implies 1/v  , meaning that the injected liquid residence time v  is at the 

same order of magnitude as the oscillation period1/ . Now, the mean residence time v  
of a 

continuously fed droplet can be equated to the mean lifetime of free droplets in the spray. 

Therefore, whenever positive responses appear in the system, regardless of the value of the 

heat transfer coefficient 0h  , the vaporization rate can fully respond to the acoustic 

oscillations, only when the mean droplet lifetime equals the wave period of the ambient 

pressure oscillations. 

It has also been anticipated that the well-known phase-lag model represents a key to a 

fundamental understanding of the evaporating mass frequency response to ambient pressure 

oscillations. Figure 3 shows phase angle arg( )Z =  curves as functions of the reduced 

frequency 3 vu = , for selected values of the exchange ratio 9 /v T  =
 
. The curves are 

represented
 
in a range of diagrams corresponding respectively to the same list of values of the 

heat transfer coefficient: 0; 0.1; 1; 10h =  and+ as retained for the illustration of response 

factor curves. For 0h =  that is in the adiabatic feeding regime (see Figure 3(a)), phase angle 

curves collapse in a single line once 1  , in accordance with the response factor curve 

profiles obtained in Figures 2(a1), 2(a2) and 2(a3). It is also remarkable that the cut-off 

frequency of this single curve is approximately equal to the peak frequency 3 3p vu = 
 
at 

which the vaporization rate oscillates in phase with the acoustic pressure ( 0 =  ). In the 

adiabatic regime, a typical phase-angle curve starts from / 2  at the frequency 0u =  where 

the mass response is null, decreases rapidly to zero at the cut-off frequency pu
 
where the 

response is maximal, and then decreases asymptotically to a negative value about / 3−  
expressing thus a progressive damp of instability in the system. Likewise, the phase-angle 

curves for 0.1h = and for 1h =  as shown in Figures 3(b) and 3(c) are in agreement with the 

expectations. Phase-angle curve profiles obtained in Figure 3(d) for 10h =  seem to be 

identical to those obtained in the isothermal feeding regime i.e. in Figure 3(e) corresponding 

to h = + . As explained in the precedent subsection, this similitude is due to the asymptotical 

convergence of the function arctan( )h  to the value / 2 . On the other hand, an instantaneous 

change from the extreme value −  to the other extreme value   is shown by these latter 
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phase-lag curves about the peak frequency
pu  when the value of the exchange ratio   

approaches 200. 

 

Figure 3. Influence of heat transfer coefficient h  on phase lags of vaporization rate of the 

mean spherical droplet with the fuel thermophysical properties 10A =  and 100B = . (a) for 

0h = or adiabatic centre. (b) for 0.1h = . (c) for 1h = . (d) for 10h = . (e) for h = + or 

isothermal centre. 

4.3 Influence of the value of the thermodynamic coefficient B  

As they occur about a fixed value of the thermal exchange ratio ( 200  ), the sharp 

changes noted in the response factor curve profiles are not related to some particular values 

of the heat transfer coefficient, but rather to a specific value of  . As in [17], those rapid 

changes in curve profiles around the reduced frequency 3pu  can be proved as depending 

on a specific value of   which is in connection with the value of the liquid fuel 

thermodynamic coefficient 3 /B  = . In order to determine this threshold value d  
of the 

thermal exchange ratio at which abrupt changes intervene in the curve profiles, the ratio 

/ / 3Tx u  = =
 
may be particularly useful. Indeed, the thermal diffusion time T  and the 

frequency of the oscillating wave   do intervene in this ratio but not the residence time v . 

This ratio can then be assumed negligible at the fixed peak frequency 3 3p p vpu  =  , 

provided that the thermal transfer time by diffusion T  is negligible compared either to the 

oscillation period1/ p or to the residence time vp  as 1/ p vp  at pu . Therefore, whenever

0h  , the second-order truncated expansion of the transfer function ( , , )Z u h  in the 

neighbourhood of 0x = , while assuming u  closer to pu , leads to the expression: 

               

3
iu A+

2 2
Z( , , )

3
(1+iu) B

2 2

u h






 
− 

 
 

− + 
 

                                                     (24)                

This no more depends on the heat transfer coefficient h . But, when 0h =  i.e. in the 

adiabatic regime, the computation leads to the following approximation: 

Z( , ,0) iu(A-3) /[(1+iu)(B+3)]u   . In consequence, once the feeding process is controlled by 

a positive heat transfer coefficient, the value of   around which mass response factor curves 

exhibit the sharp peak at the frequency pu , can be deduced from the estimation (24) by 

equating the denominator of the right-hand side term to zero. Thus, 2 3 203d B = + =  for 

                  (a)                                        (b)                                    (c)                                 (d)                                     (e) 
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100B = . Moreover, once the value of   exceeds d , one has ( ) 0Z   whenever 0h  , as 

it can be equally deduced from the right-hand side term of the same estimation (24). 

Therefore, the corresponding response factor curves only show negative response for all 

frequencies as shown in Figures 2(b3), 2(c3) and 2(d3) for h = 0.1; 1 and 10 respectively. As 

in [4, 29], many publications have highlighted that the rapid variations of fluid 

thermophysical properties near critical and supercritical vaporization processes are the major 

factor contributing to abrupt changes in droplets frequency response. However, as shown by 

the present study, an abrupt or a completely damped vaporization frequency response may 

occur during subcritical combustion processes, provided that certain specific boundary 

conditions are imposed. 

 

5 Conclusions 

By introducing a heat transfer coefficient in the liquid fuel injection process, this study has 

extended to a more generalized feeding regime the results of the pressure-coupled 

vaporization frequency response of spray droplets. An idealized configuration of the mean 

droplet has permitted to analyse the evaporating mass frequency response of the spray of 

repetitively injected droplets in the combustion chamber. The effects of the liquid heat 

transfer coefficient and of the process characteristic times, as well as those of the thermal 

exchange ratio are found effective for driven or dampen instabilities.  It was shown that, 

whenever positive responses appear in the system, the peak value is reached at a particular 

frequency, where the residence time of the mean droplet matches the period of the ambient 

pressure oscillations. Except for the case where the heat transfer coefficient is equal to one, 

response factor curves exhibit a single abrupt peak response at the involved particular 

frequency. Moreover, the single abrupt peak response grows exponentially at the particular 

frequency if the thermal exchange ratio approaches a certain threshold value. The latter is 

shown equal to a simple affine function of a thermodynamic coefficient related to fuel 

physical properties. Once this threshold value of the thermal exchange ratio is passed over, a 

factor curve shows only negative response for all frequencies even if the heat transfer 

coefficient value equals one. The results are also found similar to those previously obtained 

in the adiabatic and isothermal feeding regimes. Mass response factors in such extreme cases 

of fuel injection are recovered as simple limit points. The above-mentioned results may be 

beneficial for instability control in combustion processes and also for liquid fuel propulsion 

systems. 
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