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Abstract10

In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves11

provided as input, which were earlier introduced in the context of phylogenetic tree comparison for12

bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes13

the number of inversions with an input order on the leaves, while the second one consists in removing14

the minimum number of leaves from the tree to make it consistent with the input order on the15

remaining leaves. We show that both problems are NP-complete when the maximum degree is16

not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by17

Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm18

for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm19

in a parameter lower than the number of leaves to delete. Our results have practical interest not20

only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of21

the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering22

of its leaves. We explore the possibilities of practical use of our results both on trees obtained by23

clustering the literary works of French authors and on simulated data, using implementations of our24

algorithms in Python.25
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23:2 Reordering a tree according to an order on its leaves

1 Introduction36

The problem of optimizing the consistency between a tree and a given order on its leaves37

was first introduced in bioinformatics in the context of visualization of multiple phylogenetic38

trees in order to highlight common patterns in their subtree structure [6], under the name39

“one-layer STOP (stratified tree ordering problem)”. The authors provided an O(n2) time40

algorithm to minimize, by exchanging the left and right children of internal nodes, the number41

of inversions between the left-to-right order of the leaves of a binary tree and an input order42

on its leaves. The problem was renamed OTCM (One-Tree Crossing Minimization)43

in [9], where an O(n log2 n) time algorithm is provided, as well as a reduction to 3-Hitting44

Set of a variant of the problem where the goal is to minimize the number of leaves to delete45

from the tree in order to be able to perfectly match the input order on the remaining leaves,46

called OTDE (One-Tree Drawing by Deleting Edges). An O(n log2 n/ log log n) time47

algorithm is later provided for OTCM by [1], improved independently in 2010 by [10] and [22]48

to obtain an O(n log n) time complexity. About OTDE, the authors of [10] note that “the49

efficient dynamic-programming algorithm derived for the related problem OTCM [. . . ] cannot50

be transferred to this problem. However, we have no proof for NP-hardness for OTDE nor51

TTDE, either”. TTDE (Two-Tree Drawing by Deleting Edges) is a variant of OTDE52

where two leaf-labeled trees are provided as input and the goal is to delete the minimum53

number of leaves such that the remaining leaves of both trees can be ordered with the54

same order. We give below an answer to both sentences, providing a dynamic-programming55

algorithm solving OTDE for trees with fixed maximum degree as well as an NP-hardness56

proof in the general case for OTDE and for TTDE.57

Although this problem was initially introduced in the context of comparing tree embed-58

dings, one tree having its embedding (that is the left-to-right order of all children) fixed,59

we can note that only the order on the leaves of the tree with fixed embedding is useful60

to define both problems OTCM and OTDE. Both problems therefore consist not really in61

comparing trees but rather in reordering the internal nodes of one tree in order to optimize62

its consistency with an order on its leaves provided as input. A popular problem consisting63

in finding an optimal order on the leaves of a tree is “seriation”, often used for visualization64

purposes [7], where the optimized criterion is computed on data used to build the tree. For65

example, a classical criterion, called “optimal leaf ordering”, is to maximize the similarity66

between consecutive elements in the optimal order [2, 3, 4]. Another possibility is to minimize67

a distance criterion, the “bilateral symmetric distance”, computed on pairs of elements in68

consecutive clusters [5]. Seriation algorithms have been implemented for example in the69

R-packages seriation [12] and dendsort [19].70

With the OTCM and OTDE problems, our goal is not to reorder a tree using only the71

original data from which it has been built, but using external data about some expected order72

on its leaves. In the context where the leaves of the tree can be ordered chronologically, for73

example, this would help providing an answer to the question: how much is this tree consistent74

with the chronological order? This issue is relevant for several fields of digital humanities,75

when objects associated with a publication date are classified with a hierarchical clustering76

algorithm, for example literature analysis [14], political discourse analysis [15] or language77

evolution [17], as noticed in [11]. In these articles, the comments about the chronological78

signal which can be observed in the tree obtained from the clustering algorithm are often79

unclear or imprecise. For example, in [17], the author observes about Figure 15 on page 1780

that “the cluster tree gives a visual representation consistent with what is independently81

known of the chronological structure of the corpus”. However, the structure of the tree82



L. Bulteau, P. Gambette, O. Seminck 23:3

does not perfectly reflect the chronology2. The algorithms solving the OTCM and OTDE83

problems can also prevent researchers from claiming having obtained perfect chronological84

trees with clustering, whereas there are still small inconsistencies that are not easy to spot85

with the naked eye. For example, although “Chez Jacques Chirac, l’examen des parentés86

[dans ses discours de vœux] ne suppose aucune rupture, la chronologie étant parfaitement87

représentée”3 is claimed about Figure 2.4 in [15], the 1999 speech cannot be ordered between88

1998 and 2000.89

In this article, we first give useful definitions in Section 1.1. We answer two open problems90

from [10], proving that OTDE and TTDE are NP-complete, as well as OTCM, in Section 2.91

We then provide a dynamic programming algorithm solving OTDE in polynomial time for92

trees with fixed maximum degree in Section 3. This algorithm also works in the more general93

case where the order on the leaves is not strict. We then provide an FPT algorithm for the94

