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1 Introduction

Matrix integrals at large size N of the matrices are a formidable tool for counting various
types of planar graphs, i.e. “fat” graphs which have a certain two dimensional topology [1–
4]. The topological property of the 1/N expansion in (multi)-matrix integrals and in
matrix field theories, applied to Feynman graphs of asymptotically large sizes, is the key
element for the study of quantum fluctuations of 2d geometries — 2d quantum gravity —
with various embedding, as well as the statistical mechanics of spins on planar graphs [5–
14]. The famous AdS/CFT correspondence [15–17] is also based on the deep relation
between planar graphs and string worldsheets. More recently, the topological expansion
in a specific one-matrix model was proposed for the description of Jackiw-Teitelboim (JT)
gravity [18–23].

Usually, matrix models and field theories have couplings in their actions which control
the numbers of vertices of certain types in the corresponding planar graphs, but not the
numbers of faces of given types. For instance, planar Feynman graphs in the matrix scalar
field theory with λtr φ4 interaction have weights λn, where n is the number of quartic
vertices. But the numbers of faces of given size n∗ = 1, 2, 3 · · · are arbitrary (up to the
constraint imposed by the Euler theorem) and not weighted by independent couplings.

There exists an elegant way to modify a matrix quantum field theory so that also
the faces of the Feynman graphs (vertices of the dual graphs) will be weighted with dual
couplings attached to the faces of a given order.1 For example, for the scalar theory one
can modify to that end the action as follows:

Z(t, t∗) =
∫
DN2

φ(x) expNtr
(
− 1

2(∇φ)2 − m2

2 φ2 +
Q+1∑
q=1

1
q
tq(Aφ)q

)
, (1.1)

where we define the dual couplings as t∗n = 1
N tr An. Then the partition function is given

by a perturbative expansion over planar dually weighted Feynman graphs (DWG)

logZ(t, t∗) =
∑
G

N2−2gG
∏

v∗q∗ ,vq∈G
wG(#v∗q∗ ,#vq) tq∗

#v∗q∗ tq
#vq , (1.2)

where the sum goes over all planar Feynman graphs G, gG is the genus of the graph, v∗q∗ and
vq are the numbers of vertices with q∗ and q neighbours on the dual graph and the original
graph, respectively, while #v∗q∗ ,#vq are the numbers of such vertices in a given graph.
The weight wG(#v∗q∗ ,#vq) is the contribution of graphs with fixed #v∗q∗ ,#vq and gG (the
result of computation of the corresponding Feynman integrals). This identification of dual
couplings and the expansion (1.2) can be derived from the simple fact that the vertices
in the planar graph expansion corresponding to the terms tqtr (Aφ)q in the action can be
presented as shown on figure 1. It is clear that this results in contracting the product of q∗
matrices A in the index loop around each face with q∗ edges, giving the factor t∗q = 1

N tr Aq,
in the normalization appropriate for the ‘t Hooft limit.2

1And factors depending on the type of interactions.
2Curiously, this idea of introducing dual couplings in matrix models can be used for constructing a

quantum field theory in any dimension at finite Nc as a zero-dimensional matrix model in a specific large
N limit [24] (Nc and N here are different parameters).
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Figure 1. A dually weighted Feynman graph. Solid double lines show the propagators, while the
dashed lines show the dual graph (whose vertices correspond to faces of the original graph and vice
versa). At each n-vertex we have n copies of the matrix A which after contraction give factors
∝ tr Aq corresponding to each q-face.

In this work, we will continue the study of DWG and the matrix model formulated in
various forms in [25–27] and solved in the planar limit in the series of works [27–30]. It is
the zero-dimensional version of matrix QFT (1.1). It represents a natural generalization
of the one-matrix model with a general potential, like in [2, 10] where the introduction
of the A matrix in the interaction potential allows one to control not only the order of
the vertices of planar graphs (coordination number, or the number of nearest neighbors),
but also the order of their faces (coordination numbers of vertices of the dual graph).
So the DWG matrix model has two sets of couplings: original and dual. The partition
function for graphs with spherical topology is then given by (1.2) with all the weights
wG(#v∗q∗ ,#vq) ≡ 1.

A particular case of this zero-dimensional DWG model was considered in the work [29].
For this case, the graphs are quadrangulations and the vertices v2n can have arbitrary even
orders 2n, i.e. with 2n neighboring square faces, where n = 1, 2, 3 . . ., with the weights t2n
chosen so that they suppress exponentially the high orders n� 1 of vertices. The partition
function of such quadrangulations with spherical topology has been computed in [29].

In the current paper, we will study the same system of random quadrangulations but
for the disc topology where we have a single boundary of even length L = 2q, as shown
on figure 2. As will be explained below, in order to make the problem analytically solv-
able, the boundary can be introduced in three different ways. One particularly convenient
way corresponds to cutting out from the closed quadrangulation a vertex with L adjacent
squares. The precise definition of that kind of disc partition function for this model is:

Z(P, λ, β) =
∞∑
L=2

LP−L
∑
QL

(#vL)λF+1β2(#v2−δL,2) , (1.3)

where the first sum goes over the length L of the disc boundary (always even) and the
second sum goes over all disc quadrangulations QL. Here #vk denotes the number of
vertices of order k = 2, 4, 6, . . . which correspond to the angle deficits3 αk = π(2 − k/2).

3To define these angle deficits, we assume that all faces are made of equal squares with the angles π/2
at each vertex.

– 2 –
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Figure 2. Schematic image of an abstract manifold with disc topology, with the boundary shown
by the wiggled red line. It is flat everywhere except conical singularities. In this example we have
two of such singularities with positive angle deficit (positive curvature defects) and the 3rd, in the
middle, with negative angle deficit (negative curvature defect).

In the quantum Regge gravity picture [5–7, 9, 31], α2 corresponds to the single type of
positive curvatures, α4 introduces no curvature and αn>4 correspond to negative curvature
insertions. Furthermore, P is the length fugacity, λ is the area fugacity (the area F is
defined as the number of square faces forming the quadrangulation), and β is the fugacity
of positive curvature (type α2) insertions. Notice that due to the Euler theorem for the
disc we have #v2 = ∑

k≥3 #vk + const, so that the overall positive curvature is, up to
an additive constant of the order 1, equal to the overall negative curvature, so that β
controls the overall scale (or the absolute value) of the total curvature. That allows us
to interpolate between the regimes of large curvature fluctuations and the small curvature
regime dominated by almost flat (AF) configurations which we describe in more detail later.

This model was solved exactly in [29] and it was called there the discretised 2d R2 quan-
tum gravity, since the possibility to control independently the positive and negative curva-
ture amounts, in the continuous limit, to introducing irrelevant perturbations into the QG
action, such as R2 (where R is the Gauss curvature), providing a “flattening” effect on the
geometry. In the continuum limit, it should lead to the 2d QG action for the disc topology

SMR2 = −1
2

∫
M

√
g (λ̃+ β̃R2)−

∫
∂M

√
h (γ̃ + K) . (1.4)

Here we denoted by λ̃, β̃, γ̃ the bulk cosmological constant, the squared curvature cou-
pling and the boundary cosmological constant, respectively — the renormalized continuous
analogs of the lattice fugacities λ, β, P in (1.3). We also used the notation R, K, g, and h
for the bulk and boundary gaussian curvatures and metrics.

The study of the exact sphere partition function of this DWG model in the continuous
limit (i.e. for large quadrangulations with no boundary) showed that there are there two
smoothly connected regimes: almost flat manifolds (with very few conical singularities)
and the pure 2d gravity regime of [5–7, 9, 31]. Since the R2 coupling β̃ has the dimension
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of length, the former regime occurs for sufficiently small areas of manifolds, whereas the
latter happens for large enough areas (the scale is set by β̃).

In this paper, we study the quadrangulations having disc topology, with the boundary
of two different types described in the next section. We will keep the same continuous
limit of quandrangulations with large area, but now also with a boundary of a fixed size
(made out of a certain number of edges). In the limit of large area, our explicit results
interpolate between the universal pure quantum gravity regime reproducing the well known
disc partition function [10], and the regime of “almost flat” (AF) random surfaces [28]. The
former regime assumes also the limit of a long boundary. In the latter regime, the surfaces
are flat, consisting predominantly of the vertices with four neighboring plaquettes that add
no curvature, everywhere except rare insertions of conical singularities, with angle deficits
multiple of π, with specific exponential weights suppressing large angle deficits. Thus in
the continuous limit we simply sum up over the surfaces flat everywhere except a collection,
or “gas” of those conical defects. An intuitive image of such abstract flat manifold with
curvature defects is presented on figure 2.

For the disc partition function of quadrangulations with two different types of the
boundary we found very similar, but not exactly identical expressions in the large area
limit, given by eqs. (5.43) and (5.72). This similarity demonstrates certain universality
features of this disc partition function, which however shows also a dependence on the
boundary conditions. Both solutions interpolate between the well known pure 2d QG
regime and almost flat regime for the disc partition function. In the former one, the results
are completely universal, as expected.

