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Abstract10

In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves11

provided as input, which were earlier introduced in the context of phylogenetic tree comparison for12

bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes13

the number of inversions with an input order on the leaves, while the second one consists in removing14

the minimum number of leaves from the tree to make it consistent with the input order on the15

remaining leaves. We show that both problems are NP-complete when the maximum degree is16

not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by17

Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm18

for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm19

in a parameter lower than the number of leaves to delete. Our results have practical interest not20

only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of21

the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering22

of its leaves. We explore the possibilities of practical use of our results both on trees obtained by23

clustering the literary works of French authors and on simulated data.224
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2 Reordering a tree according to an order on its leaves

1 Introduction34

The problem of optimizing the consistency between a tree and a given order on its leaves35

was first introduced in bioinformatics in the context of visualization of multiple phylogenetic36

trees [6], under the name “one-layer STOP (stratified tree ordering problem)”. The authors37

provided an O(n2) time algorithm to minimize, by exchanging the left and right children of38

internal nodes, the number of inversions between the left-to-right order of the leaves of a39

binary tree and an input order on its leaves. The problem was renamed OTCM (One-Tree40

Crossing Minimization) in [9], where an O(n log2 n) time algorithm is provided, as well as41

a reduction to 3-Hitting Set of a variant of the problem where the goal is to minimize42

the number of leaves to delete from the tree in order to be able to perfectly match the43

input order on the remaining leaves, called OTDE (One-Tree Drawing by Deleting44

Edges). An O(n log2 n/ log logn) time algorithm is later provided for OTCM by [1], improved45

independently in 2010 by [10] and [21] to obtain an O(n logn) time complexity. About OTDE,46

the authors of [10] note that “the efficient dynamic-programming algorithm derived for the47

related problem OTCM [. . . ] cannot be transferred to this problem. However, we have no48

proof for NP-hardness for OTDE nor TTDE, either”. TTDE (Two-Tree Drawing by49

Deleting Edges) is a variant of OTDE where two leaf-labeled trees are provided as input50

and the goal is to delete the minimum number of leaves such that the remaining leaves of51

both trees can be ordered with the same order. We give below an answer to both sentences,52

providing a dynamic-programming algorithm solving OTDE for trees with fixed maximum53

degree as well as an NP-hardness proof in the general case for OTDE and for TTDE.54

Although this problem was initially introduced in the context of comparing tree embed-55

dings, one tree having its embedding (that is the left-to-right order of all children) fixed,56

we can note that only the order on the leaves of the tree with fixed embedding is useful57

to define both problems OTCM and OTDE. Both problems therefore consist not really in58

comparing trees but rather in reordering the internal nodes of one tree in order to optimize59

its consistency with an order on its leaves provided as input. A popular problem consisting60

in finding an optimal order on the leaves of a tree is “seriation”, often used for visualization61

purposes [7], where the optimized criterion is computed on data used to build the tree. For62

example, a classical criterion, called “optimal leaf ordering”, is to maximize the similarity63

between consecutive elements in the optimal order [3, 2, 4]. Another possibility is to minimize64

a distance criterion, the “bilateral symmetric distance”, computed on pairs of elements in65

consecutive clusters [5]. Seriation algorithms have been implemented for example in the66

R-packages seriation [12] and dendsort [19].67

With the OTCM and OTDE problems, our goal is not to reorder a tree using directly68

the data used to build it, but using external data about some expected order on its leaves.69

In the context where the leaves of the tree can be ordered chronologically, for example, this70

would help providing an answer to the question: how much is this tree consistent with the71

chronological order? This issue is relevant for several fields of digital humanities, when objects72

associated with a publication date are classified with a hierarchical clustering algorithm, for73

example literature analysis [14], political discourse analysis [15] or language evolution [17],74

as noticed in [11].75

In this article, we first give useful definitions in Section 1.1. We answer two open problems76

from [10], proving that OTDE and TTDE are NP-complete, as well as OTCM, in Section 2.77

We then provide a dynamic programming algorithm solving OTDE in polynomial time for78

trees with fixed maximum degree in Section 3. This algorithm also works in the more general79

case where the order on the leaves is not strict. We then provide an FPT algorithm for the80
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OTDE problem parameterized by the deletion-degree of the solution, which is lower than81

the number of leaves to delete, in Section 4. We also give an example of a tree and an order82

built to have a distinct solution for the OTCM and OTDE problems in Section 5. Finally,83

we illustrate the relevance of this problem, and of our implementations of algorithms solving84

them, for applications in digital humanities, with experiments on trees built from litterary85

works, as well as simulated trees, in Section 6.86

1.1 Definitions87

Given a set X of elements, we define an X-tree T as a rooted tree whose leaves are bijectively88

labeled by the elements of X. The set of leaves of T is denoted by L(T ) and the set of leaves89

below some vertex v of T is denoted by L(T, v) (or simply L(v) if T is clear from the context).90

A set of vertices of T is independent if no vertex of T is an ancestor of another vertex of T .91

