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Abstract—The success of Internet of Things (IoT) has sig-
nificantly increased the volume of data generated by various
smart applications. However, as many of these applications are
characterized by strict Quality of Service (QoS) requirements,
there is a growing need for accurately predicting typical perfor-
mance parameters such as throughput. This prediction should
be based on the applications’ traffic profiles and at the same
time reflect the network uncertainty that IoT access networks
add to the overall communication. In this work, we deployed
6 different smart building applications in a real testbed while
creating a considerable traffic contention in an IEEE 802.15.4
access network. After preprocessing the raw data and follow-
ing a feature engineering mechanism, we apply five different
regression learning approaches to each application and predict
its throughput. By resorting to several prediction error metrics
and time metrics such as training and inference time, we show
that the multiple linear regression achieves high accuracy while
outperforming other well known machine learning methods.

Index Terms—IoT, Machine learning, Throughput prediction.

I. INTRODUCTION

Internet of Things (IoT) is gaining considerable momentum.
Even though the term was captured the last decade, we already
live in the fourth industrial revolution. The success of IoT lies
in the data generated and their analysis to add the necessary
intelligence to the applications themselves. Obviously, data
analysis can be proved to be a hefty task that cannot be
efficiently executed in IoT devices but it rather has to be
offloaded to more resource powerful platforms, such as Edge
and/or Cloud Computing.

However, the amount of Edge/Cloud resources to be used
depends on the volume of the data generated from the IoT
devices. Therefore, the latter creates an important challenge re-
lated to the accurate QoS traffic profiling of an IoT application.
The reason is that IoT access networks are usually wireless,
lossy, and unreliable. At the same time, the co-existence of
different IoT applications consisting of heterogeneous devices
that send data of different contexts and frequencies, and
the interference between the devices add several levels of
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complexity when it comes to predicting their traffic profile
and thus their resource demands.

Accordingly, there is a huge interest in classifying the
IoT applications based on their networking (e.g., throughput,
access network) and functional requirements (e.g., number of
devices, transmission frequency, etc.) by applying network
analytic mechanisms. In particular, IoT traffic classification
can be focused on single applications, where traffic charac-
teristics per device can be extracted [1], or it can be based
per application [2]. Nonetheless, these classifications are not
efficiently capturing the network behavior and the sources of
the uncertainty in the overall traffic sent at the Edge.

To this end, in this paper we aim to predict the throughput
for a number of different IoT applications in the context of a
smart building by applying a set of different Machine Learning
(ML) algorithms. Our goal is to investigate how accurate the
throughput can be predicted in a random access network,
when a number of heterogeneous applications with various
functional characteristics generate a fluctuating traffic dataset.
The contributions of this paper can be listed as following:

1) We consider 6 different IoT smart building applications
that present different requirements in terms of number
of devices, packet length, type of message, and message
frequency transmission.

2) We deploy the applications in a real testbed [3] com-
prised of approximately 300 IoT devices and generate
the traffic profile by using an IEEE 802.15.4-2006 access
network.

3) We apply five different regression learning techniques
with the goal to predict the throughput per application in
an access network characterized by high contention and
interference that creates a very dynamic traffic profile.

The rest of the paper is organized as follows. Section
IT presents the related work and their limitations. Section
Il gives a detailed information on the use case, dataset
generation and the feature engineering. Section IV summarizes
the proposed models and their operation. Section V illustrates
the results and the efficiency of the proposed solutions. Finally,
Section VI concludes the paper.



II. RELATED WORK

In the pertinent literature, for IoT traffic profiling and QoS
prediction, various studies either applied traditional machine
learning algorithms or deep learning frameworks. For example,
Akbar et al. [4] focus on the Complex Event Processing
(CEP) and historical data prediction using machine learning
algorithms. The authors proposed an adaptive predictive model
using a regression technique called moving window regression
in order to provide a distributed and scalable solutions. The
authors in [5] performed the prediction of the IoT network
traffic in order to provide a reliable communication. To achieve
this, deep learning has been successfully applied using Long
Term Short Memory (LSTM). The features of dataset consist
of the timestamp, bytes count and the packets count. This work
is further extended in [6], for 5G networks using the Recurrent
Neural Networks (RNN) and specifically the LSTM.

