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ABSTRACT

We study the impact of lensing magnification on the observed three-dimensional galaxy clustering in redshift space. We used the
RayGal suite of N-body simulations, from which we extracted samples of dark matter particles and haloes in the redshift regime of
interest for future large redshift surveys. Several magnitude-limited samples were built that reproduce various levels of magnification
bias ranging from s = 0 to s = 1.2, where s is the logarithmic slope of the cumulative magnitude number counts, in three redshift
intervals within 1 < z < 1.95. We studied the two-point correlation function multipole moments in the different cases in the same way
as would be applied to real data, and investigated how well the growth rate of structure parameter could be recovered. In the analysis,
we used an hybrid model that combines non-linear redshift-space distortions and linear curved-sky lensing magnification. We find that
the growth rate is underestimated when magnification bias is not accounted for in the modelling. This bias becomes non-negligible
for z > 1.3 and can reach 10% at z ' 1.8, depending on the properties of the target sample. In our data, adding the lensing linear
correction allowed us to recover an unbiased estimate of the growth rate in most cases when the correction was small, even when
the fiducial cosmology was different from that of the data. For larger corrections (high redshifts, low bias, and high s value), we find
that the weak-lensing limit has to be treated with caution as it may no longer be a good approximation . Our results also show the
importance of knowing s in advance instead of letting this parameter free with flat priors because in this case, the error bars increase
significantly.

Key words. cosmology: theory – dark energy – dark matter – large-scale structure of Universe – gravitational lensing: weak –
methods: numerical

1. Introduction

The observation of distant galaxies provides a wealth of infor-
mation regarding the nature and content of our Universe. Since
galaxies trace the underlying matter density field, their spatial
distribution can be used to probe the evolution of the large-
scale structure. Moreover, the Doppler effect induced by the
peculiar motion of galaxies, also known as redshift-space dis-
tortions (RSD; Kaiser 1987), leaves a distinct imprint on the
three-dimensional clustering of these distant galaxies, which can
in turn be used to gain information on the linear growth rate of
structure. The latter is directly sensitive to the theory of gravity
(Guzzo et al. 2008).

Galaxy clustering has been used for more than two decades
to place constraints on the fσ8 parameter, that is, the growth
rate multiplied by the power spectrum normalisation. No sig-
nificant deviations from General Relativity were found (e.g.,
Peacock et al. 2001; Tegmark et al. 2006; Blake et al. 2012; de la
Torre et al. 2013; Alam et al. 2017, 2021). Future surveys such
as Euclid (Laureijs et al. 2011), the Subaru Prime Focus Spectro-
graph (Takada et al. 2014), the Square Kilometre Array (Square
Kilometre Array Cosmology Science Working Group 2020), or
the recently started DESI (DESI Collaboration 2016) will probe
the distribution of galaxies with unprecedented accuracy and at
higher redshifts (z > 1) than before. In particular, Euclid will

provide a 1−3% level of precision on fσ8 between z = 0.9 and
z = 1.8 (Laureijs et al. 2011; Majerotto et al. 2012).

Because future galaxy surveys will probe higher redshifts
with high accuracy, the theoretical modelling of galaxy cluster-
ing in the form of summary statistics such as the two-point cor-
relation function will need to be improved to provide an unbi-
ased estimate of cosmological parameters. More precisely, the
current modelling of the observed two-point correlation function
(or power spectrum) only accounts for peculiar velocities (RSD),
while analytical works have shown in linear theory that the next
dominant term at high redshift will be due to gravitational lens-
ing (Yoo et al. 2009; Challinor & Lewis 2011; Bonvin & Durrer
2011), also known as magnification bias (Schneider et al. 1992).
Gravitational lensing indeed modifies the apparent angular posi-
tion of sources due to the deflection of light rays along their path,
and it also magnifies their fluxes, so that in magnitude-limited
surveys, we can find more or fewer objects in magnified regions,
depending on the slope of the luminosity function.

It is interesting to remark that in galaxy-galaxy lensing, the
theoretical framework required to incorporate the magnification
bias corrections was first devised in Ziour & Hui (2008), but this
gained more attention only very recently (Duncan et al. 2014;
Ghosh et al. 2018; Thiele et al. 2020; Unruh et al. 2020; Joachimi
et al. 2021; Lee et al. 2022). The difference in theoretical mod-
elling between Dark Energy Survey one-year (Prat et al. 2018)
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and three-year (Abbott et al. 2022) galaxy-galaxy lensing anal-
yses, where only the latter accounts for the effect of lensing
magnification, is particularly telling. Similarly, several analyt-
ical works have investigated the effect of magnification bias on
the three-dimensional two-point correlation function (Matsubara
2000; Hui et al. 2007, 2008), but has not been implemented in
observational analysis so far. The main reason for this is that,
until now, galaxy redshift surveys have probed low enough red-
shifts, where gravitational lensing does not have an important
impact on the overall three-dimensional distribution of galax-
ies. However, in the near future, this may no longer be the case.
Of particular relevance for the present paper, Jelic-Cizmek et al.
(2021) investigated the effect of lensing magnification in spec-
troscopic surveys and found that neglecting magnification bias
leads to an underestimation of the growth rate of structure. This
work was restricted to pure analytical models in linear theory and
in a Fisher analysis. From a numerical point of view, Elkhashab
et al. (2022) assessed the detectability of magnification bias on
the power spectrum monopole only for a Euclid-like survey.

The present paper aims at investigating the impact of magni-
fication bias on the determination of the growth rate from clus-
tering in redshift space in a typical observational set up. We use a
suite of N-body simulations that accounts for the fully non-linear
structure formation and perform realistic galaxy clustering anal-
yses, similarly as in observations, in different regimes of magni-
fication bias. We investigate a minimal model to account for the
magnification effect on the multipole moments of the redshift-
space correlation function, and we study the accuracy with which
the growth rate of structure parameter can be recovered.

The paper is organised as follows. In Sect. 2 we discuss
the theoretical modelling of the magnified correlation function
multipole moments in redshift space. The numerical data and
method we used to perform a likelihood analysis are presented
in Sect. 3. Finally, the results are shown in Sect. 4, and we con-
clude in Sect. 5.

2. Theory

The observed spatial distribution of galaxies in the Universe
depends on two main aspects: first, galaxies are biased tracers
of the matter density field, which means that in ‘real space’
(i.e. the Universe as it is really), galaxies are located at local
matter density peaks formed through gravitational instabilities.
Second, the observation of galaxies through their emitting light
modifies our perception of their distribution. In particular, their
measured redshift can be shifted with respect to their Friedmann-
Lemaitre-Robertson-Walker counterpart due to peculiar veloci-
ties (RSD) and due to local or integrated gravitational potentials.
This leads to distortions when estimating the distance to galaxies
given a fiducial cosmology, and therefore modifies their overall
perceived spatial distribution. Moreover, light rays follow null
geodesics and can therefore be deflected by gravitational poten-
tials along their trajectories, which impacts the observed angular
position of sources. In the following, we present how the two
dominant effects leading to the observed redshift-space galaxy
two-point correlation function, that is, RSD and gravitational
lensing magnification, can be modelled.

