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[ Introduction J

Adaptive regulation:

Attenuation of disturbances with unknown/time varying dynamic
characteristics (models) while plant model is assumed to be known
and almost constant

5(t)

s

Disturbance
model

Dirac
White noise

i unmeasurable

disturbance

A iy ()

_________________________________________



§(esaap

[ Introduction J

Dirac
P 0! (t) White noise
: o(t) :
. . ' PLANT l '
Adaptive regulation: §
Attenuation of disturbances with unknown/time varying dynamic Disturtéa?ce | unmeasurable
characteristics (models) while plant model is assumed to be known ’ mode . _disturbance
and almost constant

u(t) Plant * P /%)
Adaptive control: i |

Control of unknown/ time varying plant models

_________________________________________

while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant

Combined adaptive control and regulation is not solved in the general case
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_ _ PLANT
Adaptive regulation:
Attenuation of disturbances with unknown/time varying dynamic
characteristics (models) while plant model is assumed to be known
and almost constant u(t)!
: Plant
Adaptive control: .| model

Dirac

5(t)

o Al White noise

s

Disturbance

i unmeasurable
model

i disturbance

+%p<t>/@

_________________________________________

Control of unknown/ time varying plant models

while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant

Combined adaptive control and regulation is not solved in the general case

A prototype adaptive regulation problem:
Rejection of single/multiple narrow band disturbances with unknown frequencies

Basic ingredients: Internal Model Principle, Youla-Kucera (YK) parametrization,
Parameter adaptation algorithms

Application areas : Active noise and vibration control
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Closed loop system. Internal Model Principle '

-

Controller

R/S

u(t)

Plant

15@) I

N, / D,

i

B/A

+ %—9 (® y(t)

/

a() = 284 5
(poles of D, are on the unit circle)
Controller:
R(@™)=R'(q™7)-He(a™);
$(q7)=S"(a7)-Hs(a™).
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Closed loop system. Internal Model Principle '

a 15@) I d(t) = ng" 35(1:)
N, /D, (poles of D, are on the unit circle)
Controller Plant d(t) y o Controller :
?7 s [0 a0 RE)=R'(@")-H, (@)
o Y, S(@*)=S'(a")-H.(@™).

Internal model principle:| Hs(q1)=D,4(q™)

Controller should contain the model of the disturbance

AT oy (% pio- AIELTS@) Nal@) 5y s im0

P(a™) P(a™) @

CL poles: P(q™") = A(@™")S(a™") +B(q™)R(a™)

Output: y(t) =
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[ Nominal plant + Central Controller + YK parametrization + IMP ]
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[ Nominal plant + Central Controller + YK parametrization + IMP J

Bo(q_l)

Nominal system Go(g~1) = D)

Disturbance d(t) = d(q )5(15) (poles of D, are on the unit circle)

, Central controller Cy(¢™1) = —
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Closed-loop characterlstlc polynomial : Po(q™1) = 4,(q 1) Se(g™Y) + Bo(g HRy(g™Y)

-1\= -1 -1 -1\ -
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[ Nominal plant + Central Controller + YK parametrization + IMP J
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S(qY=S,@)-BEHRE) 2

, Central controller Cy(¢™1) = —

Disturbance d(t) = d(q )5(15) (poles of D, are on the unit circle)

Internal Model Principle with YK parametrization:
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g

S
Minimal order of Q : deg(Q) = deg(Dy) — 1

Ro

= gipsa-lab

uncertainties. Application to ANC

oo

= fh?""ff?q_l _|_____|_q%q—ﬂg 1)
Second th
econdary pa 70
uy | Bo CL/
Ag +
+
e

Primary
path

yt)

—

| Image of the
disturbance

Landau & al. Adaptive regulation in the presence of plant

11



§lpsany

[Unknown disturbances: Direct adaptive feedback regulation]

* Youla-Kucera parametrization allows to express the residual error(y(t)) as a
function of the errors in the Q parameters (with respect to the optimal ones)
v As _1qBo@™)
y(t+1) =[0@q™) - Q(t,q™V)] po(q—l) w(t) + v(t + 1)

Vanishing term

* Consequence: A direct adaptive regulation scheme can be built
* No SPR condition for Asymptotic Stability. Various adaptation gain policies

* Particularly dedicated to multiple narrow band disturbances or limited band disturbances
8(t)