OTDE problem parameterized by the deletion-degree of the solution, which is lower than95

the number of leaves to delete, in Section 4. We also give an example of a tree and an order96

built to have a distinct solution for the OTCM and OTDE problems in Section 5. Finally,97

we illustrate the relevance of this problem, and of our implementations of algorithms solving98

them, for applications in digital humanities, with experiments on trees built from literary99

works, as well as simulated trees, in Section 6.100

1.1 Definitions101

Given a set X of elements, we define an X-tree T as a rooted tree whose leaves are bijectively102

labeled by the elements of X. The set of leaves of T is denoted by L(T ) and the set of leaves103

below some vertex v of T is denoted by L(T, v) (or simply L(v) if T is clear from the context).104

A set of vertices of T is independent if no vertex of T is an ancestor of another vertex of T .105

We say that σ is a strict order on X if it is a bijection from X to [1..n] and that it106

is a weak order on X if it is a surjection from X to [1..m], where |X| ≥ m. Given any107

(strict or weak) order σ, we denote by a ≤σ b the fact that σ(a) ≤ σ(b) and by a <σ b108

the fact that σ(a) < σ(b). Considering the elements x1, . . . , xn of X such that for each109

i ∈ [1..n − 1], σ(xi) ≤ σ(xi+1), we denote by (x1x2 . . . xn) the (weak or strict) order σ.110

Given an X-tree T and a (weak or strict) order σ on X, we say that an independent111

pair {u, v} of vertices of T is a conflict wrt. σ if there exist leaves a, c ∈ L(u) and b ∈ L(v)112

such that a <σ b <σ c. Conversely, if {u, v} is not a conflict, then either a ≤σ b for all113

a ∈ L(u), b ∈ L(v), or b ≤σ a; we then write u ⪯σ v or v ⪯σ u, respectively. We say that σ114

is suitable on T if T has no conflict with respect to σ.115

Given two (strict or weak) orders σ1 and σ2 on X and two elements a ̸= b of X, we say116

that {a, b} is an inversion for σ1 and σ2 if a ≤σ1 b and b <σ2 a, or b ≤σ1 a and a <σ2 b.117

Given an X-tree T , a subset X ′ of X and an order σ on X, we denote by σ[X ′] the order118

σ restricted to X ′, and by T [X ′] the tree T restricted to X ′, that is the X ′-tree obtained from119

T by removing leaves labeled by X \ X ′ and contracting any arc to a non-labeled leaf, any120

arc from an out-degree-1 vertex. We define the deletion-degree of X ′ as the maximum degree121

of the tree induced by the deleted leaves, i.e., T [X \ X ′]. Intuitively, the deletion-degree122

measures how deletions in different branches converge on a few nodes or if they merge123

2 For example 1380Gawain.txt cannot be ordered between 1375AllitMorteArthur.txt and
1400YorksPlays.txt.

3 “For Jacques Chirac, the examination of the genealogy [of his new year addresses] shows no discontinuity,
the chronology being perfectly represented”

CVIT 2016
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progressively. Note that by definition, the deletion-degree of X ′ is upper-bounded both by124

the maximum degree of T and by the size of X \ X ′.125
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Figure 1 Example for the OTDE and OTCM problem. Left: a tree T on leaves {A, . . . , F}, the
reference permutation is σ = (A, B, C, D, E, F) (more precisely, σ(A) = 1, . . . , σ(F) = 6). Middle: a
solution for OTDE with cost 2. The subtree T [X ′] for X ′ = {A, D, E, F} is ordered to show the absence
of conflicts with σ[X ′]. Right: a solution for OTCM with cost 3. The order σ′ = (A, D, B, E, C, F) is
suitable for T and yields three inversions with σ.

We now define the two main problems addressed in this paper (see Figure 1 for an126

illustration). As explained in the introduction, we differ from previous definitions which127

considered two trees, one with a fixed order on the leaves, as input, as only the leaf order of128

the second tree is useful to define the problem and not the tree itself.129

We therefore define the OTCM (One-Tree Crossing Minimization) problem as130

follows:131

Input: An X-tree T , an order σ on X and an integer k.132

Output: Yes if there exists an order σ′ on X suitable on T such that the number of133

inversions for σ′ and σ is at most k, no otherwise.134

We also define the OTDE (One-Tree Drawing by Deleting Edges) problem as135

follows:136

Input: An X-tree T , an order σ on X and an integer k.137

Output: Yes if there exists a subset X ′ of X of size at least |X| − k such that σ[X ′] is138

suitable on T [X ′], no otherwise.139

We finally define the TTDE (Two-Tree Drawing by Deleting Edges) problem in140

the following way:141

Input: Two X-trees T1 and T2 and an integer k.142

Output: Yes if there exists a subset X ′ of X of size at least |X| − k and an order σ′ on143

X ′ that is suitable on T1[X ′] and on T2[X ′], no otherwise.144

2 NP-hardness145

2.1 OTDE and TTDE are NP-complete for trees with unbounded146

degree147

▶ Theorem 1. The OTDE problem is NP-complete for strict orders and therefore for weak148

orders.149

Proof. First note that OTDE is in NP, since, given an X-tree T , an order σ and a set L150

of leaves to remove, we can check in linear time, by a recursive search of the tree, saving151

on each node the minimum and the maximum leaf in σ[X − L] appearing below, whether152
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σ[X − L] is suitable on T [X − L]. Regarding NP-hardness, we now give a reduction from153