For the disc partition function in this nearly flat limit we found that there is no phase
transition between these two regimes, thus extending and supporting the findings of [29]
that were obtained at the level of the sphere partition function. While so far we did
not observe signs of any more exotic phases in this DWG matrix model, such as the JT
gravity regime [18], in the conclusions we speculate on the possibility to find them for more
sophisticated observables. We will also discuss potential ways to produce from our model
a discretized fluctuating geometry with the metric dominated by AdS2 background.

The paper is organized as follows. In section 2 we present the basic properties of the
general DWGmodel as well as defining the main observables we will study. In subsection 2.2
there we define and discuss the particular R2 QG matrix model studied in [29]. Then in
section 3 we return to the general DWG model and present the main steps towards its
solution by character expansion, mainly reviewing the results of [27, 28]. From section 4
onward we specialize to the R2 QG model of [29]. In section 4 we review its solution
obtained in [29]. Then in section 5 we present our main results. We compute a number of
observables and explore their critical behavior. These are the resolvent for a particular kind
of correlators with exponential accuracy, its continuum limit corresponding to nearly flat
manifolds, and a similar limit for the resolvent describing the disc partition function with
a different boundary. We present conclusions in section 6, while the appendices contain a
number of technical details.
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2 The DWG matrix model via character expansion

The DWG matrix model is defined by [25, 27]

Z(t, t∗) =
∫
DM exp

[
− N

2 tr M2 +N
Q+1∑
q=1

1
q
tq tr (MA)q

]
, (2.1)

where M is an N × N Hermitian matrix integrated with the SU(N) invariant measure
DM and A is a fixed N × N Hermitian matrix which can be always chosen diagonal
without loss of generality. The DWG matrix model (2.1) cannot be solved directly by the
diagonalization of the matrix M . However, it turns out to be possible, in the large N limit,
to solve it (in principle) by the character expansion methods worked out in [27–29].4 In
this section we will briefly review the main steps of this approach, referring the interested
reader to those papers for the details.

First we will review the representation of Z in terms of dually weighted graphs (DWG).
Then we will demonstrate the character expansion method which allows one to rewrite
the model in terms of the sum over N highest weights of GL(N) representations (Young
tableaux). At large N the sum is dominated by a single large smooth Young tableau,
and the computation of characters, as well as the saddle point equation, are reduced to a
certain Riemann-Hilbert (RH) problem. The solution of this RH problem is directly related
to three different types of disc partition functions of DWG, which are the main object of
interest of this work.

2.1 Dually weighted Feynman graphs

The perturbative expansion w.r.t. couplings tq is represented by planar Feynman diagrams
of the type shown on figure 3. Their elements are the directed double-line propagators5

equal to 1
N δ

j
i δ
l
k (the indices run from 1 to N and are conserved along each line) and the

vertices which give Ntq (Ai1j1Ai2j2 . . . Aiqjq). It is easy to see that at each face of order p
of the lattice, after contraction of indices along each index line, there will appear the factor

t∗p = 1
N

tr Ap . (2.2)

Hence the partition function of this DWG matrix model has the following expansion in
terms of DWG of a distinct topology [27]:

logZ(t, t∗) =
∑
G

N2−2gG
∏

v∗q ,vq∈G
t∗q

#v∗q tq
#vq , (2.3)

where the sum goes over all Feynman graphs G, gG is the genus of the graph G, and the
product goes over all the vertices and faces of the graph. We indicate by vq vertices of order

4See also the recent work [32] the methods of which provide another way to the solution and perhaps to
a generalization of the DWG models.

5“Directed” means here that two lines of the same propagator should be marked by opposite arrows,
symbolising the covariant and contravariant indices. Since the direction in each index loop is conserved it
ensures that each planar graph is orientable.
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Figure 3. Dually weighted graph (figure from [27]). We show the propagators as double lines. The
couplings tn appear at n-vertices, while t∗n correspond to n-faces of the graph, corresponding to the
faces of the dual graph depicted by dotted double-lines.

q and by v∗q faces of order q, while #vq and #v∗q denote the number of these vertices and
faces in a graph from the sum. Let us also note that we can view the q-faces as q-vertices
on the dual graph G∗ (whose faces are the vertices of the original graph and vice versa).

From (2.3) we see that Z is symmetric in the two sets of couplings tp ↔ t∗p, as there
is a one-to-one correspondence between a graph G and its dual G∗ . It is natural to intro-
duce a ‘dual’ matrix model with the same partition function but with Feynman diagrams
corresponding to these dual graphs. It corresponds to interchanging all the couplings tp
and t∗p in the original model and thus is defined by

Z =
∫
DM̃ exp

[
− N

2 tr M̃2 +N
Q+1∑
q=1

1
q
t∗q tr (M̃B)q

]
, (2.4)

where we have introduced a constant matrix B which is the counterpart of A satisfying a
relation similar to (2.2),

tp = 1
N

tr Bp . (2.5)

We have also labelled the matrix being integrated over as M̃ instead of M in the original
model. Thus we see that in the dual model the roles of A and B are swapped. It is clear
that such a duality, as well as the very representation of (arbitrary) couplings in terms of
traces of powers of these matrices can be in general possible only for N → ∞, at each
order of topological 1/N expansion. But later we will reformulate the model in terms of
character expansion over GL(N) representations (Young tableaux) where the characters
will depend explicitly on independent couplings tn and t∗n.

– 6 –
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There exist three matrix averages, computable by the developed methods, representing
the DWG partition functions with a disc topology with three distinct types of the boundary:

WL = 1
N
〈tr (AM)L〉 , (2.6)

W̃L = 1
N
〈tr (BM̃)L〉 , (2.7)

WL = 1
N
〈tr ML〉 = 1

N
〈tr (M̃)L〉 , (2.8)

where the averages involving M̃ are computed in the dual model (2.4). The fact that the
two types of correlators in (2.8) are equal may not be immediately obvious, but can be
proven using the methods that we will discuss below.

The corresponding resolvents are

W(z) ≡
∑
L≥0

z−L−1WL = 〈 1
N

tr 1
z −AM

〉 , (2.9)

W̃(z) ≡
∑
L≥0

z−L−1W̃L = 〈 1
N

tr 1
z −BM̃

〉 , (2.10)

W (z) ≡
∑
L≥0

z−L−1WL = 〈 1
N

tr 1
z −M

〉 = 〈 1
N

tr 1
z − M̃

〉 . (2.11)

To realize the boundaries for (2.6) and (2.7) as the insertion of an extra L-vertex
into the graph G, we can simply differentiate the partition function w.r.t. the appropriate
coupling:6

WL = 1
N2∂tL logZ(t, t∗) , (2.12)

W̃L = 1
N2∂t∗L logZ(t, t∗) . (2.13)

The corresponding disc partition functions have an obvious DWG picture. The first
one (2.12) can be viewed as a sphere partition function with one marked vertex of the
order L (divided by L, which takes away the overcounting due to the cyclic symmetry), for
which the coupling tL is removed. The second one (2.13) can be also viewed as a sphere
partition function, but now with one marked face of the order L (also divided by L) and its
coupling t∗L removed. For the moments WL in the resolvent (2.11) the DWG interpretation
is slightly more complicated: they can be also viewed as a sphere partition function with
marked vertex of the order L but since in the matrix model formulation there are no
matrices A around this vertex the adjacent faces do not contain it and are weighted each
with the coupling tn−1 for a face of order n. Obviously, all three resolvents (2.9)–(2.11)
can be viewed as disc partition functions with such vertex or face removed.

Later we will explain that the quantities (2.9)–(2.11) can be computed directly from
the saddle point equations for the DWG model.

6There is no similar formula for WL unless we generalize the matrix potential in 2.1 by adding there∑
p≥3 τp tr Mp. Such a model, containing the 3rd infinite set of couplings, is still solvable, in principle, by

character expansion methods, and we would have WL = 1
N2 ∂τL logZ(t, t∗, τ).

– 7 –
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2.2 Weighted quandrangulations (“R2 quantum gravity”)

Before proceeding with key equations for the general DWG model, let us now introduce
a particular case of the DWG model which we will focus on in this paper (starting from
section 4). It was solved in [29] and used there to study the R2 QG model. This model
generates only quadrangulations and has special weights for the vertices, exponentially
decaying with the order. This model will be of the main interest in this paper since one
can solve it explicitly for the disc partition functions and thus it is convenient for the search
of various continuous limits of fluctuating 2d manifolds.

The couplings of the model are given by

tn = δn,4 , t∗n = Tn (2.14)

where Tn are defined as

T2 = λβ2

ε
and T2q = λεq−2 , q ≥ 2 . (2.15)

We see that they are all expressed in terms of 3 parameters: λ, β and ε. The partition
function reads

Z =
∫
DM expNtr

(
−1

2M
2 + 1

4(AM)4
)
, (2.16)

and for the dual matrix model we have

Z =
∫
DM̃ expNtr

(
− 1

2M̃
2 +

∞∑
q=1

T2q
2q (A4M̃)2q

)
(2.17)

(as discussed above, these two partition functions are equal). Here the matrices A and A4
are chosen such that 1

N
trAn4 = δn,4 ,

1
N

trAn = Tn . (2.18)

That also means that in our conventions we have

B = A4 . (2.19)

Notice that the couplings Tn were denoted by tn in [29], which was a bit confusing since
these are the couplings corresponding to faces, not vertices, in the original model (2.16).
Thus we chose to introduce the new notation Tn for them.