2.1. Redshift-space distortions

The standard way of modelling clustering in redshift space
beyond linear theory (Peebles 1980; Kaiser 1987; Hamilton
1992) is to consider only redshift perturbations due to peculiar
velocities. The real-space quasi-linear clustering can be

predicted with different flavours of perturbation theory,
either Eulerian (Bernardeau et al. 2002; Crocce & Scoccimarro
2006; Taruya et al. 2012, 2013) or Lagrangian (Zel’dovich
1970; Matsubara 2008a,b; Carlson et al. 2013). In addition,
the mapping from real to redshift space can be done with dif-
ferent approaches. Common approaches in observational stud-
ies include the TNS model (Taruya et al. 2010, 2013) and the
streaming model (Scoccimarro 2004; Reid & White 2011).

In this work, we consider the convolution Lagrangian per-
turbation theory (CLPT; Carlson et al. 2013) to predict real-
space quantities. Generally, if the non-linear clustering in real
space is well modelled with this approach, Lagrangian theo-
ries are not accurate enough on small scales in redshift space
(White 2014). We therefore adopt the Gaussian streaming model
(Reid & White 2011) for the mapping from real to redshift
space. The joint use of CLPT and Gaussian streaming (CLPT-
GS) has been shown to provide a good match to data and sim-
ulations (Wang et al. 2014) and is routinely used to model
observations (e.g., Reid et al. 2012; Samushia et al. 2014;
Zarrouk et al. 2018; Bautista et al. 2021).

2.1.1. Convolution Lagrangian perturbation theory

In the Lagrangian framework, the position x of an infinitesimal
volume element is given by

x(q, t) = q +Ψ(q, t), (1)

where q is the Lagrangian coordinate (initial position) and Ψ(q)
the displacement field. The latter encodes the displacement of
any mass element. For conciseness, in the following we omit its
time dependence. In Lagrangian theories, the displacement field
is assumed to be small, whereas for Eulerian theories, the density
contrast is assumed to be small. The displacement field can thus
be expanded as a perturbative series, Ψ =

∑∞
n=1Ψ

(n), where the
first-order solution is the well-known Zel’dovich approximation
(Zel’dovich 1970).

Due to mass conservation, the relation between the density
field of a volume element depends on its initial location through

[1 + δ(x)] d3x =
[
1 + δ(q)

]
d3q, (2)

where δ is the matter density contrast. We have therefore that

1 + δ(x) =

∫
d3q δD(x − q −Ψ), (3)

where δD is the Dirac delta function. However, the matter density
field is not observationally relevant for galaxy clustering, but we
are rather interested in biased tracers of the underlying matter
field. By assuming a local Lagrangian bias, we can write

1 + δg(q) = F(δ(q)), (4)

where δg is the density contrast of galaxies and F(δ) is the
biasing function smoothed on a given scale. We note that at
first order, the linear Eulerian and Lagrangian biases are simply
related by b(1)

E = 1 + b(1)
L . In the following, we use the notation

bn = b(n)
L , with b1 = 〈F′〉 and b2 = 〈F′′〉 the first- and second-

order Lagrangian bias parameters given by the expectation value
of the first- and second-order derivatives of F(δ) respectively.

The counterpart of Eq. (3) for biased tracers is thus

1 + δg(x) =

∫
d3q F[δ(q)] δD(x − q −Ψ). (5)
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From this expression, it is possible to derive the real-space
galaxy two-point correlation function, mean pairwise velocity,
and velocity dispersion as

1 + ξ(r) =
〈[

1 + δg(x)
] [

1 + δg(x + r)
]〉

=

∫
d3q M0(r, q), (6)

v12(r) =

〈[
1 + δg(x)

] [
1 + δg(x + r)

] [
vz(x + r) − vz(x)

]〉〈[
1 + δg(x)

] [
1 + δg(x + r)

]〉
= [1 + ξ(r)]−1

∫
d3q M1(r, q), (7)

σ2
12(r) =

〈[
1 + δg(x)

] [
1 + δg(x + r)

] [
vz(x + r) − vz(x)

]2
〉〈[

1 + δg(x)
] [

1 + δg(x + r)
]〉

= [1 + ξ(r)]−1
∫

d3q M2(r, q), (8)

where r = |r| is the scale, vz is the velocity along the line of
sight uz with vz(x2) − vz(x1) = (ẋ2 − ẋ1) · uz, and M0, M1
and M2 are integration kernels containing the parameters of the
model (Wang et al. 2014). The main difference between CLPT
and other Lagrangian perturbation theories such as in Matsubara
(2008b) lies in the resummation employed in the kernels.

2.1.2. Gaussian streaming model

The CLPT predictions for the real-space correlation function and
the two first moments of the pairwise velocity distribution, that
is, Eqs. (6)–(8), can be used in the Gaussian streaming model
(Reid & White 2011) to predict the anisotropic two-point cor-
relation function in redshift space. In this model, the redshift-
space correlation function is recovered by convolving the
real-space correlation function along the line of sight, with a
scale-dependent pairwise velocity distribution taken to be Gaus-
sian. This gives

1 + ξs(r⊥, r‖) =

∫
dy√

2πσ2(r, υ)
[1 + ξ(r)]

× exp

−
[
r‖ − y − υv12(r)

]2

2σ2(r, υ)

 , (9)

where r‖ and r⊥ are the components of the separation vector
parallel and perpendicular to the line of sight, r2 = r2

⊥ + y2,
υ = y/r is the end-point line-of-sight cosine angle definition,
and σ2(r, υ) = σ2

12(r, υ) + σ2
v , with σv an additional velocity

dispersion term that accounts for small-scale random motions
in virialised objects. From Eq. (9), it is fairly easy to compute
the multipole moments of the correlation function by integrat-
ing over the Legendre polynomials. We note that one limita-
tion of the Gaussian streaming model as presented here is that
it assumes the distant-observer approximation, meaning that it
neglects wide-angle effects (Szalay et al. 1998; Szapudi 2004;
Pápai & Szapudi 2008; Raccanelli et al. 2010; Reimberg et al.
2016; Castorina & White 2018; Beutler et al. 2019; Taruya et al.
2020). In our case, we restrict our analysis to relatively high red-
shifts (z > 1) so that we can safely work under this approxi-
mation. Our implementation of the CLPT-GS model is publicly
available1.

1 https://github.com/mianbreton/CLPT_GS

2.2. Magnification bias

Beyond the redshift-space distortions induced by peculiar veloc-
ities, the next dominant effect at z > 1 that modifies the appar-
ent distribution of galaxies is magnification bias. It originates
from the fact that some regions of the sky are magnified (demag-
nified) due to gravitational lensing, meaning that they contain
fewer (more) sources than on average. If we consider a survey
of galaxies selected in flux, gravitational lensing will modify
the apparent fluxes of the galaxies, so that some of them will
enter or exit the sample. This selection effect will impact the
observed clustering of galaxies. It is worth noting that magni-
fication bias is not the only effect that arises: additional effects
ensue that depend on peculiar velocities or gravitational potential
(Challinor & Lewis 2011). However, at high redshift, magnifica-
tion bias is the dominant effect and is the focus of this work.