Nominal plant

Parameter
adaptation |€
algorithm

controller

"
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[ Direct adaptive feedback regulation J

ap.riori —~— eo(t+l)= y(t + 1) = [Q(q_l) — Q(t' q_l)]

adaptation error

/
"((q 1)) w(t) + v(t + 1)

o) =[wt),wt—-1)...]
L(q™')=By/P

P(t) = L(g~ Mo (t)
ef(t+1)=[0-8®)] v

0 = [CI17 q2, ] ; é(t) = [q\l(t)r q\Z(t) ]
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ap.riori —~— eo(t+l)= y(t + 1) = [Q(q_l) — Q(t' q_l)]

adaptation error

[ Direct adaptive feedback regulation J

-1 4/
"((q_l)) w(t) + v(t + 1)

L(g~Y)=q %B;/P
Y(t) = L Heo(t)

0 =1q1,q2 -1 ; 6(t) =[g,(6), 3 (0) ...]
o(t) =[w(t),w(t—-1)..

ef(t+1)=[0-8®)] v

y

/

a posteriori adaptation error

et + 1) = [0+ 1)] po) }\

Standard form for the synthesis
of stable adaptive schemes
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[ Direct adaptive feedback regulation J
— Vanishing term

ST e e = 0™ - 0G0 T T

R Parameter Adaptation Alagorithms (PAA) |
0= [CIL q2, ] , e(t) = [ql(t)r qz(t) ] . . eo(t+1) SCa ar
O(t+1)=0(t)+FyY(t) —= s F=yLy>0 adapt'atlon
o) =[wi),wt—-1)...] LT (OFY(L) gain
L(g~Y)=q *B}/P Bles1)ed A VO(t+1) 0 matrix
() = L(g~ N (t) (t+1)=0(t+ AN () ororov D adagp;?ntuon
ef(t+1)=[0-8®)] v

et + 1) = [0+ 1)] po) }\
/

a posteriori adaptation error Standard form for the synthesis
of stable adaptive schemes

* Performance will depend of course also upon the design of the parameter adaptation algorithms

Landau & al. Adaptive regulation in the presence of plant
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[ The challenge of large plant model uncertainty in adaptive regulation }

The problem:
How to take into account large variations of the plant model in adaptive regulation?

Landau & al. Adaptive regulation in the presence of plant
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[ The challenge of large plant model uncertainty in adaptive regulation J

The problem:
How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model

Difficulties:

Plant model identification in the presence of disturbances requires high level of the testing signals
Degradation of performance

No serious theory to support this approach

Landau & al. Adaptive regulation in the presence of plant 17
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The problem:
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- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance

- No serious theory to support this approach

A disruptive approach:

Can we solve this problem by overparametrization of the YK filter used in adaptive regulation?
Expected benefit: no need for adding testing signals,

Difficulty: Establishing a theoretical support for this approach (feasability and stability analysis)
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[ The challenge of large plant model uncertainty in adaptive regulation J

The problem:
How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model

Difficulties:

- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance

- No serious theory to support this approach

A disruptive approach:

Can we solve this problem by overparametrization of the YK filter used in adaptive regulation?
Expected benefit: no need for adding testing signals,

Difficulty: Establishing a theoretical support for this approach (feasability and stability analysis)

Ingredients for the theoretical analysis:
-Dual YK parametrization, Small gain theorem, Parameter adaptation algorithms with projection
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[ Taking into account plant model uncertainties}

. ~1y _ B@@™
The real plant model: G(g™") = s
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algorithm

controller
. 7
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[ Taking into account plant model uncertainties]

. -1y _ B(q™hH)
The real plant model: G(g™") o)

-1 “1\4A(g~1 -1
System uncertainties can be represented with the Dual-YK parametrization: G(¢™1) = M(a™")Bo(a~)+A(aDSo(@ )

"~ T(@DAo(q~)-A(@ " )Re(q™ )

I'(g~1) monic polynomial, A(g~1) has no scalar term.