2.2.1 Natural observables and combinatorics

In our conventions it is the dual model (2.17), not the original model (2.16), that corre-
sponds to graphs that are quadrangulations. Accordingly, we will study below the resolvent
W̃(z) generating the correlators 〈tr (A4M̃)n〉 in this dual model, as well as the resolvent
W (z) that generates the 〈tr (M̃)n〉 = 〈tr Mn〉 correlators. Both observables correspond to
graphs with disc topology built out of 4-vertex plaquettes.

Invoking simple combinatorics and Euler theorem, the partition function in this dual
model (equal, however, to the original Z) can be represented as [29]

logZ = λ2β8

ε4

∑
G

λFβ2(#v2−4) , (2.20)

where the sum is over connected graphs that are quadrangulations of the sphere.

– 8 –
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We will be interested in particular in computing the resolvent W̃. The quantity
W̃L = 1

N 〈tr (A4M̃)L〉 is given by graphs with the shape of a quadrangulated disc with
the boundary of (even) length L corresponding to a (removed) vertex of order L. So, to
get W̃L, the weight of the vertex given by TL = λεL/2−2 should be removed from the
partition function (2.3). Explicitly, we see from (2.17) that

1
N
〈Tr(M̃A4)L〉 = L

∂ logZ
∂TL

, (2.21)

and (2.3) implies that taking the derivative in TL in the sum over graphs simply produces
a factor ∝ #vL. As in our case from (2.15) we have TL = λεL/2−2β2δL,2 (for even L), from
the equations above we get

1
N
〈Tr(M̃A4)L〉 =

∑
GL

L#vLλF+1ε−2−L/2β2#v2−2δL,2 , (2.22)

where the sum is over connected graphs with at least one L−vertex. This gives for the
resolvent

zW̃(z) =
∑
L≥0

z−L
1
N
〈Tr(M̃A4)L〉 = 1 + 1

ε2

∑
L≥2, L even

(
ε1/2z

)−L
fL(λ, β) , (2.23)

where

fL(λ, β) = λLβ−2δL,2
∑
GL

(#vL)λFβ2#v2 . (2.24)

We see that the dependence of the result on ε is very restricted, namely up to a 1/ε2 factor
it is a function of ε1/2z.

Via an argument of the same type one can obtain a similar combinatorial formula for
the correlators 〈Tr(MA)L〉. At the same time, for the 〈TrML〉 correlator the combinatorics
seems to be more complicated and we leave its exploration for the future.

Below in section 3 we continue describing the main results regarding the general DWG
models. Then from section 4 we will specialize to the case of the R2 QG model (2.16) we
have just discussed here.

3 Character expansion and planar limit for DWG model

In this section, we will review the reduction of the DWG matrix model integral to the
character expansion over Young tableaux. Then we will use the fact that the sum over
Young tableaux goes over onlyN highest weights and apply the saddle point approximation.

3.1 DWG partition function as a sum over SU(N) representations

The way to represent the partition function of the DWGmatrix model is as follows [27]: first
we expand the exponent of the second term in the action (2.1) w.r.t. the Schur characters
χR[t∗] and GL(N) characters χR[AM ], where R is a representation of GL(N), then we
use the orthogonality property of the characters to integrate over the angular variable
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Ω ∈ SU(N) in the angular decomposition M = Ω†XΩ, where X = diag{x1, x2, . . . , xN} is
the diagonal matrix of eigenvalues, and finally we perform the explicit Gaussian integral
over M . The details are reviewed in the appendix A. In this way we obtain the following
formula for the DWG partition function in terms of the sums over representations:7

Z(t, t∗) = c
∑
{he,ho}

∏
i(hei − 1)!!hoi !!∏
i,j(hei − hoj)

χ{h}[t] χ{h}[t∗] . (3.1)

Here the sum goes over GL(N) representations labeled by Young tableaux defined by the
shifted highest weights hj ,

Y = {hj = N − j +mj , j = 1, 2, . . . , N} , (3.2)

where mj is the number of boxes in j’th row, with equal numbers of even and odd shifted
highest weights {h1, . . . , hN/2, hN/2+1, . . . , hN} ≡ {he1, . . . , heN/2, h

o
1, . . . , h

o
N/2}.8 The for-

mula (3.1) was obtained by pure combinatorics of planar graphs in [26] and rederived
in [27] from the DWG matrix model. The factors χ{h}[t], χ{h}[t∗] here are usual Schur
characters — polynomials of couplings tk, t∗k. One way to define them is through Schur
polynomials Pn(θ) which are read off from

e
∑∞

n=1 z
nθn =

∞∑
n=0

znPn(θ) , (3.3)

where
θk = 1

k
tr Bk = N

k
tk , (3.4)

and for n < 0 we define Pn(θ) = 0. Then we have

χ{h}(t) = det
k,l

(Phk+1−l(θ)) , (3.5)

and similarly for χ{h}(t∗) where we use A instead of B in (3.4).
Notice that the representation (3.1) of the DWG matrix model partition function

renders the symmetry between two sets of couplings tq ↔ t∗q obvious.
A clear advantage of the representation (3.1) is the drastic reduction of the number

of variables: instead of N2 original matrix variables Mij it contains only the sums over N
highest weights hj . Hence, to sum up DWG’s we can apply the saddle point approximation
to find the dominating large Young tableau for the sums in (3.1). But for that we have to
learn how to compute the characters in this limit. The corresponding methods, as well as
the formulas of the following subsection, have been worked out in [27–30].

7Strictly speaking the r.h.s. of (3.1) includes an extra factor NN(N−1)/4−1/2
∑

k
hk (see [27]) but it can

be reabsorbed into a redefinition of the matrices A,B by a scalar factor.
8The highest weights are not necessarily ordered here according to the values, but they can always be

reordered so due to the antisymmetry of the characters.
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3.2 Characters in the large N limit

Using the methods of the papers mentioned above, we can compute the Schur characters
depending on arbitrary number of variables (couplings) at large N (for large smooth Young
tableaux with characteristic shifted highest weights hj ∼ N). The computation is based
on simple identities for Schur characters. The first one is

tL · χ{h}[t] = 1
N

N∑
j=1

χ{h+Lδj}[t] , (3.6)

where in the r.h.s. one adds L to one of the highest weights hj in the Young tableau and
sums up the resulting character over all N insertions9 so that

{h+ Lδj} ≡ {hi + Lδi,j , i = 1, 2, . . . , N} . (3.7)

The second one is

L

N
∂tLχ{h}[t] =

N∑
j=1

χ{h−Lδj}[t] , (3.8)

where in the r.h.s. one subtracts L from one of the highest weights in the Young tableau.
While in the r.h.s. here we may potentially get negative values of the weights hk−L defining
the character, this identity still holds10 with the definition (3.5) of the characters where we
take Pn = 0 for n < 0.

Using (3.6) we also have, denoting the Vandermonde determinant by ∆ (see the
eqs. (2.2)-(2.3) of [27]),

tL = 1
N

N∑
k=1

χ{h+Lδk}[t]
χ{h}[t]

= 1
N

N∑
k=1

∆(h+ Lδk)
∆(h) e

log
χ{h+Lδk}
∆(h+Lδk)−log

χ{h}
∆(h)

= 1
N

N∑
k=1

∏
j 6=k

(
1 + L

hk − hj

)
eLF(hk) +O(1/N)

= 1
L

∮
dh

2πie
L(H(h)+F(h)) +O(1/N) (3.9)

where we exponentiated the product in the large N limit (see [27] for details), when the
characteristic hj ∼ N , introducing two basic functions: the resolvent of the highest weights

H(h) =
N∑
j=1

1
Nh− hj

≡
∫
dh′ ρ(h′)
h− h′

. (3.10)

9The highest weights can then be reordered inside the character, using the permutational symmetry, to
satisfy the inequalities hj > hj+1 following from the definition of hj in (3.2).

10For a different definition of the character the identity may not hold when L is large enough. However,
in what follows we will focus on the large N limit and the saddle point distribution of hk for which hk ∼ N ,
so for fixed L the combination hk − L is almost always positive and does not cause any problems.
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and
F(h) = ∂hk log

χ{h}[t]
∆(h)

∣∣∣∣∣
hk=Nh

. (3.11)

We also introduced here the normalized highest weight variable h ∼ O(N0). One can also
define a function similar to F but for the dual weights {t∗n},

F∗(h) = ∂hk log
χ{h}[t∗]
∆(h)

∣∣∣∣∣
hk=Nh

(3.12)

and we get a relation similar to (3.9),

t∗L = 1
L

∮
dh

2πie
L(H(h)+F∗(h)) . (3.13)

Let us point out that our notation here differs somewhat from [27], as there our function
F∗ was denoted by F . Furthermore the notation for F differs between [27] and subsequent
papers [28, 29]. We chose to use bold font here to avoid confusion. We will use F,F∗ here
in section 3 while we discuss the general solution, and then we will use F in later sections
when we specialize to the R2 DWG model discussed in [29] (see section 4.1 for a summary
of the notation in the latter case).