Independent Set, which is NP-hard on cubic graphs [16], to OTDE when the input trees154

have unbounded degree.155

We consider an instance of the Independent Set problem, that is a cubic graph156

G = (V = {v1, . . . , vn}, E) such that |E| = m = 3n/2 and an integer k. For each vertex vi,157

we write e1
i , e2

i and e3
i for the three edges incident with vi (ordered arbitrarily).158

We now define an instance of the OTDE problem. The set of leaf labels consists of vertex159

labels denoted vi and v′
i for each i ∈ [1..n], one edge label for each edge (also denoted ej

i for160

the jth edge incident on vertex vi), and a set of n2 separating labels Bi = {b1
i , b2

i , . . . bn2

i } for161

each i ∈ [1..n − 1].162

First, we define the strict order σ(G) = (v1e1
1e2

1e3
1v′

1b1
1b2

1 . . . bn2

1 v2e1
2e2

2e3
2v′

2b2
1b2

2 . . . bn2

n−1vne1
n163

e2
ne3

nv′
n). Then, let Tvi

be the tree with leaves vi and v′
i attached below the root, Te be the tree164

with leaves ei′

i and ej′

j attached below the root for each edge e = {vi, vj} of G (with i′, j′ ∈165

[1..3]), and TBi
be the tree with leaves b1

i , . . . , bn2

i attached below the root for each i ∈ [1..n−1].166

We finally define T (G) as the tree such that Tv1 , Tv2 , . . . , Tvn
, Te1 , Te2 , . . . Tem

, TB1 , TB2 , . . .167

and TBn−1 are attached below the root.168

We claim that G has an independent set of size at least k ⇔ the instance (T (G), σ(G))169

of the OTDE problem has a solution with a set L of at most m + n − k leaves to remove.170

⇒: Suppose that there exists a size-k independent set S = {s1, . . . , sk} of G. We then171

remove the following leaves (also contracting along the way the edge from their parent to the172

root of T (G)) in order to get a new tree T ′:173

for each edge e = {vi, vj} = ei′

i = ej′

j with i < j, we remove ei′

i and call T
ej′

j

= Te if174

vi ∈ S or if neither vi nor vj belong to S; and we remove ej′

j and call Tei′
i

= Te if vj ∈ S175

(as S is an independent set we cannot have both vi and vj in S);176

for each vertex vi not in S we remove v′
i.177

By ordering the children of the root of T (G) such as in Figure 2(1), that is by putting, for each178

vi with i ∈ [1..n], Tvi
, then Te1

i
, Te2

i
and Te3

i
for each of the ei′

i which were not removed and179

then TBi (except for i = n), the order σ(G) restricted to the remaining m + n + k + n2(n − 1)180

leaves is suitable on T ′.181

⇐: Suppose that there exists a set L of at most m + n − k leaves such that σ(G)[X − L]182

is suitable on T (G)[X − L]. For each parent pBi
of the leaves of Bi and any other vertex v of183

T such that {pBi
, v} is a conflict wrt. σ(G), we can delete this conflict either by deleting no184

leaf of Bi or all leaves of Bi. As each Bi has size n2 > m + n − k, its leaves cannot belong to185

the set L of leaves to be deleted.186

We now consider the trees Tei for each i ∈ [1..m]: by construction of σ(G), as both leaves187

of each such tree are separated by some Bi′ , therefore by n2 > m + n − k leaves, one of these188

two leaves has to be removed, so it has to belong to L. We call L′ the set of such leaves of L,189

therefore there exists a set L − L′ of at most n − k other leaves to delete. So there exists a190

subset SL of [1..n] of size at least k such that for any element i ∈ SL, neither vi, nor v′
i, nor191

any of the leaves ej
i for j ∈ {1, 2, 3} belong to L − L′. Note that for such i ∈ SL, all vertices192

vi and v′
i are not in L and all ej

i are in L′. We claim that the vertices of G corresponding193

to SL are an independent set of G. Suppose for contradiction that it is not the case, then194

there exists an edge e = ei′

i = ej′

j between two vertices vi and vj of G. By construction of195

L′, exactly one of the leaves labeled by ei′

i and ej′

j is in L′ so the second one is in L − L′:196

contradiction. ◀197

▶ Corollary 2. The TTDE problem is NP-complete.198

CVIT 2016
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(1) (2)

Figure 2 Illustration of the reductions of Independent Set to OTDE and of OTDE to TTDE. (1,
left) A graph G with independent set S = {v1, v4} of size 2. (1, right) The corresponding tree T (G)
as well as the order σ(G). By removing all leaves connected with dotted lines to the corresponding
element in σ(G), the resulting subtree of T (G) is suitable for the order (since the remaining arcs
are non-crossing). (2) Reduction from an OTDE instance (T, σ) (top) to a TTDE instance (T1, T2)
(bottom). A large set of leaves labelled Y can be seen as a fixed-point, around which T1 must be
ordered according to σ, and T2 according to the input tree T .