We say that σ is a strict order on X if it is a bijection from X to [1..n] and that it92

is a weak order on X if it is a surjection from X to [1..m], where |X| ≥ m. Given any93

(strict or weak) order σ, we denote by a ≤σ b the fact that σ(a) ≤ σ(b) and by a <σ b94

the fact that σ(a) < σ(b). Considering the elements x1, . . . , xn of X such that for each95

i ∈ [1..n− 1], σ(xi) ≤ σ(xi+1), we denote by (x1x2 . . . xn) the (weak or strict) order σ.96

Given an X-tree T and a (weak or strict) order σ on X, we say that an independent97

pair {u, v} of vertices of T is a conflict wrt. σ if there exist leaves a, c ∈ L(u) and b ∈ L(v)98

such that a <σ b <σ c. Conversely, if {u, v} is not a conflict, then either a ≤σ b for all99

a ∈ L(u), b ∈ L(v), or b ≤σ a; we then write respectively u �σ v or v �σ u. We say that σ is100

suitable on T if T has no conflict with respect to σ.101

Given two (strict or weak) orders σ1 and σ2 on X and two elements a 6= b of X, we say102

that {a, b} is an inversion for σ1 and σ2 if a ≤σ1 b and b <σ2 a, or b ≤σ1 a and a <σ2 b.103

Given an X-tree T , a subset X ′ of X and an order σ on X, we denote by σ[X ′] the order104

σ restricted to X ′, and by T [X ′] the tree T restricted to X ′, that is the X ′-tree obtained105

from T by removing leaves labeled by X \X ′ and contracting any arc to a non-labeled leaf,106

from a degree-2 vertex or from the root if the root has degree 1. We define the deletion-degree107

of X ′ as the maximum degree of the tree induced by the deleted leaves, i.e. T [X \ X ′].108

Intuitively, the deletion-degree measures how deletions in different branches converge on a109

few nodes or if they merge progressively. Note that by definition, the deletion-degree of X ′110

is upper-bounded both by the maximum degree of T and by the size of X \X ′.111

We now define the two main problems addressed in this paper. As explained in the112

introduction, we differ from previous definitions which considered two trees, one with a fixed113

order on the leaves, as input, as only the leaf order of the second tree is useful to define the114

problem and not the tree itself.115

We therefore define the OTCM (One-Tree Crossing Minimization) problem as116

follows:117

Input: An X-tree T , an order σ on X and an integer k.118

Output: Yes if there exists an order σ′ on X suitable on T such that the number of119

inversions for σ′ and σ is at most k, no otherwise.120

We also define the OTDE (One-Tree Drawing by Deleting Edges) problem as121

follows:122

Input: An X-tree T , an order σ on X and an integer k.123

Output: Yes if there exists a subset X ′ of X of size at least |X| − k such that σ[X ′] is124

suitable on T [X ′], no otherwise.125



4 Reordering a tree according to an order on its leaves

We finally define the TTDE (Two-Tree Drawing by Deleting Edges) problem in126

the following way:127

Input: Two X-trees T1 and T2 and an integer k.128

Output: Yes if there exists a subset X ′ of X of size at least |X| − k and an order σ′ on129

X ′ that is suitable on T1[X ′] and on T2[X ′], no otherwise.130

2 NP-hardness131

2.1 OTDE and TTDE are NP-complete for trees with unbounded132

degree133

I Theorem 1. The OTDE problem is NP-complete for strict orders and a fortiori for weak134

orders.135

Proof. First note that OTDE is in NP, since, given an X-tree T , an order σ and a set L136

of leaves to remove, we can check in linear time, by a recursive search of the tree, saving137

on each node the minimum and the maximum leaf in σ[X − L] appearing below, whether138

σ[X − L] is suitable on T [X − L]. Regarding NP-hardness, we now give a reduction from139

Independent Set, which is NP-hard on cubic graphs [16], to OTDE when the input trees140

have unbounded degree.141

We consider an instance of the Independent Set problem, that is a cubic graph142

G = (V = {v1, . . . , vn}, E) such that |E| = m = 3n/2 and an integer k. For each vertex vi,143

we write e1
i , e2

i and e3
i for the three edges incident with vi.144

We now define an instance of the OTDE problem. The set of leaf labels consists of vertex145

labels denoted vi and v′i for each i ∈ [1..n], one edge labels for each edge e (also denoted e),146

and a set of n2 separating labels Bi = {b1
i , b

2
i , . . . b

n2

i } for each i ∈ [1..n− 1].147

First, we define the strict order σ(G) = (v1e
1
1e

2
1e

3
1v
′
1b

1
1b

2
1 . . . b

n2

1 v2e
2
2e

2
2e

3
2v
′
2b

2
1b

2
2 . . . b

n2

n−1vne
1
n148

e2
ne

3
nv
′
n). Then, let Tvi be the tree with leaves vi and v′i attached below the root, Te be the tree149

with leaves ei′i and ej
′

j attached below the root for each edge e = {vi, vj} of G (with i′, j′ ∈150

[1..3]), and TBi be the tree with leaves b1
i , . . . , b

n2

i attached below the root for each i ∈ [1, n−1].151

We finally define T (G) as the tree such that Tv1 , Tv2 , . . . , Tvn , Te1 , Te2 , . . . Tem , TB1 , TB2 , . . .152

and TBn−1 are attached below the root.153

We claim that G has an independent set of size at least k ⇔ the instance (T (G), σ(G))154

of the OTDE problem has a solution with a set L of at most m+ n− k leaves to remove.155