Using (3.8) and the first line of (A.1) given in appendix A we also derive a similar
formula [27, 28] for 〈tr (BM̃)L〉 evaluated in the dual model,

1
N
〈tr (BM̃)L〉 = 1

L

∮
CH

dh

2πie
−L[H(h)+F∗(h)] (3.14)

where for large hj ∼ N we also used the fact that the sum over representations reduces at
the saddle point to a single, dominating Young tableau defined by the resolvent H(h). For
the correlator 〈tr (MA)L〉 we find in a similar way the representation

1
N
〈tr (AM)L〉 = 1

L

∮
CH

dh

2πie
−L[H(h)+F(h)] . (3.15)

There is also an alternative formula for the same quantity, given in [27],

〈 1
N

tr (AM)2L〉 = 1
L

∮
dh

2πih
LeL(H(h)+2F∗(h)) (3.16)

which however we will not use in this paper.
In order to compute 〈tr ML〉 one can also use similar arguments (see appendix A for

more details). As a result we get [27]

〈 1
N

tr M2L〉 = 1
L

∮
dh

2πih
LeLH(h) . (3.17)

3.3 Saddle point equation and general RH problem for DWG

From now on, we will consider the DWG models only with polynomial original and dual
potentials, with the highest powers equal to Q and Q∗, respectively, so that the poten-
tials read

V (M) =
Q∑
q=1

tq
q
M q , V∗(M) =

Q∗∑
q=1

t∗q
q
M q . (3.18)
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The large N saddle point approximation for the multiple sum (3.1) then reads

∂h

[1
2hk log hk −

1
2 log ∆(h) + logχ{h}[t] + logχ{h}[t∗]

]
= 0 . (3.19)

We used here natural assumptions [27, 33, 34] that the densities of distributions of even
and odd highest weights {hej} and {hoj} are the same: ρe(h) = ρo(h) = 1

2ρ(h). We also
applied the Stirling formula log h! ' h log h valid for typical hj ∼ N at the saddle point.
Using the definitions (3.11) and (3.10) we can rewrite (3.19) in the continuous form. For
the DWG model with general sets of original and dual couplings we get:

2F + 2F∗ + 3/H + ln h = 0 (3.20)

where by slash we denote the symmetric part of the function H on its cut.
To be precise, here we need to discuss (following [27]) an important property of the

density ρ(h). The density is naturally defined on the interval h ∈ [0, a] going from zero to
some endpoint which we denote as a > 0. In fact ρ(h) is saturated at its maximal11 value
ρ(h) = 1 at the start of this interval, i.e. for h ∈ [0, b] with b < a. Accordingly, H(h) has
a logarithmic cut for h ∈ [0, b]. As discussed in [27] the saddle point equation (3.20) holds
only on the remaining part of the interval where H has a nontrivial cut, i.e. for h ∈ [b, a]
(with H(h± i0) = /H(h)∓ iπρ(h)).

The saddle point equation should be supplemented by equations for the character
functions F and F∗ defining the characters as functionals of this highest weight distribu-
tion. Such equations were derived in [27] from the observations described in the previous
subsection. Namely, we introduce the functions

G(h) = eF(h)+H(h) , G∗(h) = eF∗(h)+H(h) . (3.21)

Notice that like for F,F∗ our notation differs from the one of [28, 29] as there G denoted
a quantity closely related to our G∗ (see section 4.1 for more details on the notation).

The functions G(h) and G∗(h) have Q and Q∗ sheets, respectively. As the
eqs. (3.9), (3.14) and (3.15) show, the behavior at zero for each one is given by expansions

h(G) =
Q∑
q=1

tqG−q +
∞∑
q=0

Gq〈 1
N

tr (AM)q〉 = G−1V ′(G−1) + G−1W(G−1) (3.22)

h(G∗) =
Q∗∑
q=1

t∗qG∗−q +
∞∑
q=0

G∗q〈 1
N

tr (BM̃)q〉 = G∗−1V ′∗(G∗−1) + G∗−1 W̃(G∗−1) (3.23)

where M̃ is the matrix for the dual matrix model and we put t0 = t∗0 = 1 while V ′(M)
denotes the derivative of the potential. We assumed here that all the small G singularities
come from the original matrix potentials.

11The constraint ρ ≤ 1 follows from the definition of the density and the fact that the shifted highest
weights hi are strictly decreasing with i as follows from (3.2).
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These expansions show that the functions G(h) and G∗(h) have branch points of order
Q and Q∗ at h→∞. This suggests another form of eqs. (5.34) and (3.23) (see eq. (3.23)
of [29]):

(−1)Q−1

tQ

Q∏
q=1

Gq = 1
h
eH(h) = (−1)Q∗−1

tQ∗

Q∗∏
q=1

G∗q (3.24)

where by Gq we denoted the values of the function G on Q different sheets, and similarly
for G∗. If we skip the label we always mean the main sheet G = G1.

The equations (3.20), (3.24), together with the small G,G∗ asymptotics (5.34), (3.23),
give the complete Riemann-Hilbert problem for the DWG model with general sets of Q
original and Q∗ dual couplings.

4 The R2 quantum gravity solution

While above we discussed general DWG models, from now on we will specialize to the
particular case of DWG model described in section 2.2 and studied in [29]. In this section
we will review its exact solution from [29]. The model corresponds to quadrangulations
with special, exponential weights for the vertices. We keep for it the name “R2 QG” model
given in [29]. The main advantage of this model, apart from the fact that the solution
for H(h) can be given explicitly in terms of elliptic functions, is that the couplings are
chosen in such a way that we have a parameter controlling the local “curvature” fluctu-
ations (number of nearest neighbors for the vertices of quadrangulations) together with
another one controlling the area (number of squares in the quadrangulation). Thus we can
nontrivially restrict the geometry of the graphs and find interesting continuum limits.

In the paper [29] the sphere partition function of such quadrangulations has been
studied. In the current paper we will generalize this analysis to the disc partition functions.
Namely, we will compute in the near-critical regime the corresponding resolvents W̃(z) and
W (z) defined above. In this section we summarise the exact solution which serves as the
starting point for our new computation.

4.1 Notation and key relations for the case of even potentials

From now on we will follow the notation of [29] which is tailored for the case (of which
the R2 QG model is an example) where the potentials for both the original and the dual
models are even, so that t2n+1 = t∗2n+1 = 0. In this case we have tr A2n+1 = 0 and one can
parameterize the matrix A as

A =
(√

a 0
0 −

√
a

)
(4.1)

where a is an N/2×N/2 matrix. Then instead of (3.12) one uses the function F given by

F (hk) = 2 ∂

∂hek
log

χ{he2 }
(a)

∆(he)
(4.2)
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so it is defined in terms of only the even weights hek with k = 1, . . . , N/2,12 and the character
of the matrix a. It can be deduced from [28, 29] that it is related to our notation as13

F (h) = 2F∗(2h) + 2H(2h)−H(h) . (4.3)

Moreover the function G used in [28, 29] differs from our G,G∗ and is defined as

G(h) = eH(h)+F (h) . (4.4)

Then analogs of equations (3.13), (3.14) read14

t∗2q =
∮

dG

2πiGh(G)Gq , (4.5)

and
1
N
〈tr (BM̃)2q〉 =

∮
dG

2πiGh(G)G−q , (4.6)

so we have

h(G) = 1 +
Q∑
q=1

t2qG
−q +

∞∑
q=1

Gq〈 1
N

tr (BM̃)2q〉 (4.7)

= 1 +
Q∑
q=1

t2qG
−q + 1√

G
W̃
( 1√

G

)
.

Note that for the R2 QG model we have B = A4 where A4 is the matrix discussed in
section 2.2 with the property 1

N tr An4 = δn,4.
Let us also note that in the case of even potential we find from (3.17) that [27]

zW (z) ≡ 〈 1
N

tr z

z −M
〉 = 1−

∮
H

dh

2πi log
(
z2 − heH(h)

)
. (4.8)

By the Lagrange inversion formula (we have a single cut on the main sheet of H(h)) we
get from here the parameterisation of the resolvent as15

zW (z) = z2 − h , z2 = heH(h) (4.9)
12We assume that, by symmetry, both even and odd weights are distributed in the same way.
13The difference between F∗ and F comes mainly from the fact that in (4.2) we have the Vandermonde

of only the even weights hek, while in (3.12) we have the Vandermonde for all the weights.
14Strictly speaking one should rederive these equations for the even case as the contour of integration

used in the trick in (3.9) becomes subtle to choose due to overlapping cuts (see [28] for the derivation and
comments on this).

