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Abstract. A simplified model nonlinear describing the stable functioning of
the single branch PHP is proposed. It is based on the earlier proposed film
evaporation-condensation approach and assumes harmonic oscillations of the
meniscus displacement and vapor pressure. The model predicts the frequency as
a function of the oscillation amplitude and the relationship between the ampli-
tudes of meniscus displacement and pressure. Results of the model are compared
to available in the literature experimental data of different groups; they show a
good agreement. The added mass caused by the oscillating flow in the liquid plug
is discussed.

1. Introduction
The pulsating (or oscillating) heat pipe (PHP) is a capillary tube that meanders between hot
and cold spots that form evaporator and condenser sections, respectively. The tube is filled with
a pure fluid in such a way that liquid plugs and gas bubbles coexist inside. When the temper-
ature difference between the evaporator and condenser exceeds a threshold, the self-sustained
oscillations of the plugs and bubbles appear. The PHP is extremely attractive for various indus-
trial applications because of high thermal performance and manufacturing simplicity. However
the PHP functioning is not completely understood. The absence of predictive tools for its di-
mensioning is a substantial obstacle to its practical application. The reason for that is, on one
hand, a multitude of complex physical phenomena involved into the PHP functioning [1], and
on the other, its intrinsic non-stationarity.

Finding conditions of stable functioning of a PHP is one of the most important issues that
is far from being solved. It is widely discussed in the literature. In the multi-branch PHP, the
oscillations are chaotic in most cases. However, in some cases, a dominant oscillation frequency
can be distinguished. It is characteristic of the small-amplitude oscillation regime where the
oscillations are close to harmonic. They can be observed for a long time in a micro-PHP where
the viscous losses are high [2] or intermittently [3]. The simulations show [4] that small-amplitude
oscillations indeed occur in the intermittent oscillation regime, during the oscillation restart after
a stopover. There are many oscillation modes in the multi-branch PHP, so the oscillations are
not easy to understand theoretically, and empirical model components are necessary [2]. In
this article we consider the simplest, single branch PHP, which is a capillary sealed from the
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Figure 1. General scheme of the single branch PHP in the vertical position and a zoomed
tube portion around the average meniscus position at small-amplitude oscillations; the local
wall temperature variation is shown. L and V denote the liquid and vapor phases.

evaporator end and open at the condenser end, so the pressure is constant there (Fig. 1). The
modeling remains however complex even in this simplest case because of the thermal interaction
of the PHP tube with a thermal gradient along it [5], and the fluid motion, which makes the
problem nonlinear. It would be desirable to have the relationships as simple as possible to
describe the stable PHP oscillation regime. This is our objective.

The order of value of frequency of oscillations in the single branch PHP is given by its natural
frequency (i.e. that calculated in the adiabatic case neglecting the energy dissipation) of the
liquid column [6] of the average length L̄l. During oscillations, it adiabatically compresses the
vapor bubble of the average length L̄v. For a vertical tube,

ω0 =

√
γp̄

ρlL̄lL̄v
+

g

L̄l
, (1)

where overbars mean time average. Since the single-branch PHP is often open to a reservoir
(Fig. 1), Ll includes a contribution (the effective length of added mass) from the liquid oscillating
in the reservoir. Note that p̄ is the reservoir pressure corrected for the hydrostatic contribution
corresponding to the average liquid column height.

2. Heat and mass exchange model
The model below is a simplification of the film evaporation-condensation model developed earlier
[5, 6]. The system is assumed to be slightly above the oscillation start-up threshold. As a
consequence, the heat and mass exchange is not too strong and the oscillations are close to
harmonic; X = A cos(ωt) is the displacement of meniscus from the neutral position x = 0, cf.
Fig. 1. This means that while the amplitude of oscillations is not necessarily small, the system
can be considered in the linear approximation as if the deviations (denoted with δ) around the
time-averaged positions (denoted with overbars) were small.

The second simplification is introduced next. As the mass exchange is weak, its impact on
the film length is neglected: the film edge is assumed to remain pinned at the position of the
largest meniscus displacement x = A so the film extends from x = X to x = Xf = A. This
assumption is justified by a weak contact line receding observed experimentally [7–9].