⇒: Suppose that there exists a size-k independent set S = {s1, . . . , sk} of G. We then156

remove the following leaves (also contracting along the way the edge from their parent to the157

root of T (G)) in order to get a new tree T ′:158

for each edge {vi, vj} = ei
′

i = ej
′

j , we remove ei′i if vi ∈ S or if neither vi nor vj belong to159

S and we remove ej
′

j if vj ∈ S (as S is an independent set we cannot have both vi and vj160

in S);161

for each vertex vi not in S we remove v′i.162

By ordering the children of the root of T (G) such as in Figure 1(1), that is by putting, for each163

vi with i ∈ [1, n], Tvi , then Te1
i
, Te2

i
and Te3

i
for each of the ei′i which were not removed and164

then TBi (except for i = n), the order σ(G) restricted to the remaining m+n+ k+n2(n− 1)165

leaves is suitable on T ′.166

⇐: Suppose that there exists a set L of at most m+ n− k leaves such that σ(G)[X − L]167

is suitable on T (G)[X −L]. For each parent pBi of the leaves of Bi and any other vertex v of168

T such that {pBi , v} is a conflict wrt. σ(G), we can delete this conflict either by deleting no169
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(1) (2)

Figure 1 Illustration of the reductions of Independent Set to OTDE and of OTDE to TTDE.
(1) a graph G with independent set S = {v1, v4} of size 2 and the corresponding tree T (G) as well
as the order σ(G) such that only the leaves connected with a dotted line to be deleted to make T (G)
restricted on the remaining leaves suitable for the order. (2) Reduction from an OTDE instance
(T, σ) to a TTDE instance (T1, T2). A large set of leaves labelled Y can be seen as a fixed-point,
around which T1 must be ordered according to σ, and T2 according to the input tree T .

leaf of Bi or all leaves of Bi. As each Bi has size n2 > m+ n− k, its leaves cannot belong to170

the set L of leaves to be deleted.171

We now consider the trees Tei for each i ∈ [1..m]: by construction of σ(G), as both leaves172

of each such tree are separated by some Bi′ , therefore by n2 > m+ n− k leaves, one of these173

two leaves has to be removed, so it has to belong to L. We call L′ the set of such leaves of L,174

therefore there exists a set L− L′ of at most n− k other leaves to delete. So there exists a175

subset SL of [1..n] of size at least k such that for any element i ∈ SL, neither vi, nor v′i, nor176

any of the leaves eji for j ∈ {1, 2, 3} belong to L− L′. Note that for such i ∈ SL, all vertices177

vi and v′i are not in L and all eji are in L′. We claim that the vertices of G corresponding178

to SL are an independent set of G. Suppose by contradiction that it is not the case, then179

there exists an edge e = ei
′

i = ej
′

j between two vertices vi and vj of G. By construction of180

L′, exactly one of the leaves labeled by ei′i and ej
′

j is in L′ so the second one is in L − L′:181
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contradiction. J182

I Corollary 2. The TTDE problem is NP-complete.183

Proof. TTDE is clearly in NP. We prove hardness by reduction from OTDE (see Figure 1(2)184

for an illustration). Consider an instance (T, σ) of OTDE with σ a strict order on n labels185

X. Introduce a set Y of n new labels. Build T1 as a caterpillar with 2n leaves (ordered from186

the leaf attached to the root to the leaf farthest from the root), where the first n leaves are187

labelled with X according to σ (in the same order), and the last n leaves are labelled with188

Y (in any order). Build T2 as a tree, where the root has two children y, t, where y has n189

children which are leaves labelled with Y , and t is the root of a subtree equal to T .190

We now show our main claim: given 0 ≤ k < n, OTDE(T, σ) admits a solution with at191

most k deletions ⇔ TTDE(T1, T2) admits a solution with at most k deletions.192

⇒ Let X ′ be a size-(n− k) subset of X such that σ[X ′] is suitable on T [X]. Then let γ193

be any order on Y : the concatenation σ[X ′]γ is suitable both on T1[X ′ ∪ Y ] and T2[X ′ ∪ Y ],194

so it is a valid solution for TTDE(T1, T2) of size 2n− k, i.e. with k deletions.195

⇐ Let X ′, Y ′ be subsets of X,Y respectively and σ′ be an order on X ′ ∪ Y ′ such that196