Proof. TTDE is clearly in NP. We prove hardness by reduction from OTDE (see Figure 2(2)199

for an illustration). Consider an instance (T, σ) of OTDE with σ a strict order on n labels200

X. Introduce a set Y of n new labels. Build T1 as a caterpillar with n + 1 internal nodes201

forming a path r1, . . . , rn+1 (with root r1) and 2n leaves where each ri with i ≤ n has one202

leaf attached with label σ−1(i) ∈ X (in the same order), and rn+1 has n leaves attached203

labelled with Y . Build T2 as a tree, where the root has two children y, t, where y has n204

children which are leaves labelled with Y , and t is the root of a subtree equal to T .205

We now show our main claim: given 0 ≤ k < n, OTDE(T, σ) admits a solution with at206

most k deletions ⇔ TTDE(T1, T2) admits a solution with at most k deletions.207

⇒ Let X ′ be a size-(n − k) subset of X such that σ[X ′] is suitable on T [X]. Then let γ208

be any order on Y : the concatenation σ[X ′]γ is suitable both on T1[X ′ ∪ Y ] and T2[X ′ ∪ Y ],209
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so it is a valid solution for TTDE(T1, T2) of size 2n − k, i.e., with k deletions.210

⇐ Let X ′, Y ′ be subsets of X, Y , respectively, and σ′ be an order on X ′ ∪ Y ′ such that211

σ′ is suitable on both T1[X ′ ∪ Y ′] and T2[X ′ ∪ Y ′], and such that |X ′ ∪ Y ′| ≥ 2n − k > n212

(in particular, Y ′ contains at least one element denoted y, and |X ′| ≥ n − k). From T2, it213

follows that σ′ is the concatenation (in any order) of an order σx of X ′ suitable for T [X ′]214

and an order σy of Y ′. Assume first that σx appears before σy. Then consider each internal215

node ri of the caterpillar T1 with i ≤ n and a child c labelled with an element X ′. Then this216

child must be ordered before all leaves below ri+1 since the corresponding subtree contains217

all leaves labelled with Y . Thus, the nodes in X ′ are ordered according to σ[X ′], hence218

σx = σ[X ′], and T [X ′] is suitable with σ[X ′]. For the other case, where σy is ordered before219

σx, then for each ri with a child in X ′, this child must be after the subtree with root ri+1220

(containing Y ), and the nodes in X ′ are ordered according to the reverse of σ[X ′] (i.e.,221

σx = σ[X ′]). Thus, the reverse of σ[X ′] is suitable for T [X ′], and σ[X ′] as well (this is222

obtained by reversing the permutation of all children of internal nodes of T ). In both cases,223

X ′ is a solution for OTDE(T, σ) with |X ′| ≥ n − k. ◀224

2.2 OTCM is NP-complete for trees with unbounded degree225

▶ Theorem 3. The OTCM problem is NP-complete for strict orders and therefore for weak226

orders.227

Proof. First note that OTCM is in NP, since, given an X-tree T with its leaves ordered228

according to an order σ′ on X suitable on T , an order σ and a set L of leaves, the number of229

inversions between σ′ and σ can be counted in O(|L|2). Regarding NP-hardness, we now230

give a reduction from Feedback Arc Set, which is NP-hard [13], to OTCM.231

We consider an instance of the Feedback Arc Set problem, that is a directed graph232

G = (V = {v1, . . . , vn}, A) such that |A| = m and an integer f .233

We now define an instance of the OTCM problem, illustrated in Figure 3. The set X234

of leaf labels is {vj
i | i ∈ [1..n], j ∈ [1..2m]}. We define the order σ(G) in the following way.235

For each arc (vi, vj) of G, whose rank in the lexicographic order is k, we add to σ(G) a kth
236

supplementary ordered sequence (which we will later call a “block” corresponding to this arc)237

v2k−1
i v2k−1

j X2k−1
i,j X

2k

i,jv2k
i v2k

j , where Xk′

i,j is the ordered sequence of vk′

i′ where i′ ranges from238

1 to n, excluding i and j, and X
k′

i,j is the reverse of Xk′

i,j (i.e., the ordered sequence of vk′

i′239

where i′ ranges from n down to 1, excluding i and j). The tree T (G) is made of a root with240

n children v1 to vn, each vi having 2m children, the leaves labeled by vk′

i for k′ ∈ [1..2m].241

Figure 3 Illustration of the reduction of Feedback Arc Set to OTCM: a graph G with feedback
arc set S = {(v4, v1)} of size 1 and the corresponding tree T (G) as well as the order σ(G).

Given an ordering σ′ suitable for T , and an inversion (vk
i , vk′

i′ ) forming an inversion242

between σ(G) and σ′, we say that this pair is short-ranged if k = k′, and long-ranged243

CVIT 2016
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otherwise. Furthermore, we say that σ′ is vertex-consistent if, for every i and k < k′, we have244

σ′(vk
i ) < σ(vk′

i ). Finally, given σ′, we write σ′′ for the permutation of the [1..n] corresponding245

to the children of the root.246

We first claim that for any σ′ suitable for T , there are at least 2
(

n
2
)(2m

2
)

long-range247

inversions between σ′ and σ(G), and this bound is reached if σ′ is vertex-consistent. Indeed,248

pick any pair (vk
i , vk′

i′ ) with i ≠ i′ and k ̸= k′. Then vk
i <σ(G) vk′

i′ iff k < k′ (since they are in249

blocks k and k′ of σ(G)), respectively, and vk
i <σ′ vk′

i′ iff σ′′(i) < σ′′(i′) (since they are in250

L(T, vi) and L(T, vi′), respectively). Overall, among 4
(

n
2
)(2m

2
)

such pairs of elements, there251

are 2
(

n
2
)(2m

2
)

pairs creating an inversion (which is long-range by definition). For the case252

i = i′, note that pairs (vk
i , vk′

i ) do not create any inversion iff σ′ is vertex-consistent, which253

completes the proof of the claim.254

Towards counting the number of short-ranged inversions, we say that an arc (vi, vj) of255