15For W(z), which in the even case is given by (see [27])

zW(z) ≡ 〈 1
N

tr z

z −AM 〉 = 1−
∮
CH

dh

2πi log
(
z2 − he2F∗(h)+H(h)

)
,

the same inversion trick unfortunately does not work since the integration contour CH here is pinched
between the cuts of H(h) and F∗(h).
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4.2 Explicit solution for the density

To derive the saddle point equation for this case, the easiest way is to plug into (3.1) the
character χ{h}[t] in the form (A.4). This gives for the partition function

Z(t, t∗) =
∑
{he,ho}

∏
i(hei − 1)!!hoi !!∏
i,j(hei − hoj)

3∏
ε=0

∆(h(ε))∏
i

(h(ε)
i −ε
m

)
!

× sgn
[ ∏

0≤ε1<ε2≤3

∏
i,j

(h(ε2)
i − h(ε1)

j )
]
χ{h}[t∗]. (4.10)

Here following [29] we introduced four groups with equal numbers of weights h(ε)
i , ε =

0, 1, 2, 3, i = 1, . . . , N/4 such that h(ε)
i = ε mod 4. We will assume that all four groups

are distributed with the same density and the sgn[. . . ] factor is irrelevant in the large N
limit. That provides the saddle point equation given in eq. (4.7) of [29]. It reads

2F + /H + log h = 0 , h ∈ [b, a]. (4.11)

where by /H(h) we defined the principal value of the resolvent H(h) on the cut CH = [b, a],
H = /H ∓ iπρ(h).

To complete the RH problem defining two functions — the resolvent H(h) and the
character function F (h) — first we notice that with our definition of the couplings t∗n of
the dual potential (2.15), we obtain from (3.23)

h− λβ2

ε

1
G
− λG

(G− ε) = 1√
G
W̃
( 1√

G

)
(4.12)

where we used the definition of the resolvent: W̃(z) ≡∑∞q=0〈tr (M̃A4)2q〉z−2q−1. We notice
that for G→ 0 the r.h.s. of the last formula is vanishing since W̃(z) ' 1/z for z →∞. The
vanishing l.h.s. then suggests that the function G has only two sheets connected through
the cut of F (h), so that we can put Q = 2 in (3.24). Then the logarithm of equation (3.24)
looks as follows:

logG(h+ i0) + logG(h− i0)−H(h) + log h

(β2 − 1)λ = 0 , h ∈ [d, c] . (4.13)

which gives, on the defining sheet of F (h), the second needed RH equation

2/F (h) +H(h) + log h

(β2 − 1)λ = 0 h ∈ [d, c] . (4.14)

We used the fact that F (h) has a cut CF : [d, c] on its defining sheet, whereas H(h) does
not have a [d, c] cut.

Remarkably, both equations (4.11) and (4.14) of this RH problem turn out to be
written for the same function 2F (h) +H(h) + log h which thus has only two sheets. This
helps to immediately write its solution in terms of the Cauchy integrals (see eq. (4.8) in [29])
which can be expressed in terms of incomplete elliptic integrals. Since by virtue of (4.11)
we also have

2F (h) +H(h) + log h = iπρ (4.15)
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it immediately gives us the explicit formula for the density of the highest weights of the
saddle point Young tableau.

In order to write the solution explicitly, let us introduce some notation. We define the
elliptic moduli k2 and k′2 corresponding to the branch points as

k2 = (a− b)(c− d)
(a− c)(b− d) , k′2 = 1− k2 , (4.16)

and we denote by K and K ′ the complete elliptic integrals of the first kind with moduli k
and k′ respectively. The corresponding elliptic nome q and its dual q′ read

q = e−πK
′/K , q′ = e−πK/K

′
. (4.17)

We also describe the Mathematica conventions for some of these functions (and others that
we use below) in appendix B. In this notation the result for the density found in [29] reads

ρ(h) = u

K
− i

π
ln
[
θ4
(
π

2K (u− iv), q
)

θ4
(
π

2K (u+ iv), q
)] (4.18)

where u is defined in terms of the inverse Jacobi elliptic function sn,

u = sn−1
(√

(a− h)(b− d)
(a− b)(h− d) , k

)
. (4.19)

In the next subsection we describe equations that fix the branch points a, b, c, d in
terms of the couplings of the model.

4.3 Fixing parameters of the solution

The branch cut endpoints a, b, c, d are fixed in terms of the couplings λ, β and ε by a system
of rather nontrivial equations found in [29]. It is obtained by imposing constraints such
as correct normalization of the resolvent at large h. We refer the reader to [29] for details
of the derivation, and here we present the final result, which we also rewrote in a slightly
more compact form.

Let us first introduce some additional notation, namely

v = sn−1
(√

a− c
a− d

, k′
)
, s = sn (v, k′) . (4.20)

In addition, we define
∆ ≡ b− c . (4.21)

Then the equations that fix a, b, c, d read [29]

v = −K ′ − K

π
log(λ(1− β2)) (4.22)

λ = 2Kq
iπ2

θ1
(
iπv
K , q

)
θ′1
(
0, q
) (− E +K

(
k′2s2 + ΥΞ

s
+ 2 Ξ2

))
(4.23)

∆ = 4Kq
ε2iπ

θ1
(
iπv
K , q

)
θ
′
1
(
0, q
) k′2s

√
1− s2

√
1− k′2s2

, (4.24)

b− 1 = 1
ε2

[
2Kq
iπ

θ1
(
iπv
K , q

)
θ
′
1
(
0, q
) (

k′2s4 − 2s2 + 1
s
√

1− s2
√

1− k′2s2
+ 2Ξ

)
− 2λ

]
(4.25)
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where
Υ = 3k′2s4 − 2(k′2 + 1)s2 + 1√

1− s2
√

1− k′2s2
, Ξ = π

2K + E(v, k′) +
(
E

K
− 1

)
v (4.26)

and E is the complete elliptic integral of the second kind (similarly to K) while E(v, k′) de-
notes the incomplete elliptic integral of the 2nd kind (see appendix B for the corresponding
Mathematica notation).

Let us elaborate briefly on the structure of these four equations (4.22)–(4.25). Our goal
is to find a, b, c, d as functions of the three couplings λ, β, ε. We see that plugging v from
the first equation into the second one gives an equation that completely fixes k2 in terms
of two couplings λ and β. The first equation then fixes v, and from the last two equations
we find b and c. Finally, having found k and v and recalling their definitions (4.16), (4.20)
we fix the remaining two parameters a, d.

Using identities between elliptic functions, one can rewrite these equations in a variety
of ways. Here we presented the form we found the most useful for our calculation.

4.4 Simplification and computation of G

Below we will be interested in computing the resolvent W̃ which is encoded in G(h) and
thus it is useful to write the latter function explicitly. Since 2F + H + log h = ±iπρ we
first get (choosing the sign accordingly)

2 logG(h) + log h = (2F +H + log h) +H = −iπρ+
∫ a

0

dx

h− x
ρ(x) .

We found it useful to also write this result in a slightly different way. Notice that we can
get rid of the term without theta functions in the density (4.18) by switching from θ4 to
θ1 using the identity

θ4
( π
2Ku+ iπ

2
K ′

K
, q
)

= i

q1/4 exp
(
− iπu2K

)
θ1
( π
2Ku, q

)
. (4.27)

This gives

ρ(h) = − i
π

ln
[
−
θ1
(
π

2K (u− i(v +K ′)), q
)

θ1
(
π

2K (u+ i(v +K ′)), q
)] . (4.28)

In addition, the form of the density suggests one to rewrite the integral defining H(h) in
terms of u (defined in (4.19)) rather than h. Let us denote by w(h′) the same function
as in (4.19) but with h replaced by h′. Then in the definition of H(h) given by (3.10) we
change the integration variable h′ → w(h′) and obtain

H(h) = −2i k2 (1− k′2s2)
πk′2

∫ K

0

dw cn (w)dn (w)sn (w) log
[
− θ1

(
π

2K (w−i(v+K′)),q
)

θ1
(
π

2K (w+i(v+K′)),q
)]

(s2dn (w)2 − 1)2
[
h−b
∆ +

1− 1
k
′2 dn (w)2

1−s2dn (w)2

] .

(4.29)

We can also write the argument h as a function of u by inverting (4.19),

h− b
∆ = 1

(k2 − 1)s2 −
(k2 − 1)s2 + 1

(k2 − 1)s2(k2s2 sn (u)2 − s2 + 1) . (4.30)
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Then finally for G(h) we have

2 logG(h) = −2i k2 (1− k′2s2)
πk′2

∫ K

0

dw cn (w)dn (w)sn (w) log
[
− θ1

(
π

2K (w−i(v+K′)),q
)

θ1
(
π

2K (w+i(v+K′)),q
)]

(s2dn (w)2 − 1)2
[
h−b
∆ +

1− 1
k
′2 dn (w)2

1−s2dn (w)2

]
−iπρ(h)− log(h− b) . (4.31)

This is the form of G(h) that we will use below.

4.5 Scaling properties of G as a function of ε

Let us show that dependence of G(h) on ε is quite trivial. From (4.7) we see that to obtain
the resolvent W̃(z) = 〈tr 1

z−M̃A4
〉 we need to compute the function G(h) and invert it.