σ′ is suitable on both T1[X ′ ∪ Y ′] and T2[X ′ ∪ Y ′], and such that |X ′ ∪ Y ′| ≥ 2n − k > n197

(in particular, Y ′ contains at least one element denoted y, and |X ′| ≥ n− k). From T2, it198

follows that σ′ is the concatenation (in any order) of an order σx of X ′ suitable for T [X ′]199

and an order σy of Y ′. Assume first that σx appears before σy. Then for each internal node200

of the caterpillar T1 with a child in X ′, this child must be ordered before the other subtree201

(which contains y). Thus, the nodes in X ′ are ordered according to σ[X ′], and σx = σ[X ′],202

and T [X ′] is suitable with σ[X ′]. For the other case, where σy is ordered before σx, then for203

each node of the caterpillar with a child in X ′, this child must be after the subtree containing204

y, and the nodes in X ′ are ordered according to the reverse of σ[X ′] (i.e. σx = σ[X ′]). Thus,205

the reverse of σ[X ′] is suitable for T [X ′], and σ[X ′] as well (this is obtained by reversing206

the permutation of all children of internal nodes of T ). In both cases, X ′ is a solution for207

OTDE(T, σ) with |X ′| ≥ n− k. J208

2.2 OTCM is NP-complete for trees with unbounded degree209

I Theorem 3. The OTCM problem is NP-complete for strict orders and a fortiori for weak210

orders.211

Proof. First note that OTCM is in NP, since, given an X-tree T with its leaves ordered212

according to an order σ′ on X suitable on T , an order σ and a set L of leaves to remove, the213

number of inversions between σ′ and σ can be counted in O(|L|2). Regarding NP-hardness,214

we now give a reduction from Feedback Arc Set, which is NP-hard [13], to OTCM.215

We consider an instance of the Feedback Arc Set problem, that is a directed graph216

G = (V = {v1, . . . , vn}, A) such that |A| = m and an integer f .217

We now define an instance of the OTCM problem, illustrated in Figure 2. The set X218

of leaf labels is
⋃
i∈[1..n],j∈[1..m]{v

j
i }. We define the order σ(G) in the following way. For219

each arc (vi, vj) of G where i < j, taken in the lexicographic order, we add to σ(G) a kth220

supplementary ordered sequence (which we will later call a “block” corresponding to this arc)221

v2k−1
i v2k−1

j X2k−1
i,j X

2k
i,jv

2k
i v

2k
j , where Xk′

i,j is the ordered sequence of vk′i′ where i′ ranges from222

1 to n, excluding i and j, and Xk′

i,j is the reverese of Xk′

i,j (i.e. the ordered sequence of vk′i′223

where i′ ranges from n down to 1, excluding i and j). The tree T (G) is made of a root with224

n children v1 to vn, each vi having 2m children, the leaves labeled by vk′i for k′ ∈ [1..2m].225
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Figure 2 Illustration of the reduction of Feedback Arc Set to OTCM: a graph G with feedback
arc set S = {(v4, v1)} of size 1 and the corresponding tree T (G) as well as the order σ(G).

Given an odering σ′ suitable for T , and an inversion (vki , vk
′

i′ ) forming an inversion226

between σ(G) and σ′, we say that this pair is short-ranged if k = k′, and long-ranged227

otherwise. Furthermore, we say that σ′ is vertex-consistent if, for every i and k < k′, we have228

σ′(vki ) < σ(vk′i ). Finally, given σ′, we write σ′′ for the permutation of the [1..n] corresponding229

to the children of the root.230

We first claim that for any σ′ suitable for T , there are at least 2
(
n
2
)(2m

2
)
long-range231

inversions between σ′ and σ(G), and this bound is reached if σ′ is vertex-consistent. Indeed,232

pick any pair (vki , vk
′

i′ ) with i 6= i′ and k 6= k′. Then vki <σ(G) v
k′

i′ iff k < k′ (since they are233

respectively in blocks k and k′ of σ(G)), and vki <σ′ vk
′

i′ iff σ′′(i) < σ′′(i′) (since they are234

respectively in L(T, vi) and L(T, vj)). Overall, among 4
(
n
2
)(2m

2
)
such pairs of elements, there235

are 2
(
n
2
)(2m

2
)
pairs creating an inversion (which is long-range by definition). For the case236

i = i′, note that pairs (vki , vk
′

i ) do not create any inversion iff σ′ is vertex-consistent, which237

completes the proof of the claim.238

Towards counting the number of short-ranged inversions, we say that an arc (vi, vj) of G239

is satisfied by σ′′ if σ′′(i) < σ′′(j). Consider two pairs (v2k−1
i , v2k−1

j ) and (v2k
i , v

2k
j ). Then240

these two pairs are necessarily in the same order in σ′. If the kth arc of G is (vi, vj), then241

these two pairs are also in the same order in σ. Note that they (both) form an inversion242

iff (vi, vj) is not satisfied by σ′′. If the kth arc of G is any other arc, then exactly one of243