Following, Lopez et al. [7] presented a detailed work for
the forecasting of IoT traffic volumes based on the stochastic
gradient descent algorithm and neural network architectures
called gaNET. The dataset included only two features (ob-
fuscated mobile identification (SIM) and the time stamp of
traffic records). The authors in [8] proposed a single step ahead
and a multistep prediction method for delay prediction in IoT
based on NARX recurrent neural network. They simulated an
IoT environment and used a simulated dataset. Ateeq et al.
[9] implemented a delay prediction in IEEE 802.15.4 network
using deep learning multi parametric approach. The features
utilized by this work are extracted from the application layer,
MAC layer and physical layer of the network.

Furthermore, the focus in [10] is to predict QoS in IoT
environments including the service response time and through-
put. Nonetheless, the approach used is based on a matrix
factorization technique and is limited to missing value pre-
dictions in a data matrix containing values for both response
time and throughput. The work in [11] also evaluated a
number of matrix factorisation approaches and have shown
how these approaches can be used to make QoS predictions in
an IoT environment. The matrix factorization algorithms used
in this work for the evaluation of QoS prediction of the web
services includes: (i) CloudPred (ii) EMF (Extended Matrix
Factorization) and (iii) LN-LFM (Latent factors models).

However, the above techniques present the following draw-
backs: i) Most of the studies utilized a limited number of
features for the prediction of the IoT traffic and do not provide
detailed fine grained characteristics [4]-[7]; ii) Despite being
more and more used, neural network also present drawbacks:
they usually require preprocessing of the input data into a very
network specific shape and the complex structures of the deep
learning models require extensive training time [5]-[9]; iii)
Some of the existing studies either predict traffic volume or
QoS for a single application and may not provide accurate
estimates outside those application [10], [11].

In this work, we solve the above mentioned challenges as
follows: (i) First, we perform the feature engineering which
is the extraction of additional features from the existing raw

TABLE I
EXPERIMENTATION’S PARAMETERS

Scenario Nb devices  Message freq. Packet length  Duration
HVAC 100 1 packet/4 min 60 B 60 min
Lighting 100 1 packet/8 min 30 B 90 min
Emergency 40 1 packet/30 sec 127 B 10 min
Surveillance 30 99 packets/sec 127 B 10 min
AR 10 197 packets/sec 127 B 10 min
VoIP 10 16 packets/sec 127 B 10 min

features included in each application’s dataset; (ii) in order to
reduce the training and prediction times, we apply light-weight
traditional regression learning approaches for each of the IoT
applications; (iii) Finally, we provide throughput prediction for
six different and heterogeneous IoT applications that coexist
in the same access network.

III. USE CASE AND DATASET DESCRIPTION
A. Use case description

The dataset used in this paper represents several smart
building applications. Among these applications, there are
smart monitoring and response systems for HVAC (heating,
ventilation, and air conditioning), lighting, and emergency. The
HVAC and lighting systems adapt their activities according
to external measurements. The emergency system monitors
the building’s critical areas, such as gas pipes or fire alarms.
Also, there is a surveillance application with cameras and an
augmented reality application for themed rooms inside the
building. Finally, there is a Voice over IP (VoIP) application
for automatic help desks or interactive voice recognition. For
each application, we have defined their traffic characteristics
in terms of packet sizes, message frequencies, the number
of deployments and their duration, as shown in Table I. It
should be noted that a typical IEEE 802.15.4 network has a
row capacity of 250 kbps. However, in order to be sure that
we will saturate the network, we configured the transmission
frequencies of the devices in such a way so we can create
an environment with high contention. The reason behind this
decision is to have a fluctuating traffic profile and to better
reveal the efficiency of the used ML techniques in the context
of an uncertain communication environment.

