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Handling plant model uncertainties in adaptive regulation

using dual Youla-Kucera parametrization.

Application to Active Noise Control



Outline

• Introduction and Motivation

• Adaptive regulation (nominal case)

• Introduction of plant model uncertainties

• Existence of solutions and stability analysis

• Experimental results (active noise control in ducts)

• Concluding remarks
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Introduction

Adaptive regulation:
Attenuation of disturbances with unknown/time varying dynamic
characteristics (models) while plant model is assumed to be known
and almost constant 
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Introduction

Adaptive control:
Control of unknown/ time varying plant models
while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant 

Combined adaptive control and regulation is not solved in the general case 
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Introduction

Adaptive control:
Control of unknown/ time varying plant models
while the model (dynamic characteristic) of the disturbance is assumed to be known and almost constant 

Combined adaptive control and regulation is not solved in the general case 

A prototype adaptive regulation problem:
Rejection of single/multiple narrow band disturbances with unknown frequencies

Basic ingredients: Internal Model Principle, Youla-Kucera (YK) parametrization,
Parameter adaptation algorithms

Application areas : Active noise and vibration control
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𝑑 𝑡 =
𝑁𝑑 𝑞−1

𝐷𝑑 𝑞−1 𝛿(𝑡)

(poles of  𝐷𝑑 are on the unit circle)
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• Nominal system 𝐺0 𝑞−1 =
𝐵0(𝑞−1)

𝐴0(𝑞−1)
, Central controller 𝐶0 𝑞−1 = −

𝑅0(𝑞−1)

𝑆0(𝑞−1)

• Disturbance 𝑑 𝑡 =
𝑁𝑑 𝑞−1

𝐷𝑑 𝑞−1 𝛿(𝑡)

• Closed-loop characteristic polynomial : 𝑃0 𝑞−1 = 𝐴0 𝑞−1 𝑆0 𝑞−1 + 𝐵0(𝑞−1)𝑅0(𝑞−1)
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Nominal plant + Central Controller + YK parametrization + IMP
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𝑆0 = 𝐷𝑑𝑺′ + 𝑸𝐵0

Nominal plant + Central Controller + YK parametrization + IMP

Minimal order of Q : deg 𝑄 = deg 𝐷𝑑 − 1
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• Consequence: A direct adaptive regulation scheme can be built

• No SPR condition for Asymptotic Stability. Various adaptation gain policies 

• Particularly dedicated to multiple narrow band disturbances or limited band disturbances

Nominal plant

• Youla-Kucera parametrization allows to express the residual error(y(t)) as a 
function of the errors  in the Q parameters (with respect to the optimal ones)

𝑦 𝑡 + 1 = 𝑄 𝑞−1 −  𝑄 𝑡, 𝑞−1
𝐵0

∗ 𝑞−1

𝑃 𝑞−1 𝑤 𝑡 + 𝑣(𝑡 + 1)
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Vanishing term

Unknown disturbances: Direct adaptive feedback regulation

G0
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Vanishing term

Direct adaptive feedback regulation

𝜓 𝑡 = 𝐿(𝑞−1)𝜙(𝑡)

𝜙 𝑡 = 𝑤 𝑡 , 𝑤 𝑡 − 1 … .

𝐿(𝑞−1) = 𝐵0
∗/P

𝑒0 𝑡 + 1 = 𝜃 −  𝜃(𝑡)
𝑇
𝜓(𝑡)

 𝜃 𝑡 =  𝑞1 𝑡 ,  𝑞2 𝑡 …𝜃 = 𝑞1, 𝑞2, … ;

e°(t+1)= 𝑦 𝑡 + 1 = 𝑄 𝑞−1 −  𝑄 𝑡, 𝑞−1 𝐵0
∗ 𝑞−1

𝑃 𝑞−1 𝑤 𝑡 + 𝑣(𝑡 + 1)
a priori

adaptation error
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Vanishing term

Direct adaptive feedback regulation

Standard form for the synthesis
of stable adaptive schemes

e 𝑡 + 1 = 𝜃 −  𝜃(𝑡 + 1)
𝑇
𝜓(𝑡)

𝜓 𝑡 = 𝐿(𝑞−1)𝜙(𝑡)

𝜙 𝑡 = 𝑤 𝑡 , 𝑤 𝑡 − 1 … .