Denoting
z ≡

√
ε/G (4.32)

we have
h = z2λβ

2

ε2
+ λz4

ε2(1− z2) + z√
ε
W̃[(
√
ε/z)−1] . (4.33)

On the other hand, as we saw above from the combinatorial argument leading to (2.23),
the resolvent should have the form

W̃(z) = 1
z

(
1 + ε−2φ1(

√
εz)
)

(4.34)

where the function φ1 does not depend on ε and z. Plugging this into (4.33) we get

ε2(h− 1) = λβ2z2 + λz4

1− z2 + φ1(z) . (4.35)

Inverting this relation we find
G = εφ2(ε2(h− 1)) (4.36)

where φ2 is again some function which does not depend on ε or h explicitly. As a result,
this predicts for G the scaling property

G(h, Zε) = ZG(Z2(h− 1) + 1, ε) . (4.37)

Let us verify that the result for G given above in (4.31) indeed satisfies this relation.
We see that in the equations (4.22)–(4.25) which define parameters of the solution the
variable ε appears only in ∆ and in one term in the last equation (4.25). Using this, one
can easily check that all terms in (4.31) except the last one are functions of the combination
ε2(h − 1) and thus sending ε → Zε for them is the same as replacing h → Z2(h − 1) + 1.
The very last term log(h − b) in (4.31), on the other hand, produces an extra logZ term
under this transformation. As a result we see that (4.37) is perfectly satisfied!

Due to this scaling symmetry we see that ε cannot affect any critical behavior properties
of the resolvent W̃. Accordingly, for the purpose of studying them we will set ε = 1 in
the subsequent computations in sections 5.1–5.3.2. Then in section 5.4 we will study a
different kind of resolvent, namely W (z), for which the dependence on ε is more tricky.
There we will restore the ε-dependence in the needed equations, which is not hard to do
as we will see.
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5 Critical regimes of large area and boundary of the quadrangulated disc

In this section, we will discuss the critical regimes for the partition function of the quadran-
gulated disc. Namely, we will first tune the parameter λ in the resolvents W̃(z) and W (z)
for the elliptic solution (4.18) of sections 4.3, 4.4 to its critical value λc in such a way that
the area (number of plaquettes in the graph) becomes very large. This allows one to con-
sider the typical quadrangulations which “forget” about the details of their discretization
and can be considered as relatively smooth 2d manifolds with fluctuating metric. Gener-
ically, this regime leads to the well known solution of pure 2d quantum gravity [5–7], as
it was demonstrated in [29]. However, to study the transition between this pure 2d QG
regime and the “almost flat” regime, when the curvature is maximally suppressed, we have
an extra parameter to adjust, namely β which controls the fluctuations of the modulus of
overall curvature accumulated on the disc. Tuning β → 0 one can “flatten” the disc in such
a way that the vertices with four neighbors will dominate, with rare insertions of the conical
curvature defects, having angle deficits +π (positive curvature defect) or −π,−2π,−3π, . . .
(negative curvature defects). By appropriate simultaneous tuning of λ → λc and β → 0,
with a certain double scaling, this limit interpolates between the regime of pure 2d gravity,
when the size of the manifold is large enough to accommodate the “pure gravity” fluc-
tuations of the metric, and “almost flat” (AF) regime when the size of the manifold is
relatively small and thus it is almost completely flattened, apart from rare positive conical
curvature defects (all negative curvature is then concentrated at the boundary).16

The universal partition function interpolating between two such regimes was estab-
lished in [29]. We will extend in this section the analysis of this “R2 gravity” solution of
the DWG model to the disc partition function. Namely, we will explicitly calculated the
resolvents W̃(z) and W (z) in this “near-flat” regime — large area of quadrangulations but
arbitrary length of the boundary — which is the main result of this paper. Then we will
study these quantities in the two limits mentioned above. In the limit of pure gravity,
which demands another double scaling computation, adjusting the boundary cosmological
constant z → zc simultaneously with λ → λc, we will reproduce for both resolvents W̃(z)
and W (z) the well known universal disc amplitude [10]. In the limit of almost flat 2d
manifolds with minimal number of curvature defects we will reproduce the disc partition
function from [28] (see eq. (4.17) there).

As a preliminary step, we will first investigate a special regime for the general solution,
when the elliptic nome q goes to 1 but we drop only the exponentially small terms. It is
convenient to parametrize q as

q = e−πτ (5.1)

so that τ → 0 and we work with exponential accuracy, i.e. up to O(e−π/τ ) terms. Let
us recall that all parameters of the solution (4.18) for the density of highest weights ρ(h)
are fixed in terms of two original parameters of the model λ and β. In practice it will
be convenient for us to first deal with intermediary parameters v (defined in (4.20)) and

16The quantisation unit of the angle deficit δφ = π should be an important relevant parameter in such
double scaling limit, and the result would be different for a different value of δφ. It would be interesting to
solve a model with different δφ, say for triangulations.
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τ instead. We will compute G(h) at generic v and with exponential precision in τ . We
present this calculation in subsection 5.1.

Next, in subsection 5.2 we recall (following [29]) the main features of the critical regime
in our model, and in particular the case when v is small (in addition to q → 1). We will refer
to this regime as the ‘flattening’ limit. In subsection 5.3 we will describe the properties of
our solution in this regime in detail, making contact with the results in [29] and presenting
a number of nontrivial checks of the result. We also discuss how the solution interpolates
between the pure gravity and the AF regimes. Finally in subsection 5.4 we compute W (z),
i.e. the resolvent for 〈TrMn〉 expectation values, study its properties and reproduce the
same pure gravity limiting behavior for it as well.

5.1 Solution with exponential precision for near-flat regime

We will focus here on the limit τ → 0 which was explored for the partition function of
the model in [29]. Here we will compute the function G(h) in this limit with exponential
precision in τ . We will keep the second remaining parameter v finite so that we do not yet
specialize to the vicinity of the critical line discussed in [29] (we will do that in the next
subsection).

5.1.1 Expanding the parameters

Let us first compute how the cut endpoints a, b, c, d and related parameters of the solution
behave in the limit τ → 0. With exponential precision in τ we have

K ' π

2τ , E(k) ' 1 (5.2)

while
sn(v, k′) ' sin v , E(v, k′) ' v . (5.3)

Plugging this into (4.26) we find

Υ ' cos 2v
cos v , Ξ ' τ + 2τv

π
. (5.4)

We also need to expand the theta functions appearing in (4.24). Using a modular trans-
formation to change their modulus from q to q′, we find with exponential precision

θ1( iπvK , q)
θ′1(0, q) ' iτe

4τv2
π sin(2v) . (5.5)

Then (4.24) gives the result for ∆,

∆ ≡ b− c ' 16e−π/τeτ(4v2/π−π) sin2 2v (5.6)

and we get from (4.23), (4.25)

log(λ(1− β2)) = −τ(2v + π) (5.7)

λ ' e
4τv2
π
−πτ ((τ(2v + π)2 − π

)
sin(2v) + π(2v + π) cos(2v)

)
π2 (5.8)
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b ' 1 + e
4τv2
π
−πτ (2 (−4τv2 − 2πτv + π

)
sin(2v)− 4πv cos(2v)

)
π2 (5.9)

a ' 1 + e
4τv2
π
−πτ (4 sin(v)

(
(π − 2τv(2v + π)) cos(v) + π2 sin(v)

)
− 4πv cos(2v)

)
π2 (5.10)

d ' 1 + e
4τv2
π
−πτ (2(π − 2τv(2v + π)) sin(2v)− 4π

(
π cos2(v) + v cos(2v)

))
π2 . (5.11)

The first two of these relations are equivalent to those given in equation (5.5) of [29].17 We
also find that the relation between h and u from (4.19) in our regime becomes

h− b = eτ(4v2/π−π) sin2 2v
cosh2 u− sin2 v

. (5.12)

5.1.2 Computing the integral for G(h)

The nontrivial part of G(h) we need to compute is the integral in (4.31). The term with
theta functions in the integrand is the density (4.28) which we can write with exponential
precision as

ρ = − i
π

log
[
−
θ1
(
π

2K (u− i(v +K ′)), q
)

θ1
(
π

2K (u+ i(v +K ′), q
) ] ' 4τ

π2u(v+π/2)− i
π

log
(

cosh
(
u− iv

)
cosh

(
u+ iv

)) . (5.13)

To write the rest of the integrand in our limit we can expand it directly, or, more conve-
niently, first recall that the integral we need is simply

∫ a
b

dx
h−xρ(x) which we can rewrite

with w as the integration variable,∫ a

b

dx

h− x
ρ(x) = −

∫ K

0
dw

dh(w)
dw

1
h(u)− h(w)ρ(w) . (5.14)

Then we can compute dh(w)/dw with exponential accuracy in our limit τ → 0 from (5.12),
which gives

dh(w)
dw

1
h(u)− h(w) = − sinhw

coshw + cosh u −
sinhw

coshw − cosh u (5.15)

+ sinhw
coshw + sin v + sinhw

coshw − sin v .

