

Handling plant model uncertainties in adaptive regulation using dual Youla-Kucera parametrization. Application to Active Noise Control

Ioan Landau¹, Bernard Vau², Gabriel Buche¹ ¹GIPSA-LAB (UGA/CNRS), Grenoble, France, ²IXBLUE, Bonneuil-sur-Marne, France

GIPSA- LAB, May 27, 2021

Outline

- Introduction and Motivation
- Adaptive regulation (nominal case)
- Introduction of plant model uncertainties
- Existence of solutions and stability analysis
- Experimental results (active noise control in ducts)
- Concluding remarks

Introduction

Adaptive regulation:

Attenuation of disturbances with unknown/time varying dynamic characteristics (models) while plant model is assumed to be known and almost constant

Introduction

Adaptive regulation: Attenuation of disturbances with unknown/time varying dynamic characteristics (models) while plant model is assumed to be known and almost constant

Adaptive control:

Control of unknown/ time varying plant models

while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant

Combined adaptive control and regulation is not solved in the general case

uncertainties. Application to ANC

Landau & al. Adaptive regulation in the presence of plant

6

Adaptive regulation:

Attenuation of disturbances with unknown/time varying dynamic characteristics (models) while plant model is assumed to be known and almost constant

Adaptive control:

gipsa-lab

Control of unknown/ time varying plant models

while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant

Introduction

Combined adaptive control and regulation is not solved in the general case

A prototype adaptive regulation problem:

Rejection of single/multiple narrow band disturbances with unknown frequencies Basic ingredients: Internal Model Principle, Youla-Kucera (YK) parametrization, Parameter adaptation algorithms

Application areas : Active noise and vibration control

Closed loop system. Internal Model Principle

$$d(t) = \frac{N_d(q^{-1})}{D_d(q^{-1})}\delta(t)$$

(poles of D_d are on the unit circle)

Controller:

 $R(q^{-1}) = R'(q^{-1}) \cdot H_R(q^{-1});$ $S(q^{-1}) = S'(q^{-1}) \cdot H_S(q^{-1}).$

Closed loop system. Internal Model Principle

$$d(t) = \frac{N_d(q^{-1})}{D_d(q^{-1})}\delta(t)$$

(poles of D_d are on the unit circle)

Controller:

 $R(q^{-1}) = R'(q^{-1}) \cdot H_R(q^{-1});$ $S(q^{-1}) = S'(q^{-1}) \cdot H_S(q^{-1}).$

Internal model principle: $H_S(q^{-1}) = D_d(q^{-1})$

Controller should contain the model of the disturbance

Output:
$$y(t) = \frac{A(q^{-1})S(q^{-1})}{P(q^{-1})} \cdot p(t) = S_{yp}(q^{-1}) \cdot p(t) = \frac{A(q^{-1})H_s(q^{-1})S'(q^{-1})}{P(q^{-1})} \cdot \frac{N_d(q^{-1})}{D_d(q^{-1})} \cdot \delta(t) \longrightarrow \lim_{t \to \infty} y(t) = 0$$

CL poles: $P(q^{-1}) = A(q^{-1})S(q^{-1}) + B(q^{-1})R(q^{-1})$

Nominal plant + Central Controller + YK parametrization + IMP

- Nominal system $G_0(q^{-1}) = \frac{B_0(q^{-1})}{A_0(q^{-1})}$, Central controller $C_0(q^{-1}) = -\frac{R_0(q^{-1})}{S_0(q^{-1})}$
- Disturbance $d(t) = \frac{N_d(q^{-1})}{D_d(q^{-1})} \delta(t)$ (poles of D_d are on the unit circle)
- Closed-loop characteristic polynomial : $P_0(q^{-1}) = A_0(q^{-1})S_0(q^{-1}) + B_0(q^{-1})R_0(q^{-1})$

Nominal plant + Central Controller + YK parametrization + IMP

- Nominal system $G_0(q^{-1}) = \frac{B_0(q^{-1})}{A_0(q^{-1})}$, Central controller $C_0(q^{-1}) = -\frac{R_0(q^{-1})}{S_0(q^{-1})}$
- Disturbance $d(t) = \frac{N_d(q^{-1})}{D_d(q^{-1})} \delta(t)$ (poles of D_d are on the unit circle)
- Closed-loop characteristic polynomial : $P_0(q^{-1}) = A_0(q^{-1})S_0(q^{-1}) + B_0(q^{-1})R_0(q^{-1})$
- YK parametrization:

Poles of the CL remain unchanged !