B. Dataset Generation Description

Once the traffic characteristics are defined for each applica-
tion, we launched several experimentations on the FIT IoT-
LAB testbed [3]. The platform provides different kinds of
sensor nodes connected through a mesh topology and they are
remotely reservable and completely programmable. The nodes
are [oT-LAB M3 boards, based on STM32 family micro-
controllers . For each application under study, we thus run a
firmware on a set of representative nodes that have to exchange
packets in a broadcast mode using the IEEE 802.15.4-2006
MAC layer and RPL routing protocol. As a result, we have

Thttps://www.iot-lab.info/docs/boards/iot-lab-m3/
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Fig. 1. Proposed Regression Framework

obtained files containing the data described in Table II for each
received or transmitted packet.”

TABLE I
DESCRIPTION OF RAW FEATURES IN DATASET

Data Feature Description

Received Data node_name name of sensor node
timestamp message reception time
message_id message unique identifier
reception delay  reception delay in milliseconds

Transmitted data  node_name name of sensor node
timestamp message transmission time
message id message unique identifier

success transmission success

C. Feature Engineering

One of the main objectives of this work is to extract the
most relevant QoS features for an IoT application. Therefore,
we engineered/extracted several features as described below:

1) Node name: The sensor name used for generating real
time IoT traffic under several applications.

2) totalmsg_trans: Total number of messages transmitted
by a node.

3) totalmsg_rec: Total number of messages received by a
node.

4) timefirst_msq: Time of the first transmitted message in
the experimentation.

5) timeiast_msg: Time of the last transmitted message in
the experimentation.

6) Transmission success: Total number of messages suc-
cessfully transmitted by a node without dropouts.

7) Average transmission latency: The average time taken
by a transmitted message to be successfully received :

Z (timemsg_rec - timemsg_trans)

tOtalmsg_trans

Latency = (D

2The data are in open access along with the used method at
https://gitlab.irisa.fr/0000H82G/traces

where timemsg_rec 1 the message reception time, and
tiMemsg_trans 1S the message transmission time.

8) Packet Delivery Ratio (PDR): The ratio of received
packets to transmitted packets per node:

PDR — totalymsg rec
tOtalmsg_trans

* 100 2)

9) Throughput: The rate of successful message delivery
over a network channel:

tOtalmsg_trans
tlmelast_msg - tzmefirst_msg

Throughput = 3)

All of the above mentioned features, except node name, are
calculated using the raw received and transmitted data features
illustrated in Table II. Furthermore, the calculation of features
is done per node within each of IoT application and the time
is measured in milliseconds.

IV. REGRESSION METHODOLOGY

The proposed regression framework consists of two main
steps as shown in Fig. 1. The first step is the feature ex-
traction which consists of raw data preprocessing and feature
engineering (as discussed in Section III-C). The second step
i.e., learning and inference is comprised of training regression
models for each application. Finally throughput is predicted
and different models are compared using appropriate metrics.

A. Predicting QoS with Machine Learning

Throughput is a well known QoS metric, and with re-
spect to the terminology of data science, it belongs to the
quantitative data and more specifically to the ratio data type.
This urged us for the use of a Machine Learning (ML)
model, more specifically regression, which is a prominent
solution following the supervised learning approach. In the
context of IoT and Edge Computing, the heterogeneity and
dynamicity of the devices and workload renders the estimation
and prediction of QoS a black box problem. IoT devices
can connect and disconnect dynamically over time, different
applications can create different transmission patterns, while



the unpredictability of the access network can add several
additional levels of complexity in an already fluctuating traffic
profile.

Profiling the data transmission in an IoT enabled Edge
computing environment provides valuable information. ML
regression models work like approximator functions and are
capable of approaching feasible solutions to the QoS black
box problem leveraging on the historical datasets. The im-
portant characteristic of a ML regression is that instead of
making a simple memorization of the historical data, it builds
a prediction mechanism with strong generalization abilities.
This means that the regression model can provide accurate
predictions for observations it has never seen before.