The heat flux through the liquid film

ql(x) = kl
Tw(x)− Tsat

hl
, (2)

where Tw is the temperature of the internal tube wall. Since the vapor-side heat flux at the
liquid-vapor interface can be neglected with respect to the liquid-side heat flux ql, the energy
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conservation at the film interface implies that the mass evaporation rate is

ṁ =
2π

L

∫ A

X
(r − hl)ql(x)dx ' α(∆T + δTsat)(X −A), (3)

where dot denotes the time derivative, α = 2πkl(r − h̄l)/(h̄lL), and ∆T = T̄sat − T̄w is the tube
wall subcooling at the neutral point of oscillation x = 0, T̄w = Tw(x = 0). Note that the neutral
point can be different from the meniscus position at equilibrium (where ∆T is necessarily zero
[5]). During development of the self-sustained oscillations, the neutral (i.e. the moving average)
position can shift in time to a new stable value, see e. g. Fig. 2 of [10]. For this reason, ∆T can
be of either sign.

Because of linearization, only a time- and space-averaged film thickness h̄l enters the above
expressions. It can be assumed to be defined by the RMS velocity with the Aussillous and
Quéré formula [11]. As justified by numerous experimental observations [7, 8], thin liquid films
are deposited by the receding liquid menisci during their oscillation inside the PHP tube [12].
Because of their small thermal resistance, it is the main channel for the heat and mass exchange
that drives the self-sustained oscillations. As only an averaged film thickness matters, the model
is invariant of the specific film shape models discussed by Bae et al. [13].

Another important component of the model is the vapor energy balance [14]

mcvṪ = −pV̇ +RTṁ+Q, (4)

where T is the temperature of the vapor bulk. A boundary layer is formed in the vicinity of the
vapor borders, in particular with the liquid at Tsat and with the dry wall that is assumed to be
at the evaporator temperature Te. The sensible heat received by the vapor from the dry portion
of the tube is

Q = Nu kvπ

∫ L̄v

Xf

(Tw(x)− T )dx ' Nu kvπLd(Te − T ), (5)

where Nu ' 6 [15] at oscillations, Ld = L̄v − A is the dry portion length, and Te is the average
evaporator temperature. Similarly to the previous works, the heat received from the wet portion
can be neglected thanks to the smallness of the difference (T−Tsat). From Eqs. (4,5), one readily
obtains that T̄ = Te and

m̄cvδṪ = Sp̄Ẋ +RT̄δṁ−NukπLdδT, (6a)

where the equality δV = −SX (cf. Fig. 1) is used. By further linearizing Eq. (3) one gets

δṁ = α

(
X∆T −A dTsat

dp

∣∣∣∣
p̄

δp

)
. (6b)

Although this expression is harmonic in time, there is a term quadratic in A (because δp ∼ A),
which makes this system nonlinear. Note that the film evaporation term is at the origin of this
nonlinearity, just like the nonlinear term in the previous model [5].

To close the model, one needs to express δp by varying the ideal gas law p = mRT/V that
describes the vapor behavior:

δp =
p̄

m̄
δm+ ρ̄RδT +

p̄

V̄
SX. (6c)

The variables δp, δm, δT , and X are made dimensionless with the characteristic scales
p̄SA/V̄ , ρ̄SA, T̄ SA/V̄ , and A, respectively. It is convenient now to introduce the dimensionless
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constants

NA = Aα
dTsat

dp

∣∣∣∣
p̄

RT̄

V̄ ω0
, (7a)

Nr =
α∆T

ρ̄Sω0
, (7b)

Nd = Nu
kvπLd

m̄cvω0
; (7c)

and the dimensionless frequency ω̂ = ω/ω0, where ω0 is given by one of Eqs. (1) depending on
the PHP orientation. Note that NA and Nd are both positive while Nr can be of either sign.