𝐿(𝑞−1) = 𝑞−𝑑𝐵𝐺
∗ /P

𝑒0 𝑡 + 1 = 𝜃 −  𝜃(𝑡)
𝑇
𝜓(𝑡)

 𝜃 𝑡 =  𝑞1 𝑡 ,  𝑞2 𝑡 …𝜃 = 𝑞1, 𝑞2, … ;

e°(t+1)= 𝑦 𝑡 + 1 = 𝑄 𝑞−1 −  𝑄 𝑡, 𝑞−1 𝐵0
∗ 𝑞−1

𝑃 𝑞−1 𝑤 𝑡 + 𝑣(𝑡 + 1)
a priori

adaptation error

a posteriori adaptation error
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• Performance will depend of course also upon the design of the parameter adaptation algorithms

Vanishing term

Direct adaptive feedback regulation

Standard form for the synthesis
of stable adaptive schemes

e°(t+1)= 𝑦 𝑡 + 1 = 𝑄 𝑞−1 −  𝑄 𝑡, 𝑞−1 𝐵0
∗ 𝑞−1

𝑃 𝑞−1 𝑤 𝑡 + 𝑣(𝑡 + 1)
a priori

adaptation error

a posteriori adaptation error

e 𝑡 + 1 = 𝜃 −  𝜃(𝑡 + 1)
𝑇
𝜓(𝑡)

𝜓 𝑡 = 𝐿(𝑞−1)𝜙(𝑡)

𝜙 𝑡 = 𝑤 𝑡 , 𝑤 𝑡 − 1 … .

𝐿(𝑞−1) = 𝑞−𝑑𝐵𝐺
∗ /P

𝑒0 𝑡 + 1 = 𝜃 −  𝜃(𝑡)
𝑇
𝜓(𝑡)

 𝜃 𝑡 =  𝑞1 𝑡 ,  𝑞2 𝑡 …𝜃 = 𝑞1, 𝑞2, … ;
 𝜃(t+1)=  𝜃(t)+𝐹𝜓(𝑡)

𝑒0(𝑡+1)

1+𝜓𝑇 𝑡 𝐹𝜓(𝑡)
; 𝐹 = 𝛾𝐼; 𝛾 > 0

 𝜃(t+1)=  𝜃(t)+F(t)𝜓(𝑡)
𝜈0(𝑡+1)

1+𝜓𝑇 𝑡 𝐹(𝑡)𝜓(𝑡)

scalar
adaptation

gain

matrix
adaptation

gain

Parameter Adaptation Alagorithms (PAA)

F(t)>0
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The challenge of large plant model uncertainty in adaptive regulation

The problem:

How to take into account large variations of the plant model in adaptive regulation?
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The problem:

How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model
Difficulties: 
- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance
- No serious theory to support this approach
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The challenge of large plant model uncertainty in adaptive regulation

The problem:

How to take into account large variations of the plant model in adaptive regulation?

Ad-hoc solution: sending testing signals for real time identification of the plant model
Difficulties: 
- Plant model identification in the presence of disturbances requires high level of the testing signals
- Degradation of performance
- No serious theory to support this approach

A disruptive approach:

Can we solve this problem by overparametrization of the YK filter used in adaptive regulation?

Expected benefit: no need for adding testing signals,

Difficulty: Establishing a theoretical support for this approach (feasability and stability analysis)

Ingredients for the theoretical analysis:
-Dual YK parametrization, Small gain theorem, Parameter adaptation algorithms with projection

Landau & al. Adaptive regulation  in the presence of plant 
uncertainties. Application to ANC
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The real plant model: G 𝑞−1 =
𝐵(𝑞−1)

𝐴(𝑞−1)

G 𝑞−1

Taking into account plant model uncertainties
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• System uncertainties can be represented with the Dual-YK parametrization: 𝐺 𝑞−1 =
Γ 𝑞−1 𝐵0 𝑞−1 +Δ(𝑞−1)𝑆0(𝑞−1)

Γ 𝑞−1 𝐴0 𝑞−1 −Δ(𝑞−1)𝑅0(𝑞−1)

• Γ 𝑞−1 monic polynomial, Δ(𝑞−1) has no scalar term. 

• The sensitivity function becomes: 

• 𝑦 𝑡 =
Γ𝐴0−Δ𝑅0

Γ+𝑄Δ

𝑆0−𝑄𝐵0

𝑃0
𝑑(t)

• 𝑤 𝑡 =
Γ𝐴0−Δ𝑅0

Γ+Δ𝑄
𝑑(𝑡)

The real plant model: G 𝑞−1 =
𝐵(𝑞−1)

𝐴(𝑞−1)

Taking into account plant model uncertainties

Can become unstable!