(v2k−1
i , v2k−1

j ), (v2k
i , v

2k
j ) forms an inversion. Overall a pair i, j such that one of (vi, vj), (vj , vi)244

is a satisfied arc yields m−1 short-range inversions, a pair i, j such that one of (vi, vj), (vj , vi)245

is an unsatisfied arc yields m+ 1 short-range inversions, and any other pair {i, j} with i 6= j246

yields m inversions. Overall, if there are f unsatisfied arcs, σ′ yields
(
m
2
)
−m+ 2f inversions.247

We can now complete the proof with our main claim: G has a feedback arc set of size at248

most f ⇔ the OTCM problem has a solution with at most
(
n
2
)(2m

2
)

+
(
m
2
)
−m+2f inversions.249

⇒: If G has a feedback arc set F of size f , as G[A−F ] is acyclic, we consider an order σ′′250

over n such that for all arcs (vi, vj) in A− F , σ′′(i) < σ′′(j) (i.e. σ′′ is the topological order251

of the vertices in G[A− F ]). We now order the children vi of the root of T (G) according to252

this order σ′′ and call σ′ the induced order on the leaves of T (G) (also sorting all leaves vji253

below each vi by increasing values of j). Note that σ′ is vertex-consistent, and that an arc254

(vi, vj) is satisfied by σ′′ iff (vi, vj) /∈ F . Thus, σ′ yields
(
n
2
)(2m

2
)

+
(
m
2
)
−m+ 2f inversions.255

⇐: Consider an order σ′ suitable for T with at most
(
n
2
)(2m

2
)
+
(
m
2
)
−m+2f inversions. Let256

σ′′ be the corresponding order on the leaves of the root, and let F be the set of arcs unsatisfied257

by σ′′. Since σ′ has at least
(
n
2
)(2m

2
)
long-range inversions, it has at most

(
m
2
)
−m + 2f258

short-range inversions, and |F | ≤ f . Finally, since all arcs in A − F are satisfied by σ′′,259

G[A− F ] is acyclic and F is a feedback arc set. J260
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3 A polynomial-time algorithm for fixed-degree trees261

We start by providing a dynamic providing algorithm for fixed-degree trees, which is easy to262

implement and leads to an algorithm in O(n4) time for binary trees. The FPT algorithm263

presented in the next section has a better complexity but is more complex and reuses the264

dynamic programming machinery presented in this section, which explains why we start with265

this simpler algorithm.266

I Theorem 4. The OTDE problem can be solved in time O(d!nd+2) for trees with fixed267

maximum degree d and for strict or weak orders.268

Proof. Given a vertex v of a rooted tree T , a (strict or weak) order σ : L(T )→ [1..m] and269

two integers l ≤ r ∈ [1..m]. We denote by X (v, l, r) a subset of L(T, v) of maximum size270

such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀` ∈ X (v, l, r), σ(`) ∈ [l, r]. Note that271

X (v, l, r) also depends on T and σ but we simplify the notation by not mentioning them as272

they can clearly be identified from the context.273

Denoting by c1, . . . , ck the children of v in T , we claim that the following formula allows274

to recursively compute X (v, l, r) in polynomial time:275

|X (v, l, r)| = max
permutation π of [1..k]

x1=l≤x2≤...≤xk≤xk+1=r

k∑
i=1

∣∣X (cπ(i), xi, xi+1)
∣∣ if v is an internal node of T ;276

for any leaf ` of T , |X (`, l, r)| = 1 if σ(`) ∈ [l, r], 0 otherwise.277

Correctness: We prove by induction on the size of L(v) that X (v, l, r) is indeed a278

subset of L(T, v) of maximum size such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and279

∀` ∈ X (v, l, r), σ(`) ∈ [l, r].280

This is obvious for any leaf, so let us consider a vertex v of T with a set {c1, . . . ck} of281

children. Suppose by contradiction that there exists a set of integers l ≤ r and a subset282

X ′ of L(v) of size strictly greater than X (v, l, r) such that σ[X ′] is suitable with T [X ′] and283

∀` ∈ X ′, σ(`) ∈ [l, r]. We then denote by X ′1, . . . and X ′k the sets of leaves L(c1) ∩X ′, . . .284

and L(ck) ∩ X ′ respectively. Without loss of generality we consider that the children ci285

of v are labeled such that max`∈X′
i
{σ(`)} ≤ min`∈X′

i+1
{σ(`)}. For all i ∈ [2..k], we define286

mi = min`∈X′
i
{σ(`)}, m1 = l and mk+1 = r. Using the induction hypothesis we know that287

for each i ∈ [1..k], |X ′i| ≤
∣∣∣X (v,min`∈X′

i
{σ(`)},max`∈X′

i
{σ(`)})

∣∣∣, so |X ′i| ≤ |X (v,mi,mi+1)|288

because
[
min`∈X′

i
{σ(`)},max`∈X′

i
{σ(`)}

]
⊆ [mi,mi+1]. Therefore, |X ′| =

∑k
i=1 |X ′i| ≤289 ∑k

i=1 |X (v,mi,mi+1)| so by definition of σ[X (v, l, r)], |X ′| ≤ σ[X (v, l, r)]: contradiction!290