Neural network techniques can also be a solution, but as
such methods deals better with the nonlinearities and require
large training data, they could not be directly applied for the
particular use case. Specifically, we performed experiments
with models such as vanilla LSTM, bidirectional LSTM and
stacked LSTM but the results found were rather poor. Hence,
in the rest part of this section we only emphasize on ML-
based models. More specifically, some of the most efficient and
widely used regression models in the ML area are described.
These models have also been experimentally evaluated for the
needs of the QoS prediction and discussed in the next sections.

B. Regression methods

1) Decision Tree Regression (DTR): DTR [12] consists of
hierarchical successive layers of nodes which are formed with
a recursively subdivision of the feature space into smaller
areas. The subdivision of the feature space is aligned with
the partition of the trained data observations into nodes with
the principle that starting from the root node down to the leaf
nodes the node purity is increased. The traverse of the DTR
takes place based on the attribute splits and eventually the leaf
nodes output the predicted values.

The advantages of DTR include that they are inexpensive to
construct, extremely fast in the inference, easy to interpret for
small-sized trees, robust to noise and they can easily handle
redundant or irrelevant attributes. The disadvantages are that
the space of possible decision trees is exponentially large
and greedy approaches are often unable to find the best tree.
The DTR does not take into account interactions between
attributes. Finally, the DTR can be unstable because small
variations in the data might result in a completely different
tree being generated.

2) Gradient Boosted Regression Tree (GBRT): GBRT [13]
is an ensemble of decision trees as estimators with an iterative
functional gradient descent algorithm that minimizes the loss
function over the hypothesis space. The cost optimization takes
place by iteratively selecting a weak DTR with a negative
gradient direction. The loss function is minimized iteratively
by adding at each step a new DTR that reduces the loss while
leaving unchanged the previous DTR. Every new DTR is fitted
to the residuals of the previous DTR with a contribution weight
shrunk by a learning rate smaller than one. The final GBRT is

a linear combination of the DTR following a forwards stage-
wise procedure.

GBRT is robust to overfitting and can fit complex nonlinear
relationships between variables. GBRT handles different types
of estimator variables and interaction effects among estimators.
In most of the cases, a large number of estimators results in
better performance and it is one of the GBRT hyperparameters.
GBRT can also mitigate the problem of missing data and there
is no need for the outliers to be discarded.

3) Support Vector Regression (SVR): SVR [14] is a flexible
model that learns from data observations to draw hyperplanes
in an n-dimensional feature space and provides predictions
with a function f as given in Eq. (4), based on a decision
boundary and an error margin e. The learning process tunes the
€ to gain an acceptable accuracy minimizing the coefficients
w and satisfying the constraints in Eq. (5)

f(z) =(w,x)+ b, withw € X, beR 4
minimize 3|lw|?
yi — (w, ;) —b <€ 5)

subject to =
(w,z;) +b—1y; <e€

Eq. (5) can be solved using the Lagrange multiplier method.
In case some data observations are not linearly separable but
a linear decision boundary is feasible, we can introduce slack
variables in order to apply a soft version of margins. If there
are not linear decision boundaries, then we can transform the
data observations into a higher dimensional space using the
kernel trick.

SVR is effective in high dimensional spaces and has very
good generalization capabilities in unseen data. Its computa-
tional complexity does not depend on the dimensionality of the
input space but it has the disadvantage that it is computational
heavy for training a new model. In addition, it is not suitable
for large datasets and missing values.

4) K-Nearest Neighbor Regression (KNNR): KNNR [15]
is a non parametric method, namely the data observations
distributions do not require to meet certain assumptions.
KNNR is based on the principle that the k closest neighbors of
a testing observation in an n-dimensional space can predict the
testing value by averaging their outputs. The k neighbours can
also be weighted by the inverse of their distances to the testing
observation. The training data are located in the n-dimensional
space and are capable of selecting the k neighbours using a
distance metric like the Minkowski distance. Different metrics
have also been proposed in the literature like Mahalanobis and
cosine distance. The number of k is predefined by the user or
chosen by a technique like cross-validation.