Notice also that in our integral (5.14) we can (with exponential precision) replace the upper
integration limit K by ∞ and use the approximation for the density (5.13) on the whole
region of integration, as we justify in detail in appendix C.

From the expression for the density (5.13) we see that there are two types of integrals
we need to compute, corresponding to the two terms in that equation. The first type of
integrals reads18 ∫ ∞

0
dw

wh′(w)
h(u)− h(w) = u2 + iπu+ v2 − π2

4 (5.16)

17Notice the second relation in (5.5) from [29] contains a typo, it should read q = (λ(1− β2))1/(1+2v/π).
18The proper choice of branch we use here corresponds to Im u < 0 and real v > 0.
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which is relatively straightforward to compute in Mathematica. The second type of inte-
grals is

I = −
∫ ∞

0
dw

h′(w)
h(u)− h(w) log cosh(w + iv)

cosh(w − iv) . (5.17)

It is much more nontrivial but can still be computed with the help of a number of tricks. The
initial result we found in Mathematica contains many Li2 polylogarithms, which can then
be further reduced using specialised software (see e.g. [35, 36]).19 The final outcome reads

I = −Li2
(
−e2iv−2u

)
− Li2

(
−e2u+2iv

)
− 2Li2

(
1− e2iv

)
− 2Li2

(
1 + e2iv

)
(5.18)

−2u2 + 4iuv + 2v2 + π2

3 + (−2u− 2iv − iπ) log
(
1 + e2u+2iv

)
+(2u− 2iv + iπ) log

(
e2u + e2iv

)
+ 2iπ log

(
1 + e2iv

)
.

Combining all the parts together and using (5.7), (5.8), we get the final result for G,

G = (λ(1− β2))−
1
2 + v

π

√
cosh2 u− sin2 v

sin 2v exp(Φ) (5.19)

where

Φ = u2
(
−τ(2v + π)

π2 − i

π

)
+ u

(
−4v
π
− 2iτ(2v + π)

π

)
+ τ(π − 2v)(2v + π)2

4π2

+1
6 i
(18v2

π
− 12v + π

)
− log

(
1 + e2iv

)
(5.20)

+(iu+ v − π) log
(
1 + e2u−2iv)

π
+ (−iu+ v + π) log

(
1 + e2u+2iv)

π

− i

2π
[
Li2

(
−e2iv−2u

)
+ Li2

(
−e2u+2iv

)
+ 2Li2

(
1− e2iv

)
+ 2Li2

(
1 + e2iv

)]
In view of (5.7), (5.8) we can exclude τ so this last equation can be also written as

Φ = u2
( log(λ(1− β2))

π2 − i

π

)
+ u

(
− 4v

π
+ 2i log(λ(1− β2))

π

)
− log(λ(1− β2))(π2 − 4v2)

4π2 + 1
6 i
(18v2

π
− 12v + π

)
− log

(
1 + e2iv

)
(5.21)

+(iu+ v − π) log
(
1 + e2u−2iv)

π
+ (−iu+ v + π) log

(
1 + e2u+2iv)

π

− i

2π
[
Li2

(
−e2iv−2u

)
+ Li2

(
−e2u+2iv

)
+ 2Li2

(
1− e2iv

)
+ 2Li2

(
1 + e2iv

)]
We remind that h and u are related in our limit via (5.12), into which can also substi-
tute (5.7) to get

h− b = (λ(1− β2))1− 2v
π

sin2 2v
cosh2 u− sin2 v

. (5.22)

19We thank Ömer Gürdoǧan for help with simplifying the result for this integral.
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We also recall that v can be expressed in terms of λ, β from (5.7), (5.8) which give the
equation fixing it,

λ =
(
λ(1− β2)

)1− 2v
π
(
π(2v + π) cos(2v)− sin(2v)

(
(2v + π) log

(
λ(1− β2)

)
+ π

))
π2 . (5.23)

Thus we have two equations (5.19) and (5.22) which give G and h as functions of
u and therefore implicitly determine G(h). It would be interesting to explore various
critical regimes possibly hidden in this rather nontrivial function. We will recover in the
next subsection the so called ‘flattening’ regime, leaving a more in-depth exploration for
future work.

5.2 Critical regime and flattening limit

The critical regime dominated by large quadrangulations for this matrix model was studied
in [29]. It was understood that it corresponds to the case when the derivative of ∂ρ/∂h
vanishes at the endpoint a. This gives the following additional constraint on the parameters:

1 = cn(u, k′)
sn(u, k′)dn(u, k′)Ξ . (5.24)

This equation allows one to express λ (and all other parameters such as v, b etc) as a
function of β. As a result we have a 1-parametric critical line. Let us also mention
that in the q → 1 regime with exponential precision considered above in section 5.1, the
condition (5.24) for criticality further simplifies and reduces to (see [29])

tan v = − log(λ(1− β2))
π

. (5.25)

A particularly important part of the parameter space is the region when λ → 1 and
β → 0. This also implies that we are close to the critical line (which passes through the
point λ = 1, β = 0) though not necessarily directly on it. This is the limit discussed in [29]
which we call ‘flattening’. As described there it corresponds to τ, v and β all being small
and of the same order ∼ β. We find from (5.7), (5.8) that up to β2 corrections we have in
this limit

q ' λ (5.26)

and
v = β√

2
(x−

√
x2 − 1) . (5.27)

Here we introduced (following [29]) the variable

x = 1 +
√

2(λc − λ)
πβ

(5.28)

which is kept finite in our ‘flattening’ limit, and we also define

λc = 1− πβ√
2

(5.29)
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which corresponds to the critical value of λ (to first order in β). It is also convenient to
write (5.27) as

v = V β , with V = 1√
2

(x−
√
x2 − 1) (5.30)

so that V is a finite parameter which becomes equal to 1/
√

2 on the critical line. We
will write the results in terms of V and β in what follows. From the equations above we
also find

τ ' β 2V 2 + 1
4V . (5.31)

Let us remind that Λ = 2(λc−λ) plays the role of bulk cosmological constant controlling
the area (number of plaquettes) where as β controls the curvature fluctuations.

In the next subsection we will discuss the properties of the solution for G(h) and the
resolvent W̃ in this regime.

5.3 Resolvent for Tr(A4M̃)n correlators in the flattening limit

The flattening limit affects the solution significantly as the cut structure becomes partially
degenerate. From the results given in section 5.1.1 we find that the cut endpoints a, b, c, d
approach the values

a, b, c ' 1 , d ' −3 (5.32)

so that the [a, b] cut collapses to a point and moreover almost touches the [c, d] cut. The dis-
tance between the two cuts (i.e between b and c) is exponentially small as we see from (5.6)
that b− c ∼ e−π/β , while the size of the [a, b] cut is of order ∼ β2.

Expanding our result (5.19) in this regime we get

G = − sin r
2V β

(
1 + βr(r − π)

4πV − βV
(
−r2 + πr + 2(π − 2r) cot(r) + 4

)
2π +O(β2)

)
(5.33)

and
h = b+ 4β2V 2

sin2 r

(
1− βπ2V 2 + 1

4V

)
+O(β4) . (5.34)

Here to make the result more compact we introduced the variable r related to u as

u = −ir − iπ/2 . (5.35)

Our goal is to express h in terms of G and extract the resolvent W̃ from (4.7). From
the structure of (5.33) we see that when τ → 0 we can keep finite the combination

y = 2βV G (5.36)

as well as r. Notice that in order to write the result for W̃(P ) we should take in (4.7)
G = 1/P 2 which gives

y = 2V β/P 2 (5.37)

so that we keep β/P 2 fixed while β, P → 0. Then writing

r = r0 + βr1 + . . . (5.38)
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and expanding (5.33) at small β we find r(y) perturbatively, e.g. r0 = − arcsin y. Plugging
the result then into (5.34), and using that in our regime (5.9) gives

b = 1 + 2β3V
(
2V 2 − 3

)
3π +O(β4) (5.39)

we find to order β3

h− 1 = 4β2V 2

y2 + 2β3V
(
2V 2 − 3

)
3π + β3V

(
2V 2 + 1

) (
2 sin−1(y)

(
sin−1(y) + π

)
− π2)

πy2

+β3
8V 3

(√
1− y2(π + 2 sin−1(y))− 2y

)
πy3 . (5.40)

Now we can write explicitly the resolvent itself, given by

∞∑
n=1

Gn〈 1
N

tr (M̃B)2n〉 = 1√
G
W̃
( 1√

G

)
= h− 1− T2

G
− T4
G(G− 1) . (5.41)

Namely, from (5.40) we find

1√
G

W̃
(

1√
G

)
β3 =

(
4V 3

π + 2V
π

)
sin−1(y)2

y2 +
(

4V 3 + 2V
y2 + 16V 3√1− y2

πy3

)
sin−1(y)

+
8V 3

(√
1− y2 − 1

)
y3 + 4V 3

3π −
16V 3

πy2 −
2V
y
− 2V

π
(5.42)

or equivalently20

W̃(P )
Pβ2 =

arccos2 y −
(
y + π

2
)2

πy
(5.43)

+
(
P 2

β

)2 12y arccos2 y − 48
√

1− y2 arccos y + 4y3 − 3π2y − 48y − 24π
24π

where V is defined in (5.30). This formula for the resolvent is one of our main new results.
It gives the resummation of graphs with shape of a quadrangulated disc and the expansion
of W̃ in powers of G generates the moments 1

N 〈Tr(A4M̃)2k〉 , k = 1, 2, 3, . . . in the flattening
regime of large area and sparse conical defects scattered over the surface.