We therefore obtain a correct solution of OTDE(T, σ) by computing X (root(T ), 0,m).291

Running-time: For each v, we compute the table of the O(n2) values of X (v, l, r) for all292

intervals [l, r]. Each of these values can be computed by generating the k! permutations of293

children of v to consider any possible order among the children and splitting the interval [l, r]294

into any possible configurations of d consecutive intervals with integer bounds partitioning295

[l, r], which can be done in time O(nd−1). So the computation of each X (v, l, r) is done in time296

O(d!nd−1), therefore the total computation of all X (v, l, r) is done in time O(n×n2×d!nd−1),297

that is in O(d!nd+2). J298
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Figure 3 An instance (T, σ) of OTDE (top-left), with a vertex v having children set C =
{a, b, c, d, e}. The conflict graph GC of C (right) has a size-2 vertex cover K = {b, d}. Based on the
span of each vertex (bottom-right), the dynamic programming algorithm tests permutations of C
such that (a, c, e) appear in this order, interleaved in any possible way with b and d. In particular,
the final solution corresponds to the permutation (a c d b e) of C. Note that since σ may be a weak
order (two leaves are labelled 3 in the example), the conflict graph does not correspond exactly to
the intersection graph of the span intervals, e.g. vertices a and c are not in conflict, even though
their spans overlap.

4 An FPT algorithm for the deletion-degree parameter for OTDE299

We recall that with a reduction of OTDE to 3-Hitting Set [10], using the best algorithm300

known so far to solve this problem3, we can obtain an O∗(2.08k) [22] algorithm to solve301

OTDE, where k is the number of leaves to delete. In this section we obtain an FPT algorithm302

in time O(n4d∂2∂), where d is the maximum degree of the tree and ∂ is the deletion-degree303

of the solution.304

I Theorem 5. The OTDE problem parameterized by the deletion-degree ∂ of the solution is305

FPT and can be solved in time O(n4d∂2∂) for strict or weak orders.306

We adapt the dynamic programming algorithm from Theorem 4, using a vertex cover307

subroutine to have a good estimation of the permutation of the children of each node.308

We first introduce some definitions (see Figure 3 for a illustration of these definitions309

and the algorithm in general). Given any vertex v of T , let Cv be the (independent) set of310

children of v, and let Gv be the conflict graph with vertex set Cv and with one edge per311

conflict. Let K be a vertex cover of Cv. Then the vertices of Cv \K have a canonical order312

(w1, . . . , wk′), with k′ = |Cv \K| and wi �σ wj for all i ≤ j (ties may happen when two313

children contain a single leaf each which are equal, such ties are broken arbitrarily). We say314

that P ⊆ Cv is a prefix of Cv wrt. K if P \K is a prefix of this order (i.e. for some i ≤ k′,315

P \K = {w1, . . . , wi}). In other words, ignoring all subtrees below vertices of K, all leaves316

below vertices of a prefix P are necessarily ordered before leaves below vertices outside of P .317

I Lemma 6. If X ′ is a solution of OTDE with deletion-degree ∂, then for any vertex v of318

T , the conflict graph Gv admits a vertex cover of size at most ∂.319

Proof. Given a subset X ′ of X, we say that a node v of T has a deletion if some L(v) 6⊆ X ′,320

i.e. if v has a leaf in X \X ′. Let {u, v} be any conflict (edge) of the conflict graph Gv, then321

3 http://fpt.wikidot.com/fpt-races

http://fpt.wikidot.com/fpt-races
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at least one of u, v has a deletion for X ′ (indeed, the conflict involves three leaves a, b, c, of322

which at least one must be deleted). Thus, the vertices with a deletion in Gv form a vertex323

cover of this graph. The lemma follows from the fact that at most ∂ vertices have a deletion324

in each conflict graph. J325

The first step of our algorithm consists in computing, for each node v of the graph, the326

set C of children of v, its conflict graph Gv, and a minimum vertex cover Kv of GC . Since327

each Kv has size at most ∂ (by Lemma 6), Kv can be computed in time O(1.3∂ + ∂n) [5],328

and overall this first step takes O(1.3∂n+ ∂n2).329

We proceed with the dynamic programming part of our algorithm. To this end, we330

generalize the table X to sets of nodes (instead of only v) as follows: X (P, l, r) corresponds331

to the largest set X of leaves in
⋃
u∈P L(u) such that σX is suitable for T [X]. Note that for332

a node v with children set C, X (v, l, r) = X ({v}, l, r) = X (C, l, r).333

We first compute X ({v}, l, r) for each leaf v: clearly X ({v}, l, r) = {u} if l ≤ σ(v) ≤ r,334

and X ({v}, l, r) = ∅ otherwise. For each internal vertex v (visiting the tree bottom-up), we335

obtain X ({v}, l, r) by first computing X (P, l, r) for each prefix P of Cv by increasing order336

of size, using the following formulas:337

|X (P, l, r)| = ∅ if P = ∅338

= max
x∈[l..r], u∈P

P\{u} prefix of Cv

|X (P \ {u}, l, x)|+ |X ({u}, x, r)|339

|X ({v}, l, r)| = |X (Cv, l, r)|340
341

Each vertex v has at most d2∂ prefixes, so the dynamic programming table X has at342

most n3d2∂ cells to fill. For each prefix P , there exist at most ∂ + 1 vertices u ∈ P such that343