The sensitivity function becomes: G(g™™

|
'+QA Py : ,So(q_l)
/ TAy—AR, :
v 2T :
|
|
|

Lincertainties

Can become unstable! u(t)

Nominal case : I'=1, A=0

w(t)=Ad(t)

Parameter

adaptation |€
algorithm

- controller
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[Existence of a finite dimensional solution]

Does it exist a filter Q of finite dimension such that:

The solution for the internal model principle (non necessarily minimal) stabilizes the closed loop
for a given set of uncertainties

i.e. such that Q satisfies the two simultaneous conditions:
1) Sy =Dy48 +QB, (internal model principle condition)

2) T'+AQ s an asymptotically stable polynomial



[ Conditions for the existence of a finite dimension solution }

» For the fr@ei:luen-:ies @; of the disturbance corresponding
to Dg(e ') = 0, the following inequality is satisfied:

Sﬂ (E—iflfﬂ'j}

BG(E—:mJ)
A(e—"m-r‘ JAS (e—"mf') + B(e—"mi )Rr,(e—"mf'}
B(E—!:m‘f )A(}(E—i.mj) _A(E—r'mjjgﬂ(e—fmj)

am gipsa-lab
= g Landau & al. Adaptive regulation in the presence of plant

uncertainties. Application to ANC
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[ Conditions for the existence of a finite dimension solution }

« For the frequencies ®; of the disturbance corresponding This condition gives the domain
to Dg(e @) =0, the following inequality is satisfied: where the system can be used
for disturbance attenuation

S, (E—imj}

ﬁ < 50 | Bode Dliagram | | |

Bﬂ {E ! ) | —18,8,
A(E‘_‘:m.f )Sﬂ(g_imjj + B(E‘_r‘mj]Rﬂ(E—imj} \ sOM .. .............. ............... ............. . 7|A:SO+BROIIIBEA0-ABOI'
B(e=1@i)A,(ei0) —A(e~i®)B, (e ) il D e

Magnitude (dB)

= [~ (5]
[=] o [=] o
T T

0

-

o
T

Ry
[=]

o
h
(=]

1 1 i i
100 150 200 250 300 350 400
Frequency (Hz)

am :
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[ Conditions for the existence of a finite dimension solution }

« For the frequencies ®; of the disturbance corresponding This condition gives the domain
to Dg(e @) =0, the following inequality is satisfied: where the system can be used
for disturbance attenuation

Sﬂ (E—imj}
ﬁ {: 50 | | Bode Dliagram | |
Bﬂl(f -') ; [—1s,B,]
A(E‘_‘:m.f )Sﬂ (g_imjj + B(E‘_ij ]Rr)(e_im_,l} \ soll.. ... .............. ............... ............. . |A:SO+BRO|I|BEA0-ABO| H
B(e~1@i)A,(e=19 ) —A(e~19)B, (e—i®) “i
w301
hﬂ[isﬁecl: g 10\
|Q({?_im)‘ < A0t :
20 50 100 15io 2ti10 2510 360 350 400

Frequency (Hz)

'A(E_im)sﬁ(f_{m) + B({?_jw }Rﬂ(f_fm)
B(e ')A, (e7'?) —A(e™ ') B, !:{’:’_Elw)

These sufficient conditions give hints for the design of the central controller

Landau & al. Adaptive regulation in the presence of plant

o N 25
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[From where these conditions come?}

Q
'+ AQ - is asymptotically stable
should be an asymptotically stable polynomial 0 ( CL poles are defined by I' + AQ )

= B>

Landau & al. Adaptive regulation in the presence of plant
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[From where these conditions come?}

Q
'+ AQ is asymptotically stable
should be an asymptotically stable polynomial 0 ( CL poles are defined by I' + AQ )
A
r
Stability condition using SmaII Gain Theorem : Q(w)| < [T (w)/A(w)|| forallw

Landau & al. Adaptive regulation in the presence of plant
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[From where these conditions come?}

Q
'+ AQ is asymptotically stable
should be an asymptotically stable polynomial 0 ( CL poles are defined by I' + AQ )
A
r
Stability condition using SmaII Gain Theorem : Q(w)| < [T (w)/A(w)|| forallw
But: A= BAy — B,A I'=AS, + BR,

A(@)Sp(w) + B(w)Ry(w)
B(w)Ao(w) — By(w)A(w)

Which lead to : 10 (w)]| < Condition 2

Landau & al. Adaptive regulation in the presence of plant
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[From where these conditions come?}

Q
I+ A,Q _ <:> i is asymptotically stable
should be an asymptotically stable polynomial X ( CL poles are defined by T + AQ )
r
Stability condition using Small Gain Theorem : Q(w)| < [T (w)/A(w)|| forallw
But: A= BAy — B,A I'=AS, + BR,
_ A(w)Sy(w) + B(w)Ry(w) o
Which lead to : w)| < Condition 2
0N < [5@)a0@) — B@A@)