2.2.1. Impact on the number counts

The surface brightness of sources, defined as the flux per unit
solid angle, is conserved through gravitational lensing. This
implies that the apparent size and flux of a source are simul-
taneously modified as

S ′(θ) = µ(θ)S (θ), (10)
dΩ′(θ) = µ(θ)dΩ(θ), (11)

where S , µ, and dΩ are the flux, magnification, and solid angle,
respectively, in the direction θ on the sky (in the following we
omit the angular dependence), and a prime denotes a magnified
quantity. The conservation of the number of sources can be writ-
ten as

n′(m′)dm′dΩ′ = n(m)dmdΩ, (12)

where n(m) is the number density of sources per unit of solid
angle and per magnitude interval dm, m = −2.5 log(S) + C is the
magnitude, and C is a constant. From this, it is straightforward
to infer the magnified magnitude m′ = m − 2.5 log(µ). The total
number of observed sources up to a given magnitude limit ml is∫ ml

−∞

n′(m′)dm′ = µ−1
∫ ml

−∞

n
(
m′ + 2.5 log(µ)

)
dm′ (13)

= µ−1
∫ ml+2.5 log(µ)

−∞

n(m)dm. (14)

Ultimately, this can be rewritten in terms of cumulative number
densities as

n′(< ml) = µ−1n
(
< ml + 2.5 log(µ)

)
. (15)

One generally considers a simple model for the luminosity func-
tion, a power law such that (Schneider et al. 1992; Broadhurst
et al. 1995)

n(< m) ∝ 10ms, (16)

where s is defined as the logarithmic slope of the cumulative
distribution and is a property of the target sample. We note that
for this specific function, cumulative and differential distribu-
tions have the same shape. By inserting Eq. (16) in Eq. (15), we
obtain that

∆len = µ2.5s−1 − 1 (17)
≈ (5s − 2)κ, (18)
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where ∆len = n′(< ml)/n(< ml) − 1 is the perturbation on the
number count due to magnification bias in a given direction on
the sky, and κ is the lensing convergence. In the second line we
have performed a first-order Taylor expansion on the magnifica-
tion as µ = 1 + 2κ (hereafter referred to as the ‘weak-lensing
limit’), with |κ| � 1. Gravitational lensing induces two compet-
ing terms on the observed number counts as seen in Eq. (18):
the s-dependent term implies that in magnified regions (µ > 1,
κ > 0), the flux of sources increases so that we are more likely
to find objects (and conversely, the chances of finding objects in
demagnified regions are lower). The second term, which is usu-
ally referred to as ‘dilution bias’, describes the change in size of
solid angles on the sky. Magnified regions occupy more space,
so that for a constant density, we should find fewer objects in
these regions than on average. These two effects cancel exactly
for s = 0.4.

2.2.2. Two-point correlation function correction

To be consistent, the lensing correction associated with magni-
fication bias on the correlation function should in principle be
derived using the same theoretical framework as for RSD. How-
ever, these developments are beyond the scope of the present
paper. We instead propose a simple correction based on lin-
ear theory, which can easily be used in addition to any RSD
model.

We start from the observed galaxy number counts, which
accounts for density, RSD, and lensing perturbations (the full
expressions accounting for all the terms at first order in metric
perturbations can be found in Yoo et al. 2009; Challinor & Lewis
2011; Bonvin & Durrer 2011),

∆ = ∆den + ∆rsd + ∆len, (19)

where ∆den = bδ, b is the Eulerian linear bias, and ∆rsd =

−∂rvr/H is the RSD component, where ∂rvr and H are the
gradient of the velocity field along the line of sight and the
conformal Hubble parameter, respectively. The lensing pertur-
bation ∆len is that of Eq. (18). We note that the decomposition in
Eq. (19) is only true at first order since it neglects higher-order
lensing correlations.

Since the correlation function can be written as ξ(r) =
〈∆(x)∆(x + r)〉, the linear correction that comes from the addi-
tion of lensing magnification in the number counts is

ξcorr(r) = ξden−len(r) + ξrsd−len(r) + ξlen−len(r), (20)

where ξA−B(r) ≡ 〈∆A(x)∆B(x + r)〉. The expressions for the dif-
ferent terms in Eq. (20) are derived in Matsubara (2000), Hui
et al. (2007, 2008), and in Tansella et al. (2018a,b) for the
curved-sky case. Precisely, in the latter case we have

ξA−B(θ, z1, z2) =

∫
dk
k

PR(k)QA−B
k (θ, z1, z2), (21)

where (θ, z1, z2) defines the separation vector in observed coor-
dinates2, PR(k) is the primordial matter power spectrum, and the

2 Here, z1 and z2 are the redshifts of the objects of the pair, and θ is the
angle between them.

kernels QA−B
k with A−B = {den-len, rsd-len, len-len} read

Qden-len
k (θ, z1, z2) = b(z1)S D(z1)

(
2 − 5s

2χ2

)
∫ χ2

0
dλ
χ2 − λ

λ
S φ+ψ(λ) ζ0L(kχ1, kλ, θ), (22)

Qrsd-len
k (θ, z1, z2) =

k
H(z1)

S V (z1)
(

2 − 5s
2χ2

)
∫ χ2

0
dλ
χ2 − λ

λ
S φ+ψ(λ) ζ2L(kχ1, kλ, θ), (23)

Qlen-len
k (θ, z1, z2) =

(2 − 5s)2

4χ1χ2∫ χ1

0

∫ χ2

0
dλdλ′

(χ1−λ)(χ2−λ
′)

λλ′
S φ+ψ(λ)

S φ+ψ(λ′)ζLL(kλ, kλ′, θ). (24)

In these equations, ζ are pure geometrical functions provided in
Appendix B of Tansella et al. (2018a), χi is the comoving dis-
tance to redshift zi, and S D, S V , and S φ+ψ are the scaled transfer
functions associated with density, peculiar velocity, and gravita-
tional potentials, respectively. ξA−B(θ, z1, z2) in Eq. (21) can be
written in terms of the separations parallel and perpendicular to

the line of sight, r‖ and r⊥, using that r‖ = χ2−χ1, r⊥ =
√

r2 − r2
‖
,

and r =

√
χ2

1 + χ2
2 − 2χ1χ2 cos θ.

We implement the magnification bias correction using the
Coffe library3 (Tansella et al. 2018b), which directly provides
ξden−len, ξrsd−len, ξlen−len in bins of (r⊥, r‖) using curved-sky linear
theory and given an input linear power spectrum. Jelic-Cizmek
(2021) noted that although there is no large differences between
the curved-sky and flat-sky prescriptions at the scales of interest
for us in general, that is r . 150 h−1 Mpc, the ξden−len compo-
nent is quite sensitive to the adopted prescription. We therefore
adopted the full curved-sky implementation.

Our theoretical model for the redshift-space correlation func-
tion therefore consists of the CLPT-GS prediction for non-
linear RSD and of the curved-sky linear theory prediction for
the additional lensing magnification correction. Formally, the
anisotropic correlation function model is given by

ξmodel(r⊥, r‖) = ξCLPT−GS(r⊥, r‖) + ξcorr(r⊥, r‖). (25)

A final step involves evaluating ξmodel at coordinates (r, ν) using

that r =
√

r2
⊥ + r2

‖
and ν = r‖/r, and computing associated mul-

tipole moments as

ξmodel
` (r) =

2` + 1
2

∫ 1

−1
ξmodel(r, ν)L`(ν)dν, (26)

where L` is the Legendre polynomial of order `.
We show the correlation function multipole moments com-

puted with our model in Fig. 1. We considered here the matter
at z = 1.8 in the ΛCDM model and s = 1.2. Both flat-sky and
curved-sky linear lensing prescriptions are presented.