Next, the Fourier transform can be applied to Eqs. (6). They become

iω̂T̃ = (γ − 1)iω̂(X̃ + m̃)−NdT̃ , (8a)

iω̂m̃ = NrX̃ −NAp̃, (8b)

p̃ = m̃+ X̃ + T̃ , (8c)

where i is the imaginary unit, the tilde corresponds to the Fourier counterparts of the dimen-
sionless quantities introduced earlier, and γ is the adiabatic index. We can now find the relation
between the pressure and the displacement:

p̃ =
−ω̂2γ + i(γNr +Nd)ω̂ +NrNd

−ω̂2 + i(Nd + γNA)ω̂ +NdNA
X̃. (9)

3. Frequency analysis
The last governing equation has not been used up to now. It is the momentum balance of a
liquid plug of the mass ml = ρlLlS. It can be obtained by averaging the Navier-Stokes equation
(20) over the tube cross-section,

mlẌ = −Sδp− F, (10)

where F is the viscous friction force (see Appendix). In the dimensionless Fourier representation,

− ω̂2X̃ = − p̃
γ
− 2iω̂

G

Reω0
X̃, (11)

where the function G = G(ω̂Reω0) is given by Eq. (22) and Reω0 = ω0r
2/ν. We are interested in

the established oscillation regime so ω̂ is real. The substitution of Eq. (9) results in two equalities,
those of real and imaginary parts. The equality of the real parts defines the oscillation frequency:

γω̂2

{
1 +

2Im[G(ω̂Reω0)]

ω̂Reω0

}
=
γω̂4 +

[
N2

d + (γ − 1)NrNd +NrNAγ
2
]
ω̂2 +NrNAN

2
d

ω̂4 +
[
N2

d + 2(γ − 1)NANd + γ2N2
A

]
ω̂2 +N2

AN
2
d

. (12)

The equality of the imaginary parts of Eq. (11) means that the energy brought via phase
change is equal to the dissipation so this condition results in an expression that fixes the ampli-
tude A of oscillations. This important parameter is however difficult to evaluate theoretically.
Apart from the energy dissipation related to the vapor heat exchange with the tube wall [10]
and the viscous losses in the plug accounted in the present model, the amplitude is limited by
the viscous dissipation in the contact line vicinity (known to be important [16]) and the pressure
losses related to the connection of PHP channel to a reservoir (Fig. 1) [8], which are not easy
to evaluate with precision.
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Figure 2. The frequency as a function of the parameters Nr and NA calculated for Nd = 1 and
Reω0 = 12. The black line consists of points of minimum of the curve Nr(ω) (the minimum is
calculated while NA is kept fixed).

3.1. Frequency of self-sustained oscillations
Note that both left and right hand sides of Eq. (12) are even with respect to ω̂ so one can search
the positive roots only. The frequency of the self-sustained oscillations can only be obtained by
solving Eq. (12) numerically. The numerical calculation is shown in Fig. 2, where ω̂ is given
as a function of Nr and NA. There are however two more parameters (Nd and Reω0) on which
the frequency depends. They are both related to the energy dissipation. Reω0 corresponds to
the viscous dissipation and enters the frequency expression through the factor (26). As shown
in the Appendix, the amplitude of its variation is quite small (±5%) so it only weakly impacts
the frequency. The factor Nd describes the heat exchange of the vapor with the environment,
which creates an additional energy loss during oscillations [10]. As the frequency is generally
only weakly dependent on the dissipation, the dependence on Nr and NA remains at least
qualitatively the same for all Nd, provided it is not too large to overdamp the oscillations.

Fig. 2 shows several general features. First, as usual for non-linear systems, the frequency
depends on the oscillation amplitude (through the dimensionless parameter NA ∼ A). This
dependence is non-monotonous. Generally, at small NA . 1, ω grows with NA, while at large
NA & 1, a decrease is observed.

The dependence on Nr is non-trivial (recall that Nr can be of either sign). For NA larger
than a critical value N cr

A ' 0.82 that is almost independent of Nd and Reω0, Eq. (12) has a
unique root ω = ω1 that grows with Nr and has a property ω1(Nr → 0) → 0 (Fig. 2), so the
oscillations are possible only for a positive Nr. For NA < N cr

A , oscillations are possible also for
negative Nr larger than a minimal value that grows with NA and attains zero for NA = N cr

A .
Two roots thus exist for Nr < 0, ω1 and ω2 ≤ ω1. The roots are equal at the minimal Nr < 0,
which is thus the bifurcation point (Fig. 2). While ω1 increases with Nr, ω2 decreases to zero
when Nr → 0.