KNNR has the advantage that is an instant regression
model. This means that there is no need for training, but the
computations take place in the prediction stage by comparing
the distances of the testing observation with the training data.
It also implies that new training observations can be added
seamlessly. The disadvantage of KNNR is that it cannot be
efficient in large datasets and in high dimensional space. In
addition, it is sensitive to noise, outliers and missing values.



5) Multiple Linear Regression (MLR): MLR [16] was
developed in the field of statistics, but its applicability and
efficiency to describe a wide range of problems with a simple
to implement and well understood way makes it a straightfor-
ward approach by data scientists. MLR models the relationship
between variables by fitting a linear equation to the training
data and minimizing the sum of the squared residuals. The
formula of MLR is given in Eq. (6):

f(x) = Bo + frx1 + Para + ... + Pray + € (6)

where [y represents the intercept, Oy represents the coef-
ficients and € represents a random error. The [y, (i are
estimated with a method like Ordinary Least Squares. Lasso
and Ridge regression are variations of MLR that address some
of the problems that introduce the Ordinary Least Squares, like
the multicollinearity, by imposing a penalty on the size of
with L1 and L2 regularization respectively. In addition, MLR
can mitigate the problem of overfitting using the dimension-
ality reduction.

An important advantage of MLR is that both training and
inference are computational efficient. But, linear models do
not have enough capacity to model complex relationships
between variables. This can be a reason that MLR is prone
to underfitting, noise and outliers.

V. EXPERIMENTAL EVALUATION
A. Experimental setting

A total of 11171 labeled instances for VoIP virtual assistant,
238050 instances for video surveillance, 27536 instances for
smart lightning, 38258 instances for HVAC, 32981 instances
for an emergency response and 46843 instances for AR appli-
cation were collected. The classification was implemented in
Python (version 3.8.2), while we split each application dataset
into two groups of 70% training and 30% testing instances.

B. Evaluation Metrics

The evaluation of regression models is done using prediction
error metrics such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE)
along with training and inference time. All of the error metrics
are positive and their smaller value means better prediction
models. MAE is the sum of the absolute value of differences
between the target values y; and predicted values ¥, divided
by the total number of predictions as given in Eq. (7).

1o _
MAE = ﬁzlefyj‘ (7)
n=
MSE is the average of the squared errors between the predicted
values and the targeted values divided by the total number of
predictions. RMSE is the square root of MSE as given in Eq.
(8).

®)

As RMSE assigns a higher weight to larger prediction errors,
it is more useful when large errors of QoS are undesirable.

However, MAE is preferred when all errors have the same
importance. Furthermore, RMSE is equal or greater than MAE
and may increase more than MAE as the dataset increases.
Finally, since the prediction process should not be compu-
tationally heavy, we focus on light weight ML models with
smaller training time as compared to deep learning models.