Nominal plant + Central Controller + YK parametrization + IMP

- Nominal system $G_0(q^{-1}) = \frac{B_0(q^{-1})}{A_0(q^{-1})}$, Central controller $C_0(q^{-1}) = -\frac{R_0(q^{-1})}{S_0(q^{-1})}$
- Disturbance $d(t) = \frac{N_d(q^{-1})}{D_d(q^{-1})} \delta(t)$ (poles of D_d are on the unit circle)
- Closed-loop characteristic polynomial : $P_0(q^{-1}) = A_0(q^{-1})S_0(q^{-1}) + B_0(q^{-1})R_0(q^{-1})$
- $R(q^{-1}) = R_0(q^{-1}) + A(q^{-1})Q(q^{-1});$ $S(q^{-1}) = S_0(q^{-1}) \cdot B(q^{-1})Q(q^{-1}) \qquad Q(q^{-1}) = q_0^Q + q_1^Q q^{-1} + \dots + q_{n_0}^Q q^{-n_Q}$ • YK parametrization: $\delta(t)$ N_d Primary Poles of the CL remain unchanged ! $\overline{D_d}$ path Secondary path Internal Model Principle with YK parametrization: ٠ B_0 1 yt) u(t) $\overline{S_0}$ $S_0 = \underbrace{D_d S'}_{S} + \mathbf{Q} B_0$ $\overline{A_0}$ B_0 A_0 Minimal order of Q: $\deg(Q) = \deg(D_d) - 1$ Image of the Q w(t)disturbance R_0 Landau & al. Adaptive regulation in the presence of plant 11 uncertainties. Application to ANC

Unknown disturbances: Direct adaptive feedback regulation

- Youla-Kucera parametrization allows to express the residual error(y(t)) as a function of the errors in the Q parameters (with respect to the optimal ones) $y(t+1) = \left[Q(q^{-1}) - \hat{Q}(t,q^{-1})\right] \frac{B_0^*(q^{-1})}{P(q^{-1})} w(t) + v(t+1)$
- *Consequence:* A direct adaptive regulation scheme can be built

Vanishing term

- No SPR condition for Asymptotic Stability. Various adaptation gain policies
- Particularly dedicated to multiple narrow band disturbances or limited band disturbances

Direct adaptive feedback regulation Vanishing term *a priori* adaptation error $e^{\circ}(t+1) = y(t+1) = [Q(q^{-1}) - \hat{Q}(t,q^{-1})] \frac{B_0^*(q^{-1})}{P(q^{-1})} w(t) + v(t+1)$ $\theta = [q_1, q_2, \dots]; \hat{\theta}(t) = [\hat{q}_1(t), \hat{q}_2(t) \dots]$ $\phi(t) = [w(t), w(t-1) \dots]$ $L(q^{-1}) = B_0^*/P$ $\psi(t) = L(q^{-1})\phi(t)$ $e^{0}(t+1) = \left[\theta - \hat{\theta}(t)\right]^{T} \psi(t)$

Direct adaptive feedback regulation Vanishing term a priori adaptation error $e^{\circ}(t+1) = y(t+1) = \left[Q(q^{-1}) - \hat{Q}(t,q^{-1})\right] \frac{B_0^*(q^{-1})}{P(q^{-1})} w(t) + v(t+1)$ $\theta = [q_1, q_2, ...]; \hat{\theta}(t) = [\hat{q}_1(t), \hat{q}_2(t) ...]$ $\phi(t) = [w(t), w(t-1) \dots]$ $L(q^{-1}) = q^{-d}B_G^*/P$ $\psi(t) = L(q^{-1})\phi(t)$ $e^{0}(t+1) = \left[\theta - \hat{\theta}(t)\right]^{T} \psi(t)$ $e(t+1) = \left[\theta - \hat{\theta}(t+1)\right]^T \psi(t)$ a posteriori adaptation error Standard form for the synthesis of stable adaptive schemes

Direct adaptive feedback regulation Vanishing term a priori adaptation error $e^{\circ}(t+1) = y(t+1) = \left[Q(q^{-1}) - \hat{Q}(t,q^{-1})\right] \frac{B_0^*(q^{-1})}{P(q^{-1})} w(t) + v(t+1)$ Parameter Adaptation Alagorithms (PAA) scalar $\theta = [q_1, q_2, \dots]; \hat{\theta}(t) = [\hat{q}_1(t), \hat{q}_2(t) \dots]$ $\hat{\theta}(t+1) = \hat{\theta}(t) + F\psi(t) \frac{e^0(t+1)}{1+\psi^T(t)F\psi(t)} ; \quad F = \gamma I; \gamma > 0$ adaptation $\phi(t) = [w(t), w(t-1) \dots]$ gain $L(q^{-1}) = q^{-d}B_{G}^{*}/P$ matrix $\hat{\theta}(t+1) = \hat{\theta}(t) + F(t)\psi(t) \frac{v^0(t+1)}{1+v^T(t)F(t)v^0(t)}$ F(t)>0 adaptation $\psi(t) = L(q^{-1})\phi(t)$ gain $e^{0}(t+1) = \left[\theta - \hat{\theta}(t)\right]^{T} \psi(t)$ $\mathbf{r} e(t+1) = \left[\theta - \hat{\theta}(t+1)\right]^{T} \psi(t)$ *a posteriori* adaptation error Standard form for the synthesis of stable adaptive schemes