G is satisfied by σ′′ if σ′′(i) < σ′′(j). Let i, j ∈ [1..n] and k ∈ [1..m], and consider the two256

pairs (v2k−1
i , v2k−1

j ) and (v2k
i , v2k

j ). Then these two pairs are, by construction of T , in the257

same order in σ′ (as defined by σ′′). If the kth arc of G is (vi, vj), then these two pairs258

are also in the same order in σ, i.e., together they account for either 0 or 2 (short-ranged)259

inversions. More precisely they yield 0 short-ranged inversions if (vi, vj) is satisfied by260

σ′′, and 2 inversions otherwise. If the kth arc of G is any other arc, then exactly one of261

(v2k−1
i , v2k−1

j ), (v2k
i , v2k

j ) forms a short-ranged inversion. Overall a pair {i, j} such that one262

of (vi, vj), (vj , vi) is a satisfied arc yields m−1 short-ranged inversions, a pair {i, j} such that263

one of (vi, vj), (vj , vi) is an unsatisfied arc yields m + 1 short-range inversions, and any other264

pair {i, j} with i ̸= j yields m short-ranged inversions. Overall, if there are f unsatisfied265

arcs, σ′ yields
(

n
2
)
m − m + 2f inversions.266

We can now complete the proof with our main claim: G has a feedback arc set of size267

at most f ⇔ the OTCM problem has a solution with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f268

inversions.269

⇒: If G has a feedback arc set F of size f , as G[A−F ] is acyclic, we consider an order σ′′
270

over n such that for all arcs (vi, vj) in A − F , σ′′(i) < σ′′(j) (i.e., σ′′ is the topological order271

of the vertices in G[A − F ]). We now order the children vi of the root of T (G) according to272

this order σ′′ and call σ′ the induced order on the leaves of T (G) (also sorting all leaves vj
i273

below each vi by increasing values of j). Note that σ′ is vertex-consistent, and that an arc274

(vi, vj) is satisfied by σ′′ iff (vi, vj) /∈ F . Thus, σ′ yields 2
(

n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f inversions.275

⇐: Consider an order σ′ suitable for T with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m−m+2f inversions.276

Let σ′′ be the corresponding order on the leaves of the root, and let F be the set of arcs277

unsatisfied by σ′′. Since σ′ has at least 2
(

n
2
)(2m

2
)

long-range inversions, it has at most278 (
n
2
)
m − m + 2f short-range inversions, and |F | ≤ f . Finally, since all arcs in A − F are279

satisfied by σ′′, G[A − F ] is acyclic and F is a feedback arc set. ◀280

3 A polynomial-time algorithm for fixed-degree trees281

We start by presenting a dynamic programming algorithm for fixed-degree trees, which is282

easy to implement and leads to an algorithm in O(n4) time for binary trees. The FPT283

algorithm presented in the next section has a better complexity but is more complex and284

reuses the dynamic programming machinery presented in this section, which explains why285

we start with this simpler algorithm.286

▶ Theorem 4. The OTDE problem can be solved in time O(d!nd+2) for trees with fixed287

maximum degree d and for strict or weak orders.288
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Proof. Given a vertex v of a rooted tree T , a (strict or weak) order σ : L(T ) → [1..m] and289

two integers l ≤ r ∈ [1..m]. We denote by X (v, l, r) a subset of L(T, v) of maximum size290

such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r]. Note that291

X (v, l, r) also depends on T and σ but we simplify the notation by not mentioning them as292

they can clearly be identified from the context.293

Denoting by c1, . . . , ck the children of v in T , we claim that the following formula allows294

to recursively compute X (v, l, r) in polynomial time:295

|X (v, l, r)| = max
permutation π of [1..k]

x1=l≤x2≤...≤xk≤xk+1=r

k∑
i=1

∣∣X (cπ(i), xi, xi+1)
∣∣ if v is an internal node of T ;296

for any leaf ℓ of T , |X (ℓ, l, r)| = 1 if σ(ℓ) ∈ [l, r], 0 otherwise.297

Correctness: We prove by induction on the size of L(v) that X (v, l, r) is indeed a298

subset of L(T, v) of maximum size such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and299

∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r].300

This is obvious for any leaf, so let us consider a vertex v of T with a set {c1, . . . ck} of301

children. Suppose for contradiction that there exists a set of integers l ≤ r and a subset302

X ′ of L(v) of size strictly greater than X (v, l, r) such that σ[X ′] is suitable with T [X ′] and303

∀ℓ ∈ X ′, σ(ℓ) ∈ [l, r]. We then denote by X ′
1, . . . and X ′

k the sets of leaves L(c1) ∩ X ′, . . .304

and L(ck) ∩ X ′, respectively. Without loss of generality we consider that the children ci305

of v are labeled such that maxℓ∈X′
i
{σ(ℓ)} ≤ minℓ∈X′

i+1
{σ(ℓ)}. For all i ∈ [2..k], we define306

mi = minℓ∈X′
i
{σ(ℓ)}, m1 = l and mk+1 = r. Using the induction hypothesis we know that307

for each i ∈ [1..k], |X ′
i| ≤

∣∣∣X (v, minℓ∈X′
i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)})

∣∣∣, so |X ′
i| ≤ |X (v, mi, mi+1)|308

because
[
minℓ∈X′

i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)}

]
⊆ [mi, mi+1]. Therefore, |X ′| =

∑k
i=1 |X ′

i| ≤309 ∑k
i=1 |X (v, mi, mi+1)| so by definition of σ[X (v, l, r)], |X ′| ≤ σ[X (v, l, r)]: contradiction!310