Although it is evident that the rigorous value for the frequency of the self-sustained oscil-
lations can only be obtained by solving Eq. (12) numerically, one can discuss some asymptotic
results applicable in the assumption that the added mass can be assumed constant (which is
valid at very high or very low frequencies). First one mentions (cf. Fig. 4) that the factor (26)
that appears because of the viscous dissipation, is bounded and varies only within 10%.
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In the case where NA, Nd, and Nr are small (small impact of mass exchange), one gets

ω

ω0f(ω0)
= 1 +Nd

1− γ
2γ

(Nd −Nr) +NA

[
Nr
γ

2
+Nd(1− γ)

]
−N2

A

γ2

2
. (13)

One can see clearly that the deviation of ω from ω0 is provided by the viscous effect and the
heat exchange. In the opposite case, where the phase change controls completely the frequency,
NA, Nd, and Nr � 1 and

ω = ω0f(ω0)

√
Nr

γNA
. (14)

These expressions show that depending on the relation between above three constants, the
frequency can either grow or decrease with the oscillation amplitude A.

4. Physical meaning of the dimensionless numbers NA and Nr

We show below that NA and Nr can be expressed in terms of tree different contributions to the
vapor mass change over the characteristic time ∼ ω−1 of oscillation, during which the meniscus
recedes by the length A: δmpconst, δmV , and δmp explained next. The total vapor mass change
is obtained by rewriting Eq. (6c) as

δm

m̄
=
δp

p̄
+
δV

V̄
− δT

T̄
. (15)

The vapor mass change δmpconst = ρ̄δV = ρ̄SA is given by the second term in Eq. (15) and
corresponds to the vapor mass necessary to provide the isobaric meniscus receding. When the
generated vapor mass is larger than δmpconst, the pressure grows when meniscus recedes so the
meniscus rebound (and thus oscillation) becomes difficult unless the pressure drops because of
another reason.

δmV is the vapor mass change due to the evaporation from the film formed during the
meniscus receding. According to Eq. (3),

δmV ∼ ṁ/ω ∼
2π(r − h̄l)

Lω
kl∆T

h̄l
A =

α∆TA

ω
(16)

The ratio δmV /δmpconst is thus a parameter characterizing the meniscus rebound: the rebound
is small when δmV > δmpconst because the evaporation provides enough vapor to maintain the
constant pressure. The rebound is important when δmV /δmpconst < 1. From the definition
(7b), it is evident however that δmV /δmpconst ∼ Nr.

The frequency is also impacted by the vapor mass change associated with the evaporation
rate change caused by Tsat variation during oscillations, δmp ∼ ṁ/ω ∼ αδTsatA/ω, where
δTsat ∼ δpdTsat/dp. The pressure change is mainly caused by the meniscus displacement with
no change in T and m, δp = −p̄δV/V̄ . Finally,

δmp ∼ −α
dTsat

dp

∣∣∣∣
p̄

p̄A2S

ωV̄
(17)

The larger is δmp/δmpconst, the stronger is the vapor mass variation that causes the vapor
pressure variation, which modifies the oscillation frequency ωnat that system would have without
mass exchange. The following relation holds

δmp

δmpconst
∼ −NA. (18)
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5. Comparison to the experimental data
One can hardly compare the oscillation frequency data with the experiment as the expressions
(1) for ω0 contain the parameter Ll that includes the effect of reservoir that cannot be predicted
theoretically with certainty. In the only available in the literature experiment obtained without
the reservoir [17], the amplitude of oscillation was so small (cf. Table 1 below) that ω ' ω0 and
the impact of different parameters is difficult to appreciate.