At w; : Q=B/S, (FromIMP:5, = D;S" + @By when D;=0)

B(w)
So(w)

A(@)Sp(w) + B(w)Ry(w)
B(w)Ao(w) — By(w)A(w)

Condition 1

< ‘
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[Adaptive case ( unknown disturbances ) in the presence of plant uncertainties J

* Use of the same PAA as for the nominal case, but

* Since one uses an overparametrized solution and « richness of excitation » argument
can not more be used, a projection has to be added to the PAA

* A sufficient stability condition appears in terms of sizes of uncertainties (A, I)
and projection domain.

Landau & al. Adaptive regulation in the presence of plant
- N 30
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[ Parameter Adaptation Algorithm with Projection J

R . eV(t+1)
O(t+1)=0,(t)+F (1) 1+ T (OFP(L) : |
A Ot +1) if |6( +1) =60l < R
O,(t+1)= 0t+D—60 ¢4 —
O Rignar IO D =Gl = K

=D 4

The optimal vector @ is assumed to be inside domain &/

One can use as ¢}, any value of @ inside domain ¢7and in particular 6,

Landau & al. Adaptive regulation in the presence of plant
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 Stability conditions

Hypotheses
1) Controller C, stabilizes both G, and G

2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that ' + AQ has roots inside the unit circle

Landau & al. Adaptive regulation in the presence of plant
uncertainties. Application to ANC
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 Stability conditions

Hypotheses
1) Controller C, stabilizes both G, and G

2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that I' + AQ has has roots inside the unit circle

et+1) =[0-8t+ D] )  ifY(®) isbounded HmmEE) lim e(t) =0
But: ¥(t) = f(w(t))

w(t) should be bounded

Landau & al. Adaptive regulation in the presence of plant
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 Stability conditions

Hypotheses
1) Controller C, stabilizes both G, and G

2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that I' + AQ has has roots inside the unit circle

et+1) =[0-8t+ D] )  ifY(®) isbounded HmmEE) lim e(t) =0

But: () = f(w(®))

d@) | TA, — AR,
1 Tr+AQ

w(t) should be bounded

N

Should be BIBO

Remark : For the nominalcase: A =0,'=1
Landau & al. Adaptive regulation in the presence of plant
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 Stability conditions

Hypotheses
1) Controller C, stabilizes both G, and G

2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that I' + AQ has has roots inside the unit circle

et+1) =[0-8t+ D] )  ifY(®) isbounded HmmEE) lim e(t) =0

But: () = f(w(®))

I'+ AQ
w(t) should be bounded
A
Q)-C 7 T+aQ N
Should be BIBO
. . : . iy . 1
Using small gain arguments yelds max;_, (IIQ Q ||1) | I+ A0 1 <

Remark : For the nominalcase: A =0,'=1
Landau & al. Adaptive regulation in the presence of plant
- . 35
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[ Attenuation of single and multiple tonal noises in ducts ]
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Residual noise
measurement

PC
Development
Matlab
Simulink

PC Target
“ecmt p(i)

DAS1602 16

am gipsa-lab
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[ Attenuation of single and multiple tonal noises in ducts ]

Residual M
Noise

Residual noise

L=

y(t) u(t)

Secondary
Path

measurement
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Matlab
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xPC Target

PCIM- p)

Primary Path @&i

(ot

DAS1602 16

Magnitude (dB)

Model My ng

Secondary path Go | 38 | 32

Secondary path G | 27 | 20

Many low damped complex poles and zeros

s gipsa-lab
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[ Experimental results 1b |
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[ Experimental results 2a
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[ Parameter Drift and PAA with projection - Experimental results |
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[Concluding remarks}

« Overparametrization works for handling plant model uncertainties

 Requires specific design of the central controller + PAA with projection
 Atheoretical ground has been established.



§(esaap

[Concluding remarks}

« Overparametrization works for handling plant model uncertainties

 Requires specific design of the central controller + PAA with projection
 Atheoretical ground has been established.

Open problems:

* Design of the central controller for a set of plant models in order
to maximize the operation region

 To be proven: augmenting the size of the YK filter Q reduces the |Q|
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