Landau & al. Adaptive regulation  in the presence of plant 
uncertainties. Application to ANC

Nominal case : G=1, D=0

G 𝑞−1

w(t)=A0d(t)
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Does it exist a filter Q of finite dimension such that:

i.e. such that Q satisfies the two simultaneous conditions:

1)     𝑆0 = 𝐷𝑑𝑺′ + 𝑸𝐵0 (internal model principle condition)

2)    Γ + Δ𝑄 𝑖𝑠 𝑎𝑛 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

The solution for the internal model principle (non necessarily minimal) stabilizes the closed loop
for a given set of uncertainties

Existence of a finite dimensional solution

Landau & al. Adaptive regulation  in the presence of plant 
uncertainties. Application to ANC
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Conditions for the existence of a finite dimension solution
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This condition gives the domain
where the system can be used

for disturbance attenuation

Conditions for the existence of a finite dimension solution
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This condition gives the domain
where the system can be used

for disturbance attenuation

Conditions for the existence of a finite dimension solution

These sufficient conditions give hints for the design of the central controller

Landau & al. Adaptive regulation  in the presence of plant 
uncertainties. Application to ANC



From where these conditions come?

Γ + Δ𝑄
𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑛 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

Tapez
une
équation
ici.

Δ

Γ

Q
- is asymptotically stable

( CL poles are defined by Γ + Δ𝑄 )
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équation
ici.

Δ

Γ

Q
- is asymptotically stable

( CL poles are defined by Γ + Δ𝑄 )

Stability condition using Small Gain Theorem : 𝑄(𝜔) < Γ(𝜔)/Δ(𝜔) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔
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From where these conditions come?

Γ + Δ𝑄
𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑛 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

But:

Which lead to : 

Γ = 𝐴𝑆0 + 𝐵𝑅0∆ = 𝐵𝐴0 − 𝐵0𝐴

Tapez
une
équation
ici.

Δ

Γ

Q
- is asymptotically stable

( CL poles are defined by Γ + Δ𝑄 )

Stability condition using Small Gain Theorem : 

𝑄(𝜔) <
𝐴(𝜔)𝑆0(𝜔) + 𝐵(𝜔)𝑅0(𝜔)

𝐵(𝜔)𝐴0(𝜔) − 𝐵0(𝜔)𝐴(𝜔)
Condition 2

𝑄(𝜔) < Γ(𝜔)/Δ(𝜔) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔
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Which lead to : 

Γ = 𝐴𝑆0 + 𝐵𝑅0∆ = 𝐵𝐴0 − 𝐵0𝐴

Tapez
une
équation
ici.

Δ

Γ

Q
- is asymptotically stable

( CL poles are defined by Γ + Δ𝑄 )

Stability condition using Small Gain Theorem : 

𝑄(𝜔) <
𝐴(𝜔)𝑆0(𝜔) + 𝐵(𝜔)𝑅0(𝜔)

𝐵(𝜔)𝐴0(𝜔) − 𝐵0(𝜔)𝐴(𝜔)

At 𝜔𝑗 : Q= B/S0 (From IMP : 𝑆0 = 𝐷𝑑𝑺′ + 𝑸𝐵0 when 𝐷𝑑=0 )

𝐵(𝜔)

𝑆0(𝜔)
<

𝐴(𝜔)𝑆0(𝜔) + 𝐵(𝜔)𝑅0(𝜔)

𝐵(𝜔)𝐴0(𝜔) − 𝐵0(𝜔)𝐴(𝜔)

Condition 2

Condition 1

𝑄(𝜔) < Γ(𝜔)/Δ(𝜔) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔
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Adaptive case ( unknown disturbances ) in the presence of plant uncertainties

• Use of the same PAA as for the nominal case, but

• Since one uses an overparametrized solution and « richness of excitation » argument
can not more be used, a projection has to be added to the PAA

• A sufficient stability condition appears in terms of sizes of uncertainties (D, G) 

and projection domain.
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Parameter Adaptation Algorithm with Projection

 𝜃(t+1)=  𝜃𝑝(t)+𝐹𝜓(𝑡)
𝑒0(𝑡+1)

1+𝜓𝑇 𝑡 𝐹𝜓(𝑡)

One can use as qp any value of q inside domain D 𝑎nd in particular q0

D

The optimal vector q is assumed to be inside domain D
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Stability conditions