TABLE III
PERFORMANCE METRICS OF ALL ALGORITHMS FOR IOT APPLICATIONS

Application  Algorithm MAE MSE RMSE
Augmented MLR 0.0045641  2.9297e-05  0.0054127
Reality GBR 0.005969 6.5315e-05  0.0080818
DTR 0.0049392  5.4937e-05  0.0074119
SVR 0.0058981  4.2406e-05  0.0065121
KNNR 0.0052350  3.8610e-05  0.0062137
Emergency MLR 2.6155e-09  8.8448e-18  2.9740e-09
Response GBR 2.6301e-07  1.0277e-13  3.2058e-07
DTR 2.8198e-07  1.3504e-13  3.6747e-07
SVR 3.3816e-07  1.3879e-13  3.7254e-07
KNNR 5.9421e-08  1.0169e-14  1.0084e-07
HVAC MLR 3.0885e-09  1.6375e-17  4.0467e-09
GBR 6.8290e-08  7.8697e-15  8.8711e-08
DTR 1.0306e-07  1.6541e-14  1.2861e-07
SVR 9.5958e-08  1.3207e-14  1.1492e-07
KNNR 2.0620e-08  1.1094e-15  3.3308e-08
Smart MLR 4.5123e-09  4.1255e-17  6.4230e-09
Lightning GBR 4.5025e-08  3.4404e-15  5.8655e-08
DTR 9.1376e-08  1.7043e-14  1.3055e-07
SVR 5.9834e-08  6.2366e-15  7.8972e-08
KNNR 3.7146e-08  2.8440e-15  5.3329e-08
VoIP MLR 0.0002211  7.2603e-08  0.0002694
virtual GBR 0.0001546  2.8749¢-08  0.0001695
assistance DTR 9.6463e-05  1.3520e-08  0.0001163
SVR 0.0001392  2.3750e-08  0.0001541
KNNR 0.0001483  2.7738¢-08  0.0001665
Video MLR 0.0012548  3.2583e-06  0.0018050
Surveillance GBR 0.0018372  9.6768e-06  0.0031107
DTR 0.0019151 0.0000103  0.0032104
SVR 0.0086434  0.0000827  0.0090953
KNNR 0.0013595  5.0101e-06  0.0022383

C. Performance Comparison and Discussion

In Table III, we provide the regression results using the
above error metrics. However, we also plotted the same results
using MAE and MSE in a different format to make it easier to
compare the different algorithms for each application as shown
in Fig. 2 and Fig. 3. To extract the results, we firstly performed
an application-wise comparison by applying all algorithms per
application to see which application gives the best regression
results in term of MAE, MSE and RMSE. Following, we
compared the five algorithms within each application to see
which regressor gives the best accuracy for each application.

Specifically, in Table III, we have grouped the regression
models into different classes corresponding to the 6 applica-
tions. Firstly, we perform the comparison between applications
using the error metrics presented above. We can observe
that regression models in the classes: emergency response,
HVAC and smart lightning have obtained the best results by
considering the MAE, MSE and RMSE, while the models for
augmented reality class obtained worst results followed by the
video surveillance and VoIP classes for all error metrics.
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The reason for having less accurate results for augmented
reality, VoIP and surveillance applications are the following:
(i) the number of sensor nodes within these applications are
less as compared to other highly accurate applications; (ii) the
duration of traffic produced for such application is also less
compared to other applications as shown in Table I. However,
ML algorithms require a lot of training data to give a good
prediction; (iii) the predicted throughput may present a skewed
behavior and therefore, skewness can affect the regression
model’s prediction accuracy for such applications (classes).

Following, we concentrate on the comparison of the best
predicted application’s throughput i.e., emergency, lightning
and HVAC, and we focus on Fig. 2 and 3 illustrations. Specif-
ically, Fig. 2 shows the prediction accuracy of throughput by
plotting the MAE of the different regression models for each
IoT application. For the emergency response, HVAC and smart
lightning applications, we observe that the MLR provides the
best performance in terms of MAE. The reason that MLR
provides good results compared to other algorithms is that
firstly, it deals better with linear dependencies and secondly, it
is a parameteric approach so it works well despite the size of
the dataset. For the latter, a ML model can be either parametric
or non-parameteric. Parameteric models assume some finite set
of parameters while non-parameteric models assume that the
data distribution cannot be defined in terms of such a finite
set of parameters, and thus the size of the dataset.

After that there is almost one to two orders of magnitude
difference with the KNNR and even more with the GBR

and DTR. Finally, the SVR gives the worst results, since the
particular algorithm is not that suitable for large datasets and
the particular applications contains a large number of devices
compared to other applications (see Table I).