• Performance will depend of course also upon the design of the parameter adaptation algorithms

The problem:

How to take into account large variations of the plant model in adaptive regulation?

The problem:

How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model *Difficulties:*

- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance
- No serious theory to support this approach

The problem:

How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model *Difficulties:*

- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance
- No serious theory to support this approach

A disruptive approach:

Can we solve this problem by overparametrization of the YK filter used in adaptive regulation? *Expected benefit:* no need for adding testing signals,

Difficulty: Establishing a theoretical support for this approach (feasability and stability analysis)

The problem:

How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model *Difficulties:*

- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance
- No serious theory to support this approach

A disruptive approach:

Can we solve this problem by overparametrization of the YK filter used in adaptive regulation? *Expected benefit:* no need for adding testing signals,

Difficulty: Establishing a theoretical support for this approach (feasability and stability analysis)

Ingredients for the theoretical analysis:

-Dual YK parametrization, Small gain theorem, Parameter adaptation algorithms with projection

Taking into account plant model uncertainties

The real plant model:
$$G(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})}$$

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Taking into account plant model uncertainties

The real plant model:
$$G(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})}$$

- System uncertainties can be represented with the Dual-YK parametrization: $G(q^{-1}) = \frac{\Gamma(q^{-1})B_0(q^{-1}) + \Delta(q^{-1})S_0(q^{-1})}{\Gamma(q^{-1})A_0(q^{-1}) \Delta(q^{-1})R_0(q^{-1})}$
- $\Gamma(q^{-1})$ monic polynomial, $\Delta(q^{-1})$ has no scalar term.
- The sensitivity function becomes:
- $y(t) = \frac{\Gamma A_0 \Delta R_0}{\Gamma + Q\Delta} \frac{S_0 QB_0}{P_0} d(t)$ • $w(t) = \frac{\Gamma A_0 - \Delta R_0}{\Gamma + \Delta Q} d(t)$

Can become unstable!

Nominal case : Γ =1, Δ =0

 $w(t)=A_0d(t)$

gipsa-lab

Existence of a finite dimensional solution

Does it exist a filter Q of finite dimension such that:

The solution for the internal model principle (non necessarily minimal) stabilizes the closed loop for a given set of uncertainties

i.e. such that Q satisfies the two simultaneous conditions:

- 1) $S_0 = D_d S' + Q B_0$ (internal model principle condition)
- 2) $\Gamma + \Delta Q$ is an asymptotically stable polynomial

Conditions for the existence of a finite dimension solution

• For the frequencies ω_j of the disturbance corresponding to $D_d(e^{-i\omega_j}) = 0$, the following inequality is satisfied:

$$\left|\frac{S_o(e^{-i\omega_j})}{B_o(e^{-i\omega_j})}\right| < \left|\frac{A(e^{-i\omega_j})S_o(e^{-i\omega_j}) + B(e^{-i\omega_j})R_o(e^{-i\omega_j})}{B(e^{-i\omega_j})A_o(e^{-i\omega_j}) - A(e^{-i\omega_j})B_o(e^{-i\omega_j})}\right|$$

Conditions for the existence of a finite dimension solution

Conditions for the existence of a finite dimension solution

• For the frequencies ω_j of the disturbance corresponding to $D_d(e^{-i\omega_j}) = 0$, the following inequality is satisfied:

$$\frac{S_o(e^{-i\omega_j})}{B_o(e^{-i\omega_j})} \left| < \frac{A(e^{-i\omega_j})S_o(e^{-i\omega_j}) + B(e^{-i\omega_j})R_o(e^{-i\omega_j})}{B(e^{-i\omega_j})A_o(e^{-i\omega_j}) - A(e^{-i\omega_j})B_o(e^{-i\omega_j})} \right|$$

• For all other frequencies, the following inequality is satisfied:

$$\left| Q(e^{-i\omega}) \right| < \left| \frac{A(e^{-i\omega})S_o(e^{-i\omega}) + B(e^{-i\omega})R_o(e^{-i\omega})}{B(e^{-i\omega})A_o(e^{-i\omega}) - A(e^{-i\omega})B_o(e^{-i\omega})} \right|$$

This condition gives the domain where the system can be used for disturbance attenuation

These sufficient conditions give hints for the design of the central controller

From where these conditions come?