We therefore obtain a correct solution of OTDE(T, σ) by computing X (root(T ), 0, m).311

Running-time: For each v, we compute the table of the O(n2) values of X (v, l, r) for all312

intervals [l, r]. Each of these values can be computed by generating the k! permutations of313

children of v to consider any possible order among the children and splitting the interval [l, r]314

into any possible configurations of d consecutive intervals with integer bounds partitioning315

[l, r], which can be done in time O(nd−1). So the computation of each X (v, l, r) is done in time316

O(d!nd−1), therefore the total computation of all X (v, l, r) is done in time O(n×n2 ×d!nd−1),317

that is in O(d!nd+2). ◀318

4 An FPT algorithm for the deletion-degree parameter for OTDE319

We recall that with a reduction of OTDE to 3-Hitting Set [10], using the best algorithm320

known so far to solve this problem4, we can obtain an algorithm to solve OTDE O∗(2.08k) [23],321

where k is the number of leaves to delete and the O∗ notation ignores the polynomial factor.322

In this section we obtain an FPT algorithm in time O(n4d∂2∂), where d is the maximum323

degree of the tree and ∂ is the deletion-degree of the solution.324

▶ Theorem 5. The OTDE problem parameterized by the deletion-degree ∂ of the solution is325

FPT and can be solved in time O(n4d∂2∂) for strict or weak orders.326

We adapt the dynamic programming algorithm from Theorem 4, using a vertex cover327

subroutine to have a good estimation of the permutation of the children of each node.328

4 http://fpt.wikidot.com/fpt-races
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Figure 4 An instance (T, σ) of OTDE (top-left), with a vertex v having children set Cv =
{a, b, c, d, e}. The conflict graph of Cv (right) has a size-2 vertex cover K = {b, d}. Based on the
span of each vertex (bottom-right), the dynamic programming algorithm tests permutations of Cv

such that (a, c, e) appear in this order, interleaved in any possible way with b and d. In particular,
the final solution corresponds to the permutation (a c d b e) of Cv. Note that since σ may be a weak
order (two leaves are labelled 3 in the example), the conflict graph does not correspond exactly to
the intersection graph of the span intervals, e.g. vertices a and c are not in conflict, even though
their spans overlap.

We first introduce some definitions (see Figure 4 for a illustration of these definitions329

and the algorithm in general). Given any vertex v of T , let Cv be the (independent) set of330

children of v, and let Gv be the conflict graph with vertex set Cv and with one edge per331

conflict. Let K be a vertex cover of Gv. Then the vertices of Cv \ K have a canonical order332

(w1, . . . , wk′), with k′ = |Cv \ K| and wi ⪯σ wj for all i ≤ j (ties may happen when two333

children contain a single leaf each which are equal, such ties are broken arbitrarily). We say334

that P ⊆ Cv is a prefix of Cv wrt. K if P \ K is a prefix of this order (i.e., for some i ≤ k′,335

P \ K = {w1, . . . , wi}). In other words, ignoring all subtrees below vertices of K, all leaves336

below vertices of a prefix P are necessarily ordered before leaves below vertices outside of P .337

▶ Lemma 6. If X ′ is a solution of OTDE with deletion-degree ∂, then for any vertex v of T ,338

the conflict graph Gv admits a vertex cover of size at most ∂.339

Proof. Given a subset X ′ of X, we say that a node v of T has a deletion if some L(v) ̸⊆ X ′,340

i.e., if v has a leaf in X \ X ′. Let {u, v} be any conflict (edge) of the conflict graph Gv, then341

at least one of u, v has a deletion for X ′ (indeed, the conflict involves three leaves a, b, c, of342

which at least one must be deleted). Thus, the vertices with a deletion in Gv form a vertex343

cover of this graph. The lemma follows from the fact that at most ∂ vertices have a deletion344

in each conflict graph. ◀345

The first step of our algorithm consists in computing, for each node v of the graph, the346

set C of children of v, its conflict graph Gv, and a minimum vertex cover Kv of GC . Since347

each Kv has size at most ∂ (by Lemma 6), Kv can be computed in time O(1.3∂ + ∂n) [5],348

and overall this first step takes O(1.3∂n + ∂n2).349

We proceed with the dynamic programming part of our algorithm. To this end, we350

generalize the table X to sets of nodes (instead of only v) as follows: X (P, l, r) corresponds351

to the largest set X of leaves in
⋃

u∈P L(u) such that σX is suitable for T [X]. Note that for352

a node v with children set C, X (v, l, r) = X ({v}, l, r) = X (C, l, r).353

We first compute X ({v}, l, r) for each leaf v: clearly X ({v}, l, r) = {u} if l ≤ σ(v) ≤ r,354

and X ({v}, l, r) = ∅ otherwise. For each internal vertex v (visiting the tree bottom-up), we355
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obtain X ({v}, l, r) by first computing X (P, l, r) for each prefix P of Cv by increasing order356

of size, using the following formulas:357

|X (P, l, r)| = ∅ if P = ∅358

= max
x∈[l..r], u∈P

P \{u} prefix of Cv

|X (P \ {u}, l, x)| + |X ({u}, x, r)|359

|X ({v}, l, r)| = |X (Cv, l, r)|360
361

Each vertex v has at most d2∂ prefixes, so the dynamic programming table X has at362

most n3d2∂ cells to fill. For each prefix P , there exist at most ∂ + 1 vertices u ∈ P such that363