Hypotheses
1) Controller C0 stabilizes both G0 and G
2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that has roots inside the unit circleΓ + Δ𝑄
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w(t) should be bounded

Stability conditions

Hypotheses
1) Controller C0 stabilizes both G0 and G
2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that has has roots inside the unit circleΓ + Δ𝑄

𝜓 𝑡 = 𝑓(𝑤 𝑡 )But :

lim
𝑡 ∞

𝑒 𝑡 = 0if 𝜓 𝑡 is boundede 𝑡 + 1 = 𝜃 −  𝜃(𝑡 + 1)
𝑇
𝜓(𝑡)
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w(t) should be bounded

Should be BIBO

  𝑄 (t)-Q
Δ

Γ + Δ𝑄
 

Γ𝐴0 − Δ𝑅0

Γ + Δ𝑄

d(t) w(t)

+
-

Remark : For the nominal case : Δ = 0, Γ = 1

lim
𝑡 ∞

𝑒 𝑡 = 0if 𝜓 𝑡 is boundede 𝑡 + 1 = 𝜃 −  𝜃(𝑡 + 1)
𝑇
𝜓(𝑡)

Stability conditions

Hypotheses
1) Controller C0 stabilizes both G0 and G
2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that has has roots inside the unit circleΓ + Δ𝑄

𝜓 𝑡 = 𝑓(𝑤 𝑡 )But :
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Stability conditions

w(t) should be bounded

Should be BIBO

Using small gain arguments yelds : 

  𝑄 (t)-Q
Δ

Γ + Δ𝑄
 

Γ𝐴0 − Δ𝑅0

Γ + Δ𝑄

d(t) w(t)

+
-

Remark : For the nominal case : Δ = 0, Γ = 1

Hypotheses
1) Controller C0 stabilizes both G0 and G
2) Disturbance d(t) is bounded
3) It exists Q of finite dimension such that has has roots inside the unit circleΓ + Δ𝑄

𝜓 𝑡 = 𝑓(𝑤 𝑡 )But :

lim
𝑡 ∞

𝑒 𝑡 = 0if 𝜓 𝑡 is boundede 𝑡 + 1 = 𝜃 −  𝜃(𝑡 + 1)
𝑇
𝜓(𝑡)
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Attenuation of single and multiple tonal noises in ducts

G0

G
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G0

G

Many low damped complex poles and zeros
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Attenuation of single and multiple tonal noises in ducts
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Experimental results 1a

160 Hz

R0=0

160 Hz

harmonic

Single sinusoïd

Attenuation: 81 dB
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170 Hz 180 Hz160 Hz 170 Hz

Step changes in frequency

50 parameters

Disturbance

Closed Loop

Attenuation: over 72 dB

Experimental results 1b

160 Hz

R0=0

160 Hz

harmonic

Single sinusoïd

Attenuation: 81 dB

Dist. Res. noise
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150 Hz
+150.5 Hz

140 Hz
+140.3 Hz 160 Hz

+160.2 Hz

150 Hz
+150.5 Hz

Interference

50 parameters

Closed LoopDisturbance

Experimental results 2a

Dist. Res. noise
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150 Hz
+150.5 Hz

140 Hz
+140.3 Hz 160 Hz

+160.2 Hz

150 Hz
+150.5 Hz

Interference

50 parameters

Closed LoopDisturbance
Two sinusoïds: 80 Hz + 180 Hz

Global attenuation: 86.23 dB

180 Hz

80 Hz

harmonics

Disturbance

Closed Loop

Experimental results 2b
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Experimental results 3

R0=0

3 sinusoïds 4 sinusoïds

70 Hz

70 Hz135 Hz

200 Hz

120 Hz

harmonicsharmonics
220 Hz

170 Hz

R0=0

Global attenuation: 80.71 dB
Global attenuation: 66.19 dB
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R0=0

Parameter Drift and PAA with projection - Experimental results

zoomStep changes in frequency every 30 s for interference phenomenon arround 160 Hz +160.5 Hz

30 parameters

Parameters Drift
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Concluding remarks

• Overparametrization works for handling plant model uncertainties

• Requires specific design of the central controller + PAA with projection

• A theoretical ground has been established.
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Concluding remarks

• Overparametrization works for handling plant model uncertainties

• Requires specific design of the central controller + PAA with projection

• A theoretical ground has been established.

Open problems:

• Design of the central controller for a set of plant models in order
to maximize the operation region

• To be proven: augmenting the size of the YK filter Q reduces the 𝑄 ∞
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Thank you for your attention!