 $\Gamma + \Delta Q$ should be an asymptotically stable polynomial

Adaptive case (unknown disturbances) in the presence of plant uncertainties

- Use of the same PAA as for the nominal case, but
- Since one uses an overparametrized solution and « richness of excitation » argument can not more be used, a **projection** has to be added to the PAA
- A sufficient stability condition appears in terms of sizes of uncertainties (Δ , Γ) and projection domain.

Parameter Adaptation Algorithm with Projection

$$\widehat{\theta}(\mathsf{t}+1) = \widehat{\theta}_{p}(\mathsf{t}) + F\psi(t) \frac{e^{0}(t+1)}{1+\psi^{T}(t)F\psi(t)}$$

$$\widehat{\theta}_{p}(t+1) = \begin{cases} \widehat{\theta}(t+1) & \text{if } \|\widehat{\theta}(t+1) - \theta_{0}\| \leq R \\ \theta_{0} + R \frac{\widehat{\theta}(t+1) - \theta_{0}}{\|\widehat{\theta}(t+1) - \theta_{0}\|} & \text{if } \|\widehat{\theta}(t+1) - \theta_{0}\| > R \end{cases}$$

The optimal vector heta is assumed to be inside domain \mathscr{D}

One can use as θ_p any value of θ inside domain $\mathcal{D}a$ nd in particular θ_0

Hypotheses

- 1) Controller C_0 stabilizes both G_0 and G
- 2) Disturbance d(t) is bounded
- 3) It exists Q of finite dimension such that $\Gamma + \Delta Q$ has roots inside the unit circle

Hypotheses

- 1) Controller C_0 stabilizes both G_0 and G
- 2) Disturbance d(t) is bounded
- 3) It exists Q of finite dimension such that $\Gamma + \Delta Q$ has has roots inside the unit circle

$$e(t+1) = \left[\theta - \hat{\theta}(t+1)\right]^T \psi(t) \quad \text{if } \psi(t) \text{ is bounded} \quad \blacksquare \quad \lim_{t \to \infty} e(t) = 0$$

But: $\psi(t) = f(w(t))$

w(t) should be bounded

Hypotheses

- 1) Controller C_0 stabilizes both G_0 and G
- 2) Disturbance d(t) is bounded
- 3) It exists Q of finite dimension such that $\Gamma + \Delta Q$ has has roots inside the unit circle

Remark : For the nominal case : $\Delta = 0$, $\Gamma = 1$

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Hypotheses

- 1) Controller C_0 stabilizes both G_0 and G
- 2) Disturbance d(t) is bounded
- 3) It exists Q of finite dimension such that $\Gamma + \Delta Q$ has has roots inside the unit circle

Remark : For the nominal case : $\Delta = 0$, $\Gamma = 1$

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Attenuation of single and multiple tonal noises in ducts

Attenuation of single and multiple tonal noises in ducts

Model	n _A	n_B	d
Secondary path Go	38	32	8
Secondary path G	27	20	7

Many low damped complex poles and zeros

Experimental results 1a

Experimental results 1b

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Experimental results 2a

Experimental results 2b

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Experimental results 3

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

170 Hz

Parameter Drift and PAA with projection - Experimental results

Step changes in frequency every 30 s for interference phenomenon arround 160 Hz +160.5 Hz

zoom

Landau & al. Adaptive regulation in the presence of plant uncertainties. Application to ANC

Concluding remarks

- Overparametrization works for handling plant model uncertainties
- Requires specific design of the central controller + PAA with projection
- A theoretical ground has been established.

Concluding remarks

- Overparametrization works for handling plant model uncertainties
- Requires specific design of the central controller + PAA with projection
- A theoretical ground has been established.

Open problems:

- Design of the central controller for a set of plant models in order to maximize the operation region
- To be proven: augmenting the size of the YK filter Q reduces the $|Q|_{\infty}$

B. Vau, I.D. Landau : Adaptive rejection of narrow band disturbances in the presence of plant uncertainties. A dual Youla – Kucera approach, AUTOMATICA July 2021,

I.D. Landau, B. Vau, G. Buche: Adaptive feedback noise attenuation in the presence of plant uncertainties - A Dual Youla-Kucera approach, ECC 21, Rotterdam, June 29, 2021

G. Buche, B. Vau, I.D. Landau : Handling large model uncertainty in adaptive feedback noise attenuation by overparametrization, J. of Sound and Vibration (to be published)

Thank you for your attention!