We first remark that magnification bias adds a positive con-
tribution to the correlation function multipoles. The case s = 0
would also lead to positive contributions for the even multipoles
because at this redshift, |ξlen−len| > |ξden−len|, where |ξlen−len| is
strictly positive and the sign of |ξden−len| depends on the value

3 https://github.com/JCGoran/coffe
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Fig. 1. Multipoles of the correlation function (monopole, quadrupole,
and hexadecapole from top to bottom) when accounting for RSD only
(red), for RSD and lensing magnification (blue), and for RSD and a
flat-sky implementation of the lensing magnification. We consider here
a ΛCDM model at z = 1.8 with a galaxy bias equal to unity and s = 1.2.

of s. While this inequality might not hold at lower redshifts,
it is valid for the redshift range we consider, that is, z > 1.
Second, the full-sky and flat-sky implementations of the lens-
ing correction give very similar results that are indistinguish-
able, except on the hexadecapole at large comoving separations.
Overall, although we use the curved-sky correction in our mod-
elling, the flat-sky approximation should also work in likelihood
analyses, since the covariance associated with the hexadecapole
should weakly affect the final results with respect to the domi-
nant monopole and quadrupole.

3. Methods

To investigate the impact of magnification bias on clustering
in redshift space, we used N-body simulations, which natu-
rally account for the fully non-linear structure formation, and
extracted light cones with various magnification bias selections.
We then estimated the first three even multipole moments of
the two-point correlation function in the light cones in several
tomographic redshift bins and ran a Monte Carlo Markov chain
(MCMC) likelihood analysis to sample the parameters of the
model described in Sect. 2. We present the different methods in
this section.

3.1. Datasets

The RayGal simulation suite4 (Breton et al. 2019; Rasera et al.
2022) is based on RAMSES (Teyssier 2002; Guillet & Teyssier

4 https://cosmo.obspm.fr/public-datasets/

Table 1. Cosmological parameters.

Model Ωm σ8 w

ΛCDM 0.25733 0.80101 −1.0
wCDM 0.27508 0.85205 −1.2

Notes. Ωm the total matter density, σ8 the power spectrum normaliza-
tion at z = 0, and w the redshift-independent equation of state for the
ΛCDM and wCDM cosmologies of RayGal. In both cases we consider
flat models, that is Ωk = 0, with reduced Hubble parameter h = 0.72,
the baryon density Ωb = 0.04356, the radiation density Ωr = 8 × 10−5

and the spectral index ns = 0.963.

Fig. 2. Evolution of the growth rate of structure as a function of redshift
for the Planck Collaboration XIII (2016) cosmology in black (error bars
are shown in grey), as well as the two cosmologies (ΛCDM in purple,
wCDM in cyan) of the RayGal simulations until z = 2.

2011). These are dark-matter-only N-body simulations contain-
ing 40963 dark matter (DM) particles of mass 1.8 × 1010 M� in
a volume of 2.6253 h−3 Gpc3. Both ΛCDM and wCDM versions
are available, and associated fiducial cosmological parameters
are given in Table 1. The two cosmologies have different Ωm and
σ8 and therefore different values of fσ8(z), since f ≈ Ωm(z)0.55

in General Relativity (Wang & Steinhardt 1998; Linder & Cahn
2007). This is shown in Fig. 2, where we show the fiducial val-
ues of fσ8 as a function of redshift for the two cosmologies as
well as the expectations from Planck Collaboration XIII (2016)
ΛCDM best-fitting model assuming General Relativity. Inter-
estingly, the values of fσ8(z) for the RayGal ΛCDM (wCDM)
model are close those from Planck at high (low) redshift. It is
worth emphasising the importance of analysing simulations with
different cosmologies, since we can analyse them blindly in a
fiducial cosmology, as in observations, and see whether unbiased
estimates of the growth rate of structure can be recovered.

3.1.1. RayGal light cones

Several light cones have been extracted from the RayGal simula-
tions. In the present work, we used light cones with an aperture
of 2500 deg2 extending to z = 2, which encompasses the redshift
range probed by the DESI (DESI Collaboration 2016) and Euclid
(Laureijs et al. 2011) surveys. These light cones contain DM par-
ticles as well as DM haloes identified with the parallel friend-of-
friend algorithm pFoF (Roy et al. 2014), using a linking length
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Fig. 3. Normalised redshift distribution of the DM particles and haloes,
in blue and orange histograms, respectively, within the narrow cone of
the ΛCDM RayGal simulation. The red, green, and yellow regions refer
to the redshift bins, i.e. z = [1.0, 1.3], [1.3, 1.6], and [1.6, 1.95].

of 0.2. We imposed a minimum of 100 particles per halo, which
leads to haloes with masses higher than 1.8 × 1012 M�.

The gravitational-lensing information was computed in the
light cones by using the ray-tracing code Magrathea-Pathfinder
(Reverdy 2014; Breton & Reverdy 2022). This code implements
an iterative algorithm that finds the null geodesics connecting the
observer to each source (Breton et al. 2019), that is, either par-
ticles or haloes. This allows the computation of RSD and lens-
ing effects at the same time in a general and accurate way. It
is important to emphasize the fact that the treatment of gravita-
tional lensing does not involve the Born approximation, which
is often used. Our light cones contained about 1.2 × 107 haloes
in both cosmologies, and we ray-traced about 4 × 108 randomly
selected particles. Having both haloes and particles enabled us
to perform a redshift-space clustering analysis on a biased pop-
ulation for the former (and hence, closer to observations), and
for the latter, to carry out a precise study in which the number of
matter tracers was maximised.

In Fig. 3 we show the redshift distribution of the halo and
particle samples in the ΛCDM light cone, as well as the adopted
tomographic redshift bins. The distributions in the wCDM light
cone are very similar. The tomographic redshift bins cover a
similar redshift range as present and future galaxy cosmologi-
cal surveys, a regime in which gravitational lensing effects on
galaxy clustering start to be significant (at about z > 1). The
shape of the redshift distribution increases for particles mono-
tonically, as expected in the case of constant density. However,
at about z = 2, N(z) seems to decrease. This edge effect arises
because we built our light cones up to z ∼ 2. To avoid any issue,
we used a maximum redshift of zmax = 1.95. For haloes, N(z)
reaches a maximum at around z = 1.2 and then decreases. This
can be explained by the combined effect of the halo formation
and limited mass resolution in the simulation. We did not impose
any further selection in redshift to avoid discarding too many
objects from our samples, and we thus maximised RSD and lens-
ing magnification signals.

3.1.2. Implementation of the magnification bias

To reproduce different levels of magnification bias, a halo mass-
galaxy luminosity relation might be imposed and apparent mag-

nified fluxes or magnitudes might be estimated, from which then
selections might be made. While it is clearly the appropriate
methodology when constructing most realistic mock catalogues,
our goal is to investigate the effect of the magnification bias on
galaxy clustering in a general way, independent of the proper-
ties of any target sample. Hence, we found that the easiest and
most efficient way to mimic the effect of magnification bias is
to directly use the magnification of sources. Objects may be
selected using a probability function proportional to µ2.5s (see
also Sect. 2.2.1). The advantages of this approach is that fewer
sources are discarded, and the approach does not depend on
the mass resolution of the simulation. However, it depends on
some normalisation and discards more sources at high values
of s. We therefore instead chose to weight each source by µ2.5s.
This allowed us to account for the effect of lensing magnification
while keeping all the objects in our sample. We chose a weight
equal to µ2.5s (in addition to the observed angular positions in the
galaxy clustering analysis) because our ray-tracing code com-
putes the distortion matrix along the null geodesics that con-
nect the observer to each source. In this case, the weak-lensing
statistics in our sample is not the same as if we were using the
Born approximation. Our averaging procedure indeed performs
a ‘source averaging’ (Kibble & Lieu 2005; Bonvin et al. 2015;
Kaiser & Peacock 2016; Breton & Fleury 2021). On average,
light rays propagate in under-dense regions due to their path on
the real null geodesics, which leads to a negative mean conver-
gence. Had we used the Born approximation instead, our full
sample would have been ‘unlensed’ and would have led to a van-
ishing mean convergence. In this case, to implement the effect of
magnification in the mock catalogue, we would rather have used
the comoving angular positions and applied a weight equal to
µ2.5s−1 to each source.