P \ {u} is a prefix (u can be any vertex in P ∩ Kv, or the maximum vertex for ⪯σ in P \ Kv).364

Overall, the max is taken over O(n∂) elements, and X can be filled in time O(n4d∂2∂).365

Before proving the correctness of the above formula, we need a final definition: given366

a set of leaves X ′ ⊆ X and a vertex v of T , we write spanX′(v) for the smallest interval367

containing σ(u) for each leaf u ∈ L(u) ∩ X ′ (note that spanX′(v) may be empty, if all its368

leaves are deleted in X ′).369

▶ Lemma 7. Let X ′ be a solution of OTDE(T, σ), v ∈ T and 1 ≤ l ≤ r ≤ m such that370

spanX′(v) ⊆ [l, r]. Then there exists a permutation (c1 . . . ck) of the children of v and371

integers x0 = l ≤ x1 ≤ . . . ≤ xk = r such that, for each i ≤ k,372

(a) spanX′(ci) ⊆ [xi−1, xi], and373

(b) Pi = {c1, . . . , ci} is a prefix of the children of v wrt. σ.374

Proof. Recall that we write Cv and Kv, respectively, for the set of chidren of v and the375

vertex cover in the conflict graph induced by these children. For each element c of Cv with a376

non-empty span, let x(c) = max(span(c)). For each element wi of Cv \ Kv with an empty377

span (taking i for the rank according to the canonical order), let x(wi) = x(wi−1) (and378

x(w1) = l for i = 1). For the remaining vertices (in Kv with an empty span), set x(c) = l.379

Finally, order vertices c1, . . . , ck by increasing values of x(ci) (breaking ties according to the380

canonical order when applicable, or arbitrarily otherwise), and set xi = x(ci).381

Condition (a) follows from the fact that X ′ is a solution for OTDE(T, σ), so that the382

span covered by the leaves under siblings do not overlap. For condition (b) we refer to the383

definition of prefix: each Pi \ Kc is indeed a prefix in the canonical ordering of Cv \ Kv. ◀384

The dynamic programming formula follows from the above remark: one can build the385

solution by incrementing prefixes one vertex at a time (rather than trying all possible386

permutations of children, as in Theorem 4).387

5 Optimizing OTCM and OTDE are two different things388

In order to ensure that finding the smallest k such that OTCM or OTDE outputs a positive389

answer actually consists in optimizing different criteria, we provide in Figure 5 an example of390

X-tree and an order of its leaves where the order reaching the best k for a positive answer of391

the OTCM problem does not provide the optimal value for the number of leaves to delete in392

a positive answer of OTDE and where the best k for a positive answer of the OTDE problem393

does not provide an optimal value for the number of inversions for a positive answer of the394

OTCM problem.395

We checked the optimality for both criteria by implementing the “naive” dynamic396

programming O(n2) algorithm described in Section 2.1 of [10] to solve the OTCM problem397

and the O(n4) algorithm described in Section 3 to solve the OTDE problem on binary trees.398
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Both implementations are available in Python, under the GPLv3 licence, at https://github.399

com/oseminck/tree_order_evaluation, as well as the file inputCounterExample1b.txt400

containing the Newick encoding for the tree of Figure 5.401

T σ1 σ σ σ2 T

Figure 5 Two planar embeddings of a rooted tree T : the one on the left is optimal for the OTDE
problem (deleting the 3 gray leaves makes the order σ suitable on T restricted to the remaining
leaves, but the order σ1 suitable on T has 11 inversions, shown with empty circles, with σ); the
other one is optimal for the OTCM problem with the order σ2 suitable on T having 10 inversions
with σ but not for the OTDE problem (4 leaves, for example the 4 gray ones, need to be deleted to
make the order σ suitable on T restricted to the remaining leaves).

6 Experiments and discussion402

In this section, we investigate the potential for use of OTCM and OTDE in applications403

where the tree of elements is obtained from a clustering algorithm taking as input distances404

between those elements, and where we want to test whether this clustering reflects some405

intrinsic order on the elements, for example the chronological order. We both test the running406

time of OTCM and OTDE on real data, and the performance of OTDE on simulated data407

to detect possibly misplaced leaves in the order.408

The first experiment deals with text data: the CIDRE corpus [20] that contains the works409

of 11 French 19th century fiction writers dated by year (every file contains a book that is410

annotated with its year of writing). We apply apply hierarchical clustering on the different411

corpora using the AgglomerativeClustering class from the package sklearn [18]. Distance412

matrices on which the clustering is based are obtained by using the relative frequencies413

of the 500 most frequent tokens5 in each corpus. Distance matrices were generated using414

the R package stylo [8], with the canberra distance metric. We obtain the results given in415

Table 1, which provides the running time in milliseconds of the algorithms we implemented416

to solve OTCM and OTDE. They show that both algorithms on binary trees are quick417

enough to handle typical instances of the OTCM and the OTDE problems relevant for digital418

humanities, a few milliseconds for the first one and a few seconds for the second one, for419

5 A token is (a part of) a word form or a punctuation marker. The last sentence would yield the following
tokens: [“A”, “token”, “is”, “(”, “a”, “part”, “of”, “)”, “a”, “word”, “form”, “or”, “a”, “punctuation”,
“marker”, “.”] Deliberately, we do not use the term “word”, because the word can be seen as a linguistic
unit of form and meaning, and henceforward “punctuation marker” would be one word and the period
in the end of the sentence would not be one.