P \ {u} is a prefix (u can be any vertex in P ∩Kv, or the maximum vertex for �σ in P \Kv).344

Overall, the max is taken over O(n∂) elements, and X can be filled in time O(n4d∂2∂).345

Before proving the correctness of the above formula, we need a final definition: given346

a set of leaves X ′ ⊆ X and a vertex v of T , we write spanX′(v) for the smallest interval347

containing σ(u) for each leaf u ∈ L(u) ∩X ′ (note that spanX′(v) may be empty, if all its348

leaves are deleted in X ′).349

I Lemma 7. Let X ′ be a solution of OTDE(T, σ), v ∈ T and 1 ≤ l ≤ r ≤ m such that350

spanX′(v) ⊆ [l, r]. Then there exists a permutation (c1 . . . ck) of the children of v and351

integers x0 = l ≤ x1 ≤ . . . ≤ xk = r such that, for each i ≤ k,352

(a) spanX′(ci) ⊆ [xi−1, xi], and353

(b) Pi = {c1, . . . , ci} is a prefix of the children of v wrt. σ.354

Proof. Recall that we write Cv and Kv respectively for the set of chidren of v and the355

vertex cover in the conflict graph induced by these children. For each element c of Cv with a356

non-empty span, let x(c) = max(span(c)). For each element wi of Cv \Kv with an empty357

span (taking i for the rank according to the canonical order), let x(wi) = x(wi−1) (and358

x(w1) = l for i = 1). For the remaining vertices (in Kv with an empty span), set x(c) = l.359

Finally, order vertices c1, . . . , ck by increasing values of x(ci) (breaking ties according to the360

canonical order when applicable, or arbitrarily otherwise), and set xi = x(ci).361

Condition (a) follows from the fact that X ′ is a solution for OTDE(T, σ), so that the362

span covered by the leaves under siblings do not overlap. For condidion (b) we refer to the363

definition of prefix: each Pi \Kc is indeed a prefix in the canonical ordering of Cv \Kv. J364
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The dynamic programming formula follows from the above remark: one can build the365

solution by incrementing prefixes one vertex at a time (rather than trying all possible366

permutations of children, as in Theorem 4).367

5 Optimizing OTCM and OTDE are two different things368

In order to ensure that OTCM and OTDE are actually optimizing different criteria, we369

provide in Figure 4 an example of X-tree and an order of its leaves where the order reaching370

the best k for a positive answer of the OTCM problem does not provide the optimal value371

for the number of leaves to delete in a positive answer of OTDE and where the best k for a372

positive answer of the OTDE problem does not provide an optimal value for the number of373

inversions for a positive answer of the OTCM problem.374

We checked the optimality for both criteria by implementing the “naive” dynamic375

programming O(n2) algorithm described in Section 2.1 of [10] to solve the OTCM problem376

and the O(n4) algorithm described in Section 3 to solve the OTDE problem on binary trees.377

Both implementations are available in Python, under the GPLv3 licence, at https://github.378

com/oseminck/tree_order_evaluation, as well as the file inputCounterExample1.txt379

containing the Newick encoding for the tree of Figure 4.380

T σ1 σ σ σ2 T

Figure 4 Two planar embeddings of a rooted tree T : the one on the left is optimal for the OTDE
problem (deleting the 5 red leaves makes the order σ suitable on T restricted to the remaining leaves,
but the order σ1 suitable on T has 22 inversions, shown with blue circles, with σ); the other one is
optimal for the OTCM problem with the order σ2 suitable on T having 17 inversions with σ but not
for the OTDE problem (6 leaves, for example the 6 red ones, need to be deleted to make the order σ
suitable on T restricted to the remaining leaves).

6 Experiments and discussion381

In this section, we investigate the potential for use of OTCM and OTDE in applications382

where clustering algorithms are used on distance data which is supposed to reflect some383

intrinsic order on the elements, for example the chronological order. We both test the running384

time of OTCM and OTDE on real data, and the performance of OTDE on simulated data385

to detect possibly misplaced leaves in the order.386

https://github.com/oseminck/tree_order_evaluation
https://github.com/oseminck/tree_order_evaluation
https://github.com/oseminck/tree_order_evaluation
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tree # leaves OTCM time # inversions OTDE time # deleted leaves
Ségur 22 1 40 200 9
Féval 23 2 47 268 8

Aimard 24 1 35 401 8
Lesueur 31 1 48 676 13
Zévaco 29 1 42 727 11
Zola 35 2 60 1203 9

Gréville 36 2 105 2211 18
Ponson 42 3 167 3447 18
Balzac 59 4 248 8292 34
Verne 58 3 183 13446 27
Sand 62 4 283 17557 39
Table 1 Results of our implementations for problems OTCM and OTDE on binary trees generated

from corpora of French novels of the 19th century. Time durations are given in milliseconds.