One can compare the amplitude P of pressure oscillations with the experimental data. The
theoretical value can be obtained as an absolute value of the pressure variation (9). We present
it below in the dimensional form:

P =
p̄AS

V̄

√√√√ (N̂2
r + 1)(N̂2

d + γ2)

1 + γ2N̂2
A + 2(γ − 1)N̂dN̂A + N̂2

d(1 + N̂2
A)
, (19)

where the constants with the hats are related to the no-hat counterparts as N̂i = Ni/ω̂ so they
include ω instead of ω0, cf. Eqs. (7). A remarkable feature of Eq. (19), which is the central
result of this article, is its independence of ω0. It contains only the parameters measurable
experimentally so one can perform a direct comparison.

In the linear regime, one expects P ∝ A. According to Eq. (19), this is true only for small
N̂A. For N̂A � 1, P becomes to be independent of A.

The phase shift between the pressure and displacement is more delicate to compare because
of the difficulty to extract it from the existing experimental data where many harmonics are
usually present.

The following procedure has been used for comparison with experiments. First, the exper-
imental amplitudes of the pressure Pexp and the meniscus displacement A are identified. For
some experiments, A needs to be estimated if the meniscus goes out of view field of camera. In
all the considered data sets, the temperatures of evaporator Te and condenser Tc were aimed
to be imposed. However, as the capillaries are made of glass, which is a poor heat conductor,
a smooth internal wall temperature variation actually ocurred. The internal wall temperature
Tc ≤ T̄w ≤ Te is estimated from the position of neutral point x = 0. This position is also used
to calculate V̄ that also includes the dead vapor volume. The experimental average pressure
p̄ and oscillation frequency are both well known for each experiment. The NIST REFPROP
database is used to obtain the system parameters for each fluid. Based on p̄, the saturation
state parameters like T̄sat, L, the saturation curve slope, etc. are calculated; the Aussillous and
Quéré [11] formula is used for h̄l by using the average meniscus receding velocity ωA/

√
2. The

vapor parameters are calculated for p̄ and T̄ = Te > Tsat. All these parameters are necessary to
determine the N̂i constants. Then the theoretical P value is determined with Eq. (19).

All (to our knowledge) existing single branch PHP experiments with published data on both
pressure and displacement could be used for the comparisons except [8], where the film did not
cover all the channel perimeter (contrary to what model assumes) because it was rectangular.
The data are compelled in Table 1. It evidences a good quantitative agreement between Pexp

and P , which shows the validity of our model.
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Table 1. The parameters calculated using available in the literature experimental data. Note
that r = 1 mm for all the cases except [17], where r = 1.1 mm, so the S values are similar.
Two last columns present a comparison of the experimental pressure oscillation amplitude and
its theoretical value.

p̄ Te Tc V̄ h̄l ω A T̄w Tsat N̂r N̂A N̂d Pexp P
Fluid Ref. kPa ◦C ◦C cm3 µm s−1 cm ◦C ◦C Pa Pa

FC72 [7] 46.7 46 16 3.5 48.5 4.4 5 33.8 36.1 2.07 1.01 1.20 3500 3501
FC72 [7] 46.7 46 28 4.1 61.8 7.3 4.56 38.5 36.1 -1.01 0.37 0.77 2105 2182
pentane [18] 53.9 42 -16 3.5 29.3 4.5 8 11.6 18.9 21.67 5.41 3.00 5000 5033
pentane [6] 90.6 45 10 3.3 57.0 22.4 5 38 32.8 -0.90 0.24 0.33 5500 5528
pentane [6] 90.6 65 0 3.6 82.9 18.5 12 5.8 32.8 4.07 0.46 0.52 40000 39999
water [17] 101.3 104 20 1.2 7.1 108.9 0.093 95.5 100 5.38 0.1 1.27 1220 1230

Nomenclature

A meniscus oscillation amplitude [m]
cv vapor specific heat at constant volume
[J/(kg·K)]
F viscous friction force [N]
f viscous dissipation factor given by Eq. (26)
g gravity acceleration [m/s2]
hl liquid film thickness [m]
i imaginary unit
In modified Bessel function of the order n
Im imaginary part of a complex number
k vapor heat conductivity [W/(m·K)]
L length [m]
L latent heat [J/kg]
m vapor mass [kg]
N dimensionless number
Nu Nusselt number
P pressure amplitude [Pa]
p vapor pressure [Pa]
Q heat power [W]
q heat flux [W/m2]
R gas constant for the vapor [J/(kg·K)]
Reω kinetic Reynolds number
r internal tube radius [m]