Fig. 3 presents the algorithm comparison with respect to
MSE. Once more the MLR with MSE of 8.84E-18, 1.64E-
17 and 4.13E-17, for the three applications under consider-
ation, outperforms all other algorithms. Next is the KNNR
that achieves a MSE of 1.02E-14, 1.11E-15, 2.84E-15 for
all three applications. It is worth noting that we have also
conducted experiments with Lasso and Ridge regression that
are regularized versions of the MLR. However, they had a
degradation close to 22% for MAE, 36% for MSE and 16%
for RMSE and we decided not to illustrate them.

For our prediction problem, it is not only important to
achieve high accuracy, but to also get small training and infer-
ence (prediction) times. Both times are measured in seconds.
Fig. 4 and Fig. 5 illustrate the training time and prediction time
of all regression models applied to each application category.
It is interesting to see that SVR takes the least training time
for almost all applications i.e., 0.00097s for AR, 0.00103s
for emergency, 0.00100s for HVAC, 0.00200s for lighting,
0.00103s for VoIP and 0.00099s for surveillance as compared
to all other algorithms. However, its prediction accuracy is
worse as described above. Further, the GBR provides the
highest training time for all applications. The reason is because
it uses a large number of estimators during the training time,
which helps to better learn the data in the expense of high
training times. It is also to be noted that we used the default
value of the n-estimator parameter for GBR (i.e., 100) for all
applications. However, the prediction performance of GBR is
not that bad and ranking third just after linear regression and
KNNR for the top three applications.

Regarding the time to predict the throughput (inference
time), the best models are the SVR for emergency response
and VoIP applications, DTR for lighting and surveillance
applications, GBR for AR and both SVR and DTR for
HVAC. Focusing on the different results, we conclude that the
throughput can be best predicted for the three applications:
emergency response, HVAC and smart lighting by using the
MLR, KNNR and GBR approaches. Finally, the SVR is the
best in terms of training time. However, the inference time of
algorithms differs from application to application.

Lastly, in Table IV we provide the predicted versus actual
values of the average throughput for each application and for
each regressor. It should be noted that initially throughput
values are predicted per node for each application before
computing the average throughput per application in Mbps.
We can see that there are no significant differences in the
throughput values predicted by the regressors and actual
throughput. However, MLR provides the highest accuracy for
most of the applications. For example, MLR provides the best
predicted throughput value for VoIP, Smart Lighting, HVAC
and emergency response. For video surveillance, SVR gives
the highest throughput accuracy followed by MLR. Finally, for
augmented reality, DTR predicts better the throughput value.
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TABLE IV
PREDICTED VS. ACTUAL AVERAGE THROUGHPUT VALUE PER APPLICATION IN MBPS
Application MLR GBR DTR SVR KNNR Actual
Video Surveillance 0.0987812848  0.0980375623  0.0981972347  0.0994706215  0.0987835169  0.1030300316
Voice over IP 0.0149721937  0.0150054310  0.0149943455  0.0151100497  0.0151578104  0.0149655950
Augmented Reality 0.1928382299  0.1986622426  0.1986393116  0.1940642805  0.1943529015  0.1968919514
Smart Lightning 0.0000023553  0.0000023423  0.0000023554  0.0000024036  0.0000023642  0.0000023552
HVAC 0.0000045310  0.0000045188  0.0000045444  0.0000044814  0.0000045264  0.0000045370
Emergency Response  0.0000339790  0.0000337916  0.0000338419  0.0000341214  0.0000339717  0.0000339787

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the performance of several
machine learning regression techniques to predict the through-
put per device for 6 different IoT applications. To do so, we
generated a dataset containing raw features in a real smart
building environment. After a basic preprocessing of the data,
the final features are extracted. Finally, the comparison of the
regression techniques was performed in terms of prediction
errors and time analysis. The application level comparison

showed that emergency, HVAC and lighting applications can
achieve good results in term of all prediction errors. However,
linear regression is the algorithm that performed better than
all other algorithms while SVR is the algorithm with the
least training time. Future direction of this work includes
incorporation of feature selection methods such as correlation
based feature selection and mutual information based feature
selection along with prediction of other QoS metrics such as
delay.
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