We note that in our theoretical modelling of the magnifi-
cation bias, we assumed the weak-lensing limit, meaning that
the convergence and magnification are small. We therefore used
Eq. (18) instead of the exact Eq. (17) for the lensed number
count. Figure 4 shows the impact of this approximation on the
averaged convergence as a function of redshift. We first note that
the mean convergence in the unlensed case (i.e. when s = 0.4) is
very close to zero, demonstrating the validity of our method to
implement the effect of lensing magnification. For s = 0.2, the
difference between the exact and weak-lensing solution is very
small. For higher values, the discrepancy clearly grows. The dif-
ference between the exact and weak-lensing solutions increases
with s, so that for s = 1.2, it reaches ∼40% at z = 1.9. The
question is whether this is a problem and how it affects the cor-
relation function, since analytical prescriptions only work in the
weak-lensing limit. The multipoles of the correlation function in
Fig. A.1 are indeed different for s = 1.2, but not by the 40% of
Fig. 4. This suggests that the first-order lensing correction should
be used with caution in the weak-lensing limit, as its validity
depends on redshift and on the value of s.

3.2. Cosmological analysis

We now turn to the galaxy clustering analysis of the different
samples described in Sect. 3.1. The total number of elements
in all the studied cases are summarised in Table 2. Although
RayGal simulations provide a full redshift decomposition at
first order in metric perturbations, we only focus on the impact
of lensing magnification beyond RSD and therefore ignore the
more subtle effects that could affect the observed redshift. This
means that we only perturb the redshift with the Doppler effect
induced by peculiar velocities. The unlensed case corresponds
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Fig. 4. Mean convergence as a function of redshift. The solid and
dashed lines refer to the use of weights from the exact and approxi-
mate solutions, respectively. We calculated the convergence using the
ΛCDM halo catalogue. The dark blue, blue, cyan, green, orange, and
brown lines refer to the mean magnified convergence estimated from
an unlensed sample with a factor s = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2,
respectively.

Table 2. Number of objects in the different cases as a function of the
redshift bin, type of selection, cosmology, and source type (particles or
haloes).

Redshift bin
ΛCDM wCDM

Particles (×106) Haloes (×106) Particles (×106) Haloes (×106)

1.0 < z < 1.3 9.6 2.2 9.7 2.5
1.3 < z < 1.6 11.3 2.2 11.3 2.4
1.6 < z < 1.95 14.5 2.1 14.2 2.4

to using the comoving angles, while the s = 0 case corresponds
to using observed angles. For s > 0, we took observed angles
and weight each source by µ2.5s, as discussed in Sect. 3.1.2. In
any configuration, the number of elements in Table 2 is the same
(modulo tiny differences between observed and comoving angles
due to the footprint). For particles, we selected a random sub-
sample of the 4 × 108 initial particles in our light cones, as the
calculation of the anisotropic correlation is very expensive com-
putationally.

3.2.1. Anisotropic two-point correlation function

The estimation of three-dimensional clustering necessitates the
assumption of a fiducial cosmology to convert angular posi-
tions and redshifts into comoving separations. We assumed the
ΛCDM cosmology of RayGal (Table 1) as our fiducial cosmol-
ogy, which we used to analyse all the samples in Table 2, includ-
ing those extracted from the wCDM light cone. The anisotropic
correlation function was estimated with the Landy-Szalay esti-
mator (Landy & Szalay 1993) as

ξLS(r, ν) =
DD(r, ν) − 2DR(r, ν) + RR(r, ν)

RR(r, ν)
, (27)

where DD, DR, and RR stand for data-data, data-random,
and random-random pairs (weighted and normalised by the
total number of elements), respectively. We used Corrfunc
(Sinha & Garrison 2020) to count the anisotropic number of
pairs in bins of comoving separation r and cosine angle ν.

The random samples contain 50 (20) times more objects than
haloes (particles). We assigned redshifts in the random cat-
alogues using the shuffling method, which consists of ran-
domly picking redshifts from the data catalogue. Eventually, the
multipole moments of the correlation function were obtained
from

ξ`(r) = (2` + 1)
ν=1∑
ν=0

ξ(r, ν)L`(ν)∆ν. (28)

We are only interested in the first non-vanishing even multipole
moments of the correlation function: the monopole (` = 0), the
quadrupole (` = 2), and the hexadecapole (` = 4). We consid-
ered a scale range 27.5 to 127.5 h−1Mpc with bins of 5 h−1Mpc,
and 200 bins in ν.

3.2.2. Covariance matrices

The covariance matrices on single multipole correlation function
measurements are estimated analytically assuming Gaussianity
as described in Grieb et al. (2016). Particularly, the covariance
matrix between correlation function multipoles `1 and `2, and
between scales r1 and r2, is

C`1,`2 (r1, r2) =
i`1+`2

2π2

∫ ∞

0
k2σ2

`1,`2
(k) j̄`1 (kr1) j̄`2 (kr2)dk, (29)

where j̄` are the bin-averaged spherical Bessel functions and
σ2
`1,`2

are the per-mode covariance multipole moments, both
given in Grieb et al. (2016). The latter function is an integral
over the anisotropic power spectrum, which was set here to the
corresponding best-fitting RSD model to measurements.

3.2.3. Likelihood analysis

We performed a likelihood analysis of the measured monopole,
quadrupole, and hexadecapole correlation functions in each sam-
ple. The likelihood L is defined as

−2 lnL(ϑ) =

Np∑
i, j

∆i(ϑ)C−1
i j ∆ j(ϑ), (30)

where ϑ is the vector of parameters, ∆ is the data-model dif-
ference vector, Np is the total number of data points, and C is
the covariance matrix. The model we used had six free parame-
ters: ϑ = { f , b1, b2, σ

2
v , α‖, α⊥}, which correspond to the growth

rate, first- and second-order Lagrangian bias parameters, squared
velocity dispersion, and two dilation parameters that account for
Alcock-Paczynski distortions, respectively. We note that we var-
ied f and not directly fσ8 because the model takes as input the
linear power spectrum associated with the ΛCDM simulation at
the redshift of interest. We therefore used a fiducial value of σ8
to compute the theoretical prediction. We cannot let fσ8 free
mainly because the value of σ8 is degenerate with the growth
factor D+(z). Within linear theory, this is not a problem as σ8
can factor out. Within the framework of CLPT, we cannot do
this because the non-linear part of the power spectrum is red-
shift dependent. In any case, although we let f free in the like-
lihood analysis, we eventually extracted fσ8 and compared it to
the fiducial value.