https://github.com/oseminck/tree_order_evaluation
https://github.com/oseminck/tree_order_evaluation
https://github.com/oseminck/tree_order_evaluation
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tree # leaves OTCM
time # inversions pOT CM

OTDE
time

# deleted
leaves pOT DE

Ségur 22 1 40 0.24 200 9 1
Féval 23 2 47 0.38 268 8 0

Aimard 24 1 35 0 401 8 0
Lesueur 31 1 48 0 676 13 0
Zévaco 29 1 42 0 727 11 0
Zola 35 2 60 0 1203 9 0

Gréville 36 2 105 0 2211 18 1
Ponson 42 3 167 2.23 3447 18 0
Balzac 59 4 248 0 8292 34 0
Verne 58 3 183 0 13446 27 0
Sand 62 4 283 0 17557 39 1
Table 1 Results of our implementations for problems OTCM and OTDE on binary trees generated

from corpora of French novels of the 19th century. Time durations are given in milliseconds.

instances of about 50 elements in the tree and in the order.420

Investigating precisely whether the numbers of inversions or deleted leaves shown in421

Table 1 are sufficiently small to reflect consistency with a chronological signal is beyond the422

scope of this paper. However, we also provide pOT CM and pOT DE , the percentage of cases423

when the best order on the leaves of the tree has the same number of inversions, or less424

than the chronological order, among 10000 randomly generated orders for OTCM and 100425

randomly generated orders for OTDE, respectively6. These numbers illustrate that in all426

cases, it is unlikely that the observed optimal numbers of inversions or deleted leaves are due427

to chance, as we get equal or smaller values of inversions or deleted leaves on less than 3% of428

random orders (for Ponson du Terrail the number of inversions is 167 or less for 2.23% of429

random orders; for one of the 10 000 simulated random orders, it reached as little as 124430

inversions). These preliminary results obtained thanks to reasonably small running times431

open new perspectives in investigating further the practical use of these algorithms, and432

comparing their results with other methods to search for signals of chronological evolution in433

textual data [21].434

Our second experiment involves simulated data, to check whether, in the case the tree is435

built to be consistent with the input order, our algorithm finding the minimum of leaves in436

the tree to remove inconsistencies with the order is able to detect errors that we intentionally437

add to the order. We produced 100 instances of the OTDE problem, for each chosen value of438

n, the number of leaves, and e < n, the number of errors, in the following manner:439

1. we randomly pick n distinct integers from the interval [0, 999], which will be our set X of440

leaves;441

2. we build a distance matrix in which the distance between two elements from X is simply442

the absolute difference between both; we add some noise to this matrix by adding or443

subtracting in each cell a random quantity equal to at most 10% of the cell value, obtaining444

a noisy matrix, from which we build an X-tree T using the AgglomerativeClustering445

class from the package sklearn;446

3. we randomly pick a set Le of e leaves in X and replace their value by another integer,447

6 We chose to generate less random orders for OTDE in our simulations, as our algorithm is slower to
solve this problem than OTCM.
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n = # leaves e = # errors proportion of cases when L = Le when |L − Le| = 1
20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

Table 2 Results of the attempts to perfectly detect the set Le of randomly relabeled leaves in
simulated trees (when L = Le); the situation when |L − Le| = 1 corresponds to finding only e − 1
leaves among the e randomly relabeled leaves).

randomly chosen from the interval [0, 999], distinct from other leaf labels; σ is the set of448

leaves ordered by increasing value taking into account these new values;449

4. by solving the OTDE problem on T and σ, we compute the minimum set L of leaves to450

remove to make σ[X − L] suitable on T [X − L], and check whether L = Le.451

This experiment simulates the situation where we would have dating errors on the elements452

we clustered in a tree. Note that like in the case of dating errors, the error in our simulation453

may not change the overall order on the leaves. Table 2 provides, for each chosen values of454

n and e, the proportion of simulated instances of OTDE where L = Le, that is when our455

algorithm removed exactly the e leaves whose label had been randomly modified. We can456

observe that this happens in a majority of cases only when the number of modified leaves is457

small compared with the total number of leaves (up to 2 for 20 leaves, up to 4 for 50 leaves).458

Solving OTDE still allows to identify e − 1 among the e modified leaves in a majority of459

cases in all our experiments.460

7 Conclusion and perspectives461

In this article, we addressed two problems initially introduced with motivations from bioin-462

formatics, OTCM and OTDE. We stated them in a more simple framework with a tree463

and an order as input, instead of two trees as was the case when they were introduced,464

opening perspectives for new practical uses in digital humanities and proving that they are465

not equivalent. We proved that both problems, as well as a problem on two trees, TTDE,466

are NP-complete in the general case. We gave a polynomial-time algorithm for OTDE on467

trees with fixed maximum degree and an FPT algorithm in a parameter possibly smaller468

than the size of the solution for arbitrary trees.469

We also investigated their potential for practical use, checking that the algorithms we470

implemented with open source code in Python to solve them are well suited for applications471

in digital humanities in terms of running time. We also observed on simulated data that it472

is possible to identify a small number of leaves for which there would be an ordering error473

if the tree is built from distance data derived from an order on its leaves. Future research474

includes the search for FPT algorithms, with relevant parameters, for OTCM and TTDE.475
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