The first experiment deals with text data: the CIDRE corpus [20] that contains the works387

of 11 French 19th century fiction writers dated by year (every file contains a book that is388

annotated with its year of writing). We apply apply hierarchical clustering on the different389

corpora using the AgglomerativeClustering class from the package sklearn [18]. Distance390

matrices on which the clustering is based are obtained by using the relative frequencies391

of the 500 most frequent tokens4 in each corpus. Distance matrices were generated using392

the R package stylo [8], with the canberra distance metric. We obtain the results given in393

Table 1, which provide the running time in milliseconds of the algorithms we implemented394

to solve OTCM and OTDE. They show that both algorithms on binary trees are quick395

enough to handle typical instances of the OTCM and the OTDE problems relevant for digital396

humanities, a few milliseconds for the first one and a few seconds for the second one, for397

instances of about 50 elements in the tree and in the order.398

Our second experiment involves simulated data, to check whether, in the case the tree is399

built to be consistent with the input order, our algorithm finding the minimum of leaves in400

the tree to remove inconsistencies with the order is able to detect errors that we intentionally401

add to the order. We produced 100 instances of the OTDE problem, for each chosen value of402

n, the number of leaves, and e < n, the number of errors, in the following manner:403

1. we randomly pick n distinct integers from the interval [0, 999], which will be our set X of404

leaves;405

2. we build a distance matrix in which the distance between two elements from X is simply406

the absolute difference between both; we add some noise to this matrix by adding or407

subtracting in each cell a random quantity equal to at most 10% of the cell value, obtaining408

a noisy matrix, from which we build an X-tree T using the AgglomerativeClustering409

class from the package sklearn;410

3. we randomly pick a set Le of e leaves in X and replace their value by another integer,411

randomly chosen from the interval [0, 999], distinct from other leaf labels; σ is the set of412

leaves ordered by increasing value taking into account these new values;413

4 A token is (a part of) a word form or a punctuation marker. The last sentence would yield the
following tokens: [“A”, “token”, “is”, “(”, “a”, “part”, “of”, “)”, “a”, “word”, “form”, “text”, “or”, “a”,
“punctuation”, “marker”, “.”] Deliberatly, we do not use the term “word”, because the word can be seen
as a linguistic unit of form and meaning, and henceforward “punctuation marker” would be one word
and the period in the end of the sentence would not be one.
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n = # leaves e = # errors proportion of cases when L = Le when |L− Le| = 1
20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

Table 2 Results of the attempts to perfectly detect the set Le of randomly relabeled leaves in
simulated trees (when L = Le); the situation when |L− Le| = 1 corresponds to finding only e− 1
leaves among the e randomly relabeled leaves).

4. by solving the OTDE problem on T and σ, we compute the minimum set L of leaves to414

remove to make σ[X − L] suitable on T [X − L], and check whether L = Le.415

This experiment simulates the situation where we would have dating errors on the elements416

we clustered in a tree. Note that like in the case of dating errors, the error in our simulation417

may not change the overall order on the leaves. Table 2 provides, for each chosen values of418

n and e, the proportion of simulated instances of OTDE where L = Le, that is when our419

algorithm removed exactly the e leaves whose label had been randomly modified. We can420

observe that this happens in a majority of cases only when the number of modified leaves is421

small compared with the total number of leaves (up to 2 for 20 leaves, up to 4 for 50 leaves).422

Solving OTDE still allows to identify e − 1 among the e modified leaves in a majority of423

cases in all our experiments.424

7 Conclusion and perspectives425

In this article, we addressed two problems initially introduced with motivations from bioin-426

formatics, OTCM and OTDE. We stated them in a more simple framework with a tree427

and an order as input, instead of two trees as was the case when they were introduced,428

opening perspectives for new practical uses in digital humanities and proving that they are429

not equivalent. We proved that both problems, as well as a problem on two trees, TTDE,430

are NP-complete in the general case. We gave a polynomial-time algorithm for OTDE on431

trees with fixed maximum degree and an FPT algorithm in a parameter possibly smaller432

than the size of the solution for arbitrary trees.433

We also investigated their potential for practical use, checking that the algorithms we434

implemented with open source code in Python to solve them are well suited for applications435

in digital humanities in terms of running time. We also observed on simulated data that it is436

possible to identify a small number of leaves for which there would be an ordering error if437

the tree is built from distance data derived from an order on its leaves. Perspectives include438

the search for FPT algorithms, with relevant parameters, for OTCM and TTDE.439
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