We used the dilation parameters along the parallel and trans-
verse direction to account for any change in cosmology with
respect to the fiducial one. Formally, these two parameters enter
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our formalism as a multiplicative factor on the scales in the
anisotropic correlation function: ξ(α⊥r⊥, α‖r‖). If the fiducial
cosmology is that of the data, we expect (α⊥, α‖) = (1, 1). Oth-
erwise, these are given by the ratios

α⊥ =
DM(z)/rd

Dfid
M (z)/rfid

d

, (31)

α‖ =
DH(z)/rd

Dfid
H (z)/rfid

d

, (32)

where the superscript ‘fid’ refers to an estimation using the fidu-
cial cosmology, DM(z) = (1 + z)DA(z) with DA the angular
diameter distance, DH(z) = c/H(z), and rd is the sound hori-
zon at the drag epoch. We note that z refers here to the effec-
tive redshift of the sample. For the four redshift bins in our
case, these are z = 0.857, 1.151, 1.448, and 1.769 for haloes and
z = 0.86, 1.155, 1.453, and 1.777 for particles.

As argued in Sánchez (2020), using σ8 might not be
ideal for galaxy clustering analysis, since it relies on a scale
given in h−1 Mpc units that is cosmology dependent. How-
ever, as noted in Bautista et al. (2021), σ8 can still be used
as long as we take the changes due to dilation parameters into
account. Instead of computing σ8 at 8 h−1 Mpc from a lin-
ear power spectrum at z = 0, this quantity should be evalu-
ated at 8α h−1 Mpc, where α = α2/3

⊥ α1/3
‖

is the isotropic dila-
tion parameter. In the following, our estimates of fσ8 implicitly
account for this correction, while the fiducial values are those of
Fig. 2.

We performed three types of analysis. First, a standard
analysis that only accounted for RSD using the CLPT-GS
model. This is similar to what is routinely done in observa-
tional studies of galaxy clustering. Second, an analysis that
included the magnification bias correction in the model and
where s was fixed to its fiducial value. Although it is pos-
sible to estimate s from the data itself, the standard method
consists of fitting the local slope at the faint-end of the lumi-
nosity function, which might not be accurate when the selec-
tion function is complex (von Wietersheim-Kramsta et al. 2021).
We therefore also propose an alternative analysis that includes
the magnification bias correction in the model, but allows the
s parameter to vary. Finally, we used the flat priors displayed
in Table 3 (where only the last analysis allows s to vary).
For each sample, we produced MCMCs using the Emcee algo-
rithm (Foreman-Mackey et al. 2013) with 100 walkers and
50 000 steps per walker. The walkers were initialised around the
fiducial values (and a first-order Lagrangian bias of 0 and 1.4
for particles and haloes, respectively), to which we added a ran-
dom shift using a Gaussian distribution with zero mean and vari-
ance unity, multiplied by 0.1. The burn-in phase depended on
the auto-correlation time, and chains were thinned by removing
highly correlated steps (the thinning was mostly used for con-
venience when making the plots, as we checked that it did not
change the final results). Furthermore, the size of every chain
was longer than 50 times the auto-correlation length. We also
verified that we were able to recover the same results for the
analysis of DM particles using MultiNest5 (Feroz & Hobson
2008; Feroz et al. 2009, 2019). The chains were finally anal-
ysed with GetDist (Lewis 2019) to obtain the final parameter
constraints.

5 We ran MultiNest with 5000 live points, evidence_
tolerance=0.3, and sampling_effiency=parameter.

Table 3. Flat priors used in the MCMC likelihood analyses.

Parameter Flat prior

f [0, 2]
b1 [−0.5, 3]
b2 [−70, 70]
σ2
v [0, 100]

α⊥ [0.5, 1.5]
α‖ [0.5, 1.5]
s [0, 2.5]

4. Results

In this section, we present the results of the redshift-space clus-
tering analysis with and without magnification bias for the par-
ticle and halo samples. We first discuss the recovered value fσ8
and its bias with respect to the fiducial value. We then turn to an
overview of the results for the other five (or six when s is free)
parameters of the model.

4.1. Bias on fσ8

4.1.1. Particles

We first consider the case in which sources are DM particles,
as these should give the clearest trend on the impact of magni-
fication bias. The full results for the ΛCDM case are shown in
Fig. 5.

In the standard analysis (RSD only), the top row for the
unlensed sample shows that we recover the expected value of
fσ8 within or close to 1σ statistical uncertainty. When lensing
magnification is incorporated in the data, it clearly has almost no
impact in the first redshift bin at z = 1.0−1.3, but strongly shifts
the estimate of fσ8 at higher redshifts. More precisely, magni-
fication bias leads to an underestimation of the growth rate if it
is not modelled. The shift on fσ8 does not strictly increase with
s, which makes sense as the most dominant term in the lensing
correction is ξlens−lens, which scales as (5s − 2)2 (see Sect. 2.2).
This means that s = 0 should lead to a similar effect as s = 0.8,
while s = 0.4 completely cancels the lensing effect. Then, the
shift on the growth rate monotonically increases for s > 0.8. At
z = 1.3−1.6 and z = 1.6−1.95, the shift on fσ8 for s = 1.2
reaches approximately 9% and 11%, respectively, with respect
to the unlensed case, while it is 5% and 6% for s = 1. In the
highest redshift bin, we find that the growth rate is not recovered
within 1σ statistical uncertainty for s & 1.

When magnification bias is accounted for in the modelling
and s is known, we obtain an unbiased estimate of the growth
rate with respect to the unmagnified case, except for s = 1.2
in the highest redshift bin. This shows that our linear-theory-
based lensing correction is good enough overall to correct for the
effect of magnification bias. However, for very high values of s
at high redshift, the weak-lensing limit that was used to com-
pute the correction might no longer hold (see also the difference
in the quadrupole in Fig. A.1, where the theoretical prediction
seems to underestimate the signal). Therefore, accounting for
higher-order terms may be important in the future for the most
extreme configurations. In Fig. 6 we show the relative difference
on fσ8 with respect to the unmagnified case when the magni-
fication implementation in the data is done in the weak-lensing
limit. As described in Sects. 2.2.1 and 3.1.2, to account for this
approximation, we need to use a weight equal to µ(1 + (5s− 2)κ)
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Fig. 5. Relative difference on fσ8 with respect to its fiducial value as a function of redshift bins and sample configuration for ΛCDM particles.
The data points in blue, green, and red refer to different analyses where we only account for RSD, add magnification bias with s fixed and s free,
respectively (see also Sect. 3.2.3). The central values are those of the overall best fit, while error bars are those of the 68% confidence interval on
the marginalised distribution. The dashed blue lines show the value for the unmagnified case. The grey shades highlight the ±5% and 10% ranges.

instead of µ2.5s, the prefactor µ is used to correct for the dilation
effect already present in the data. Within the weak-lensing limit
(in purple), the relative difference increases only weakly with s
and reaches a lower value at s = 1.2 (compared with the other
cases), and it remains within 1σ with respect to the expected
value. The difference between the green and purple data points

only comes from the weak-lensing limit, and it reaches roughly
8% at s = 1.2. This shows that it is important to consider higher-
order modelling for high-redshift samples with high s values,
beyond the first-order weak-lensing limit.

Lastly, when s is free in the fit, the error bars on the param-
eters are larger, which is expected since there is more freedom
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Fig. 6. Relative difference on fσ8 with respect to the ‘no magnification’
case of Fig. 5. The results for the standard analysis and fixed s of Fig. 5
are shown in blue and green, and the results of a fixed s analysis are
shown in purple. For this last analsyis, we implemented magnification
in data under the weak-lensing limit, i.e. we used a weight equal to
µ(1 + (5s − 2)κ) instead of µ2.5s (see also Sect. 3.1.2).

in the model. Letting s free might not be the best strategy in the
full-shape RSD analysis. Estimated values of s appear to be bet-
ter suited. Nonetheless, the best-fit values obtained when letting
s free are very close to the case where s is fixed, meaning that we
are able to estimate this nuisance parameter without any strong
bias.