S capillary cross-section area [m2]
T temperature [K]
t time [s]
u fluid velocity [m/s]
V vapor volume [m3]
X meniscus displacement [m]
x axial coordinate [m]

Greek symbols
γ vapor adiabatic index
µ liquid shear viscosity [Pa·s]
ν liquid kinematic viscosity [m2/s]
ω angular frequency [s−1]
ρ vapor density [kg/m3]
% radial coordinate [m]

Subscripts
c condenser
e evaporator
exp experimental
f film edge (contact line)
l liquid
sat saturation
v vapor
w internal tube wall

Appendix: Laminar oscillating flow
The laminar flow can be induced in a capillary filled with a liquid by the periodic variation of
the pressure gradient [19]. In our case, the periodic variation is caused by the heat and mass
exchange. For a tube of the circular cross-section, this problem can be solved with the Fourier
transform of the Navier-Stokes equation for the axial velocity component ux = ux(%, t),

iωρlũx = −∂p̃l

∂x
+ µ∇2ũx, (20)

where hat means the Fourier transform of the dimensional variables, and % ∈ (0, r) is the radial
coordinate. The no-slip boundary condition at % = r and finiteness of ũx(0) result in the
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Figure 3. The real and imaginary parts of the function G(ω) (lines) and its approximations,
for small (Eq. (23), circles) and large (Eq. (25), crosses) kinetic Reynolds numbers.

following expression [19]

ũx =
1

iωρl

∂p̃l

∂x

(
I0(χ%)

I0(χr)
− 1

)
. (21)

where In is the modified Bessel function of the order n and χ =
√
iω/ν. This classical results can

be easily exploited for our purpose as follows. The pressure gradient can be expressed through
the averaged over tube cross-section liquid velocity υ = Ẋ. The force F exercised by the tube
walls on the fluid is the shear stress integrated over the wall area; its Fourier transform is [16]

F̃ = −2πrµLl
∂ũx
∂%

∣∣∣∣
%=r

= 2πµLlυ̃G(ω), G(ω) = z

(
I0(z)

I1(z)
− 2

z

)−1

, (22)

which is a complex function of the kinetic Reynolds number Reω = ωr2/ν; z = χr =
√
iReω. One

can show that the real part of G is an even function of Reω, while the imaginary part is an odd
function. The real and imaginary parts of G(Reω) can be calculated with Wolfram Mathematica
software. They are shown in Fig. 3 together with the asymptotic formulas discussed next. The
expression (22) can be developed as a power series,

G(ω) = 4 +
iReω

6
+

Re2
ω

144
− iRe3

ω

2880
− 7Re4

ω

414720
+O(Re5

ω), (23)

valid for small frequencies. By performing the inverse Fourier transform, one gets from the first
two terms

F = 8πµLlẊ +
1

3
mlẌ (24)

The first term is the Hagen-Poiseuille expression, and the second presents the first-order oscil-
lation correction. Its particularity is that it is independent of viscosity and corresponds to the
added mass of ml/3.

For large Reω, the following approximation holds:

G(ω) =
(1 + i)

√
Reω√

2
+

3

2
+

15

8

(
1− i√
2Reω

− i

Reω

)
+O(Re−3/2

ω ). (25)

For the frequency calculation in sec. 3.1, the viscous dissipation factor

f(ω) =

[
1 +

2Im(G)

Reω

]−1/2

(26)
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that enters Eq. (12) is important. Its dependence on ω is shown in Fig. 4. One can use the
approximation (25) at large Reω that appears to be quite good,

f(ω) = 1− 1√
2

Re−1/2
ω +

3

4Reω
+

5

8
√

2
Re−3/2

ω +
5

32
Re−2

ω +O(Re−5/2
ω ). (27)
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