Overall, we find that depending on the sample selection,
galaxy clustering surveys probing redshifts above z ∼ 1.3 will
need to properly include lensing magnification as part of the the-
oretical model to recover unbiased estimates of the growth rate
of structure. This will in turn enable them to test gravity while
keeping theoretical systematic errors under control.

In Fig. 7 we show the same analysis, but for the wCDM
model. The results are extremely similar to those of Fig. 5, which
is reassuring since here we compare the estimated fσ8 with
the fiducial values in the wCDM cosmology. This means that,
although the full analysis is performed using a ΛCDM fiducial
model, we are still able to recover almost unbiased constraints
on the cosmology of the data (see also Fig. 2 for the difference
in fσ8 between the two cosmological models). The error bars
for s = 0.2 and s = 0.6 in the highest redshift bin are very large.
The fact that these configurations give similar results is expected
since the leading magnification bias term scales as (5s−2)2. Fur-
thermore, it seems that for these particular configurations, there
is a multi-modal behaviour in the joint posterior probability for
the growth rate and second-order Lagrangian bias parameters,
leading to larger error bars. In the last two redshift bins, the shift
on fσ8 reaches approximately 12% and 10% for s = 1.2 when
the magnification bias is not accounted for. As previously, know-
ing the true value of s in the modelling gives an unbiased esti-
mate of fσ8, except for the last redshift bin for s = 0.8, which
seems slightly overestimated. This shows that although the lens-
ing correction computed with the ΛCDM model is not exact for
the wCDM simulation as seen in Appendix A, it still includes
most of the effect. However, there can be large discrepancies at
high redshift for high values of s for the lensing contribution
with respect to the ΛCDM model (see Fig. A.1), and it is there-
fore not clear that using a correction from the fiducial model is
enough when the cosmologies are very different. Even in this

case, however, it seems that in our data, adding the magnifica-
tion bias correction at fixed s gives a much better agreement to
the fiducial value of fσ8. In the future, it will thus be important
to properly model the magnification bias term, as it could lead to
additional bias.

4.1.2. Haloes

We now turn to the analysis of DM haloes. While DM particles
are useful since they allow characterising the effect of magnifica-
tion bias with great precision, analysing haloes is more observa-
tionally relevant since, just like galaxies, they are biased tracers
of the matter density field. This is particularly important because
the relative effect of magnification bias on the total number
counts scales as (5s− 2)/b, where b is the linear Eulerian galaxy
bias. This means that we expect lensing to have less impact on
samples with large bias. In our case, the best-fit RSD-only mod-
els for the unmagnified halo samples in the ΛCDM cosmology
gives roughly b = 2.1, 2.5, and 3 in the different redshift bins,
from low to high redshifts. We show the results in Fig. 8. Qual-
itatively, the results are similar to those of Fig. 5. We find that
the values of the growth rate tend to be slightly overestimated,
even when the sample is not magnified. This can be attributed
to residual theoretical uncertainties of the RSD model and to
the modest volume probed by our light cones, which can lead
to non-negligible sample variance effects. Nonetheless, we can
study and discuss the relative differences in the estimated param-
eters for the various cases. As previously, we find that the central
values of fσ8 are shifted towards lower values when lensing is
not accounted for in the modelling. The main difference between
DM particles and haloes is that for the latter, the effect of lens-
ing is not clear as the magnified and unmagnified cases agree
within 1σ error. In the highest redshift bin, the best-fit value for
s = 1.2 is shifted by roughly 3% with respect to the unmagnified
case. While it is still large, it does not reach the 11% seen for the
particles.

The results displayed in Fig. 9 for wCDM haloes are very
similar. We find a discrepancy of 3.5% and 5.5% in the highest
redshift bin for s = 1.0, 1.2 with respect to the unmagnified case.
While larger than for ΛCDM haloes, it still does not reach the
10% difference that we have for particles.

Overall, we find that the effect of magnification bias is lower
for haloes than for particles, which is expected due to galaxy
bias. Moreover, the relative difference on fσ8 is suppressed by
a factor close to b. This means that very biased target samples
might not be significantly subject to lensing effects at the con-
sidered redshifts in the present work.

4.2. Other parameters

In this section we study the impact of magnification bias on the
parameters of our model beyond the growth rate of structure. We
consider ΛCDM particles in two cases: s = 1.0, as it is a realis-
tic case for future spectroscopic surveys (Lepori et al. 2022), and
s = 1.2 where the effect of magnification bias is the most signifi-
cant. We present the posterior distributions for s = 1.0 in Fig. 10.
When lensing is not accounted for, the estimate of the growth
rate is biased, while the lensing correction (when s is fixed or
free) allows us to recover the fiducial value within an error of
1σ . These results are approximately the same as those of Fig. 5,
except that we show f (the free parameter of our model) and not
fσ8. Since our fiducial cosmology is already that of the data,
there should not be any qualitative difference, in the sense that
we only need to multiply f by the fiducial σ8 (because the dila-
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Fig. 7. Same as Fig. 5, but for wCDM.

tion parameters should be very close to unity in principle). For
DM particles, the first-order Lagrangian bias b1 should be equal
to zero, and this is indeed what we obtain. However, not account-
ing for lensing magnification leads to an overestimation of the
bias. This comes from the fact that lensing adds a positive con-
tribution to the multipole moments (as shown in Fig. 1), which
is counter-balanced in the likelihood analyses by higher values
of the galaxy bias. Moreover, the ( f , b1) joint posterior probabil-
ity clearly shows an anti-correlation, where higher values of the

linear bias induce lower values of f . This comes from the fact
that higher values of the galaxy bias lead to a larger amplitude
of the quadrupole. In order to fit the data, the likelihood analysis
therefore converges towards a lower value of f .

For the growth rate and galaxy bias parameters, the error bars
increase when s is let free with respect to the case when s is fixed.
However, this is not the case for the other nuisance parameters,
that is, b2, σ2

v , and dilation parameters, where the two analy-
ses give similar marginal distributions. Regarding the estimation
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Fig. 8. Same as Fig. 5, but for haloes.

of s, we see a remarkable agreement between the expected and
best-fit values. This shows that, in principle, we should be able
to accurately recover s through a galaxy clustering analysis. Fur-
thermore, we notice that the marginal distribution of s exhibits a
multi-modal behaviour around s = 0. This comes from the fact
that the leading correction term is proportional to (5s − 2)2, and
there are two plausible possibilities when s . 0.8. This is a fur-
ther evidence that it might not be optimal to let s free with a flat
uninformative prior.

Finally, we find that in none of the cases, (α⊥, α‖) = (1, 1)
is recovered exactly within an error of 1σ error, although our
results are very close. This might be related to the fact that we
have one particular realisation of the density field in a limited
volume, which is subject to sample variance. We note that in
the RSD-only case, the estimated α⊥ and α‖ parameters depart
from fiducial values more than when lensing is accounted for.
This means that in this case, the likelihood analysis prefers other
cosmological models. This might further impact the estimation
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Fig. 9. Same as Fig. 8, but for wCDM.

of the dilation-corrected σ8, as described in Sect. 3.2.3. How-
ever, this additional bias seems low for the redshift bins that we
considered. In the case of the second-order Lagrangian bias b2,
the fiducial value is only recovered when lensing is accounted
for, while the inferred values of the velocity dispersion param-
eter σ2

v are very similar in all cases. Nonetheless, these two
parameters are considered as nuisance parameters over which
we marginalised.

Lastly, we present the posterior distributions for s = 1.2 in
Fig. 11. The results are similar to those of Fig. 10, except that

here we do not recover the value of f within an error of 1σ,
even when we account for magnification bias as seen in Fig. 5.
As in Fig. 10, we remark that we are able to recover s accurately,
even in this configuration, in which the weak-lensing limit might
start to hold no longer. We also note that there is no multi-modal
behaviour, in contrast to the case with s = 1.0. This is because
s is large enough so that there is no ambiguity between the dif-
ferent solutions at s < 0.8. This shows that, generally, adding
the lensing contribution in the modelling allows a considerably
better recovery of the fiducial parameters.
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Fig. 10. Posterior distributions for the parameters of our model for the ΛCDM particle sample with s = 1.0 at z = 1.6−1.95 (see also the full
results in Fig. 5).

5. Conclusion

We have studied the impact of lensing magnification on the
three-dimensional galaxy clustering in redshift space and how
the growth rate of structure is affected when lensing magni-
fication is not properly accounted for in the modelling. This
effect, commonly referred to as magnification bias, comes from
the fact that gravitational lensing modifies the apparent angu-
lar positions of sources and magnifies their fluxes. Therefore,
magnitude-limited surveys are sensitive to it as it generates addi-
tional apparent spatial correlations in the data. We performed an
exhaustive galaxy clustering analysis of the multipole moments
of the correlation function, where the theoretical model relied

on the convolution Lagrangian perturbation theory and Gaus-
sian streaming model for non-linear RSD and on a curved-sky,
linear-theory-based lensing correction. We compared this model
to high-resolution N-body simulations with two different cos-
mologies, ΛCDM and wCDM, where the effects of RSD and
magnification bias were implemented in simulated catalogues of
DM particles and haloes.

The main results of our paper are the following. First, mag-
nification bias only becomes relevant at z > 1.3. Second, not
accounting for magnification bias in the modelling gives a biased
estimate of the growth rate. We found that analysing a magnified
sample with a theoretical model that only contains RSD leads
to an overestimation of the galaxy bias, and more importantly, to

A154, page 14 of 17



M.-A. Breton et al.: Impact of lensing magnification on RSD

Fig. 11. Same as Fig. 10, but with s = 1.2.

an underestimation of the growth rate. Depending on the redshift
and slope of the galaxy luminosity function, the best-fit value
of fσ8 can be shifted by more than 10%. It appears that using
the linear-theory lensing correction allows the recovery of unbi-
ased estimates of the growth rate in most cases when the lens-
ing contribution is small if s is accurately known a priori. We
also showed that for the cases with high redshift, large s, and
low bias, it could be important to model the lensing contribu-
tion beyond the first-order weak-lensing limit. If s is unknown,
it might be tempting to keep it as a free parameter of the model.
While this allows the recovery of an unbiased estimate of s, it
significantly increases the uncertainty on fσ8, which we might
refrain from. This shows that s should not be let free (or at least,
no flat uninformative prior should be used on that parameter)

and a way should be found instead to estimate it differently.
Finally, we find that we were able to recover the same results
for a wCDM simulation, although it was analysed with a fiducial
ΛCDM model. This is encouraging and shows that in our case,
the modelling is reliable even if we do not know the underly-
ing cosmology of the data exactly. However, further investiga-
tions might be needed to estimate the impact of the cosmolog-
ical model on the lensing correction as it could in principle be
another source of bias.

Gravitational lensing will play an important role in galaxy
clustering analyses in future high-redshift surveys, and its effect
will have to be implemented in order to accurately recover
cosmological parameters. This effect has not been considered
in observational studies so far, even when the redshift of the
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sample was high (Okumura et al. 2016; Zarrouk et al. 2018; Hou
et al. 2021). However, this does not necessarily mean that these
works were not correct because statistical uncertainties are still
significant and the effect of the magnification bias depends on
the properties of the galaxy sample under scrutiny. An interest-
ing prospect for future works would be to consistently incor-
porate the effect of gravitational lensing within the theoretical
framework of non-linear RSD. Nonetheless, we showed that in
our case, a hybrid model of non-linear RSD and linear lensing is
in most cases sufficient for the accuracy of our simulated data.
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Appendix A: Magnification bias modelling of the
correlation function multipoles

In this appendix we provide more details about the effect of the
magnification bias on the multipole moments of the correlation
function. We consider the DM particles in the highest studied
redshift bin at about z = 1.8, which maximises the magnification
bias signal. The magnification bias corrections on the monopole,
quadrupole, and hexadecapole of the correlation function are
shown in Fig. A.1.

First, we note that in any case, that is, for s = 0 or 1.2,
ΛCDM or wCDM, the lensing contribution to the correlation
function is always positive at this redshift. This is interesting
because it confirms the results of Fig. 1 and explains why, if
lensing magnification is not incorporated in the model, the like-
lihood analysis tries to compensate for this lack by increasing
the value of the bias parameter (mostly due to the monopole)
and therefore lower the value of the growth rate (as described in
Section 4) due to the quadrupole.

Secondly, for the case with s = 0, that is when we use
observed angles instead of comoving ones, the monopole seems
to agree with the theoretical prediction up to 60 h−1Mpc only.
This is surprising as we would expect a good agreement at large
scales. This difference might be due to the large variance inher-
ent to these scales or to an inaccuracy in the modelling as well

Fig. A.1. Absolute difference in the correlation function multipoles for DM particles at the highest redshift bin (i.e. z = 1.6−1.95) when accounting
for magnification bias with respect to the case with RSD only (left). The red and green points refer to the monopole and quadrupole in ΛCDM (left)
and wCDM (right), while the red, green, and black lines show the ΛCDM theoretical prediction for the monopole, quadrupole, and hexadecapole
computed with Coffe

as the non-linearity of lensing corrections (see also Hui et al.
2007 for a discussion). We also note the remarkable agreement
between data and prediction for the quadrupole (while the hex-
adecapole seems underestimated in the prediction).

Thirdly, focusing on the case with s = 1.2, which give the
most significant trend, the theoretical prediction overestimates
the monopole and underestimates the quadrupole and hexade-
capole above 80 h−1Mpc. While this discrepancy is not necessar-
ily large, especially for this high value of s, it impacts the estima-
tion of the growth rate (see Fig. 5). This suggests that we should
be careful about the first-order solution given within the weak-
lensing limit, as higher-order terms might need to be accounted
for at higher redshifts for high values of s.

Lastly, the theoretical prediction in the fiducial ΛCDM
model does not agree very well with the data from the wCDM
simulation in any case. Although the shape is similar between
data points and analytical prediction, the amplitude is different
(this difference is clear for the quadrupole, where data points
are consistently at least a factor two higher than the prediction
for both s = 1.2). For more precise studies at higher redshift, it
will be important to find a way to account for this cosmology-
dependant correction. Nonetheless, even if the present modelling
in the fiducial ΛCDM cosmology is not perfect for analysing the
wCDM, it is still much better than not accounting for lensing
magnification at all.
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