An important feature of the result (5.43) is the fact that the whole non-trivial depen-
dence on λc−λ, β and G is hidden (apart from some trivial powers of βG) in the parameter
y = 2βV G which can be viewed as a renormalized boundary cosmological constant.

The result (5.43) is rather universal: it should be viewed as partition function of flat
surfaces of disc topology with conical defects and the boundary represented by a zig-zag
line consisting of the links of the boundary of original quadrangulations, as suggested by
the image on figure 2.

20here we substituted arcsin y + π/2 = − arccos y.
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Let us now explore some properties of this result. In view of definition of correlators
in (4.7) we are interested in the expansion of h(G) in powers of y (or G) when y → 0.
We find

h− 1 = 8V 3β3

y3 + β2
(

1− πβ 2V 2 + 1
4V

)
4V 2

y2 + 2β3V

y
(5.44)

−1
3β

3V
(
V 2 − 1

)
y − 2β3V

(
6V 2 − 5

)
15π y2 − 1

20β
3V
(
4V 2 − 3

)
y3 + . . . .

Plugging here y = 2βV G we get

h− 1 = 1
G3 + 1

G2

(
1− πβ 2V 2 + 1

4V

)
+ β2

G
(5.45)

−2
3β

4V 2
(
V 2 − 1

)
G− 8β5V 3 (6V 2 − 5

)
15π G2 − 2

5β
6V 4

(
4V 2 − 3

)
G3 + . . . .

From the first few coefficients in the second line we read off, using (4.7), for instance,
1
N
〈Tr(A4M̃)2〉 = −2

3β
4V 2

(
V 2 − 1

)
+O(β5) , (5.46)

1
N
〈Tr(A4M̃)4〉 = −8β5V 3 (6V 2 − 5

)
15π +O(β6) ,

1
N
〈Tr(A4M̃)6〉 = −2

5β
6V 4

(
4V 2 − 3

)
+O(β7)

and so on. Notice that while in (5.40) we know each coefficient of yn with accuracy of
∼ β3, when we substitute y = 2βV G the accuracy of coefficients of Gn will be different
because v ∼ β. In (5.45) we indicated all the information for the coefficients we can extract
from (5.40).21 Below we will describe several nontrivial checks of the computation.

5.3.1 Checks of the result

Let us show that our result (5.43) for the resolvent passes several nontrivial tests. First,
the part with negative powers of G in (5.45) should match the Tn coefficients as prescribed
by (4.7), which read (recalling that ε = 1 in our conventions)

h− 1 = T2
G

+ T4
G2 + T4

G3 + T4
G4 + . . . . (5.47)

Since T4 ' 1 we notice that coefficients of 1/Gn with n ≥ 4 will not be visible in our
computation, since when we translate them to y = G/(2V β) they will be of order βn and
thus lie outside of the ∼ β3 precision of our result (5.40). Indeed, in (5.45) we see that
coefficients of all these terms are zero within our precision. As for the rest, recalling that

T2 = λβ2 , T4 = λ (5.48)

we see that the coefficients of the three terms in the first line of (5.45) perfectly match the
prescribed form (5.47). That serves as a nontrivial consistency check of our result. Notice
also that we find no O(y0) term in the r.h.s. of (5.40), which is another check of the result.

21that means that e.g. the coefficient of 1/G3 is given up to O(β) corrections, the coefficient of G is up
to O(β2) terms, etc.
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As another test, we can compare the G term with the prediction coming from the
free energy Z that was computed for this model in [29]22 and in our regime it is given by
equation (5.10) from that paper,

Z = 4t4
15β2 (x6 − 5

2x
4 + 15

18x
2 − 5

16 − x(x2 − 1)5/2) (5.49)

where t =
√
λβ2 since we have set ε = 1, while we recall that the scaling parameter x

from [29] is defined by (5.28). Let us note that, curiously, Z becomes simply a polynomial
(divided by β2) when written in terms of V rather than x, i.e. plugging x here from (5.30)
we get

Z = t4

β2

(
V 6

15 −
2V 4

15 + V 2

12

)
. (5.50)

We see that when expressed in terms of t and λ the couplings in (2.15) become T2 =
√
λt

and T2q = λ for q ≥ 2. This means that

1
2N 〈Tr(A4M̃)2〉 = ∂tZ(t, λ) (5.51)

where we note that one should first write Z in terms of precisely t, λ variables (excluding
β) before differentiating it. Evaluating the derivative and translating the result to out
parameters V, β we reproduce the coefficient of the G term in (5.45),

1
N
〈Tr(A4M̃)2〉 ' −2

3β
4V 2

(
V 2 − 1

)
. (5.52)

This is another nontrivial test of our result.

5.3.2 Pure gravity and almost flat limits

In this subsection we will show that our result (5.43) obtained in the flattening limit
interpolates between two interesting critical regimes of this disc partition function: 2d
quantum gravity regime and ‘almost flat’ regime.

Pure gravity limit. The pure gravity limit corresponds to the case when x → 1 as
discussed in [29], and one can see that the free energy (5.49) has a degree 5/2 singularity
there. Since x → 1 we see from (5.28) that λ → λc with the critical value λc given
by (5.29) discussed above. It is also convenient to introduce the ‘bulk cosmological constant’
Λ ∝ λ− λc via

x− 1 = Λ
2 . (5.53)

Substituting V in terms of x into our result (5.42), we find several important features.
First, plugging y = G/(2V β) into (5.42) and expanding for x→ 1, we find that

W̃ = f1 + (x− 1)f2 + (x− 1)3/2f3 + . . . (5.54)

where fn are some lengthy functions of β and G. While at first one may expect that the
singularity of the resolvent for x → 1 will be of the type ∼ (x − 1)1/2 (for instance, V

22see equation (4.25) there which gives Z before taking any limit.
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itself scales as V ' 1/
√

2−
√
x− 1 + . . . ), we see that this is not the case and instead the

singularity in (5.54) is ∼ (x − 1)3/2 due to several nice cancellations. Thus all correlators
〈tr (M̃A4)n〉 also have a (x − 1)3/2 behavior. This nontrivial property is in complete
agreement with the general prediction of [5, 6].

To study the behavior of the disc partition function in this limit, we will need to also
send the parameter y (that corresponds to the boundary fugacity) to a critical value, i.e.
to a singularity of the resolvent. Notice that the resolvent (5.43) has an apparent branch
point at both y = −1 and y = 1, but the first one actually cancels. Thus we will consider
y → 1 which we can also parameterise as

y =
√

2V (1− ζ) . (5.55)

Here we introduced, in addition to Λ, the ‘boundary cosmological constant’ ζ with the
normalization chosen for future convenience. Now, following [29] we consider the scaling
limit when Λ, ζ → 0, keeping fixed the ratio

z =
√

Λ
ζ

(5.56)

which implies also x, y → 1. Then we find that

W̃
β3 = −28− 18π + 9π2

3
√

2π
+
√

2
(
−12− 7π + 3π2) ζ

π
− 8

3ζ
3/2(z − 2)

√
z + 1 +O

(
ζ2
)
. (5.57)

The first two terms are regular in ζ and z and are non-universal. We highlighted in blue
the most interesting part, i.e. the 3rd term which is proportional to ζ3/2(z − 2)

√
z + 1.

This perfectly matches the prediction of [10] for this universal part of the resolvent. That
is another highly nontrivial test of our result.

Almost flat limit. Another key special case is the almost flat (AF) regime for which the
resolvent we are considering was computed in [28]. We can recover that result by setting
V → 0 in our formula (5.42) for W̃ (or equivalently keeping only the 1/g term in (5.43)).
This corresponds to the regime x = 1 +

√
2(λc−λ)
πβ � 1, or β � (λc − λ), i.e. the flattening

parameter β is much bigger than the bulk cosmological constant governing the area. In
this regime we find

W̃(P ) = β2P 2

πy
((sin−1 y)2 − y2 + π(sin−1 y − y)) . (5.58)

Taking into account the difference in notation between our calculation and that of [28], we
perfectly recover equation (4.29) of [28].23

23Note a typo in (4.29) of [28]: the r.h.s. should have an extra t2 factor. To compare (4.29) with our
result we note that in our case t2 = β2 and for V → 0 we see from (5.31) that τ ' β

4V . Therefore the
expansion parameter of [28] defined as xthere = t2G/(2τ) is actually precisely our y. Then it’s immediate
to see that our result (5.58) is the same as (4.29) of [28].
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5.4 Resolvent for TrMn correlators

Here we will study the resolvent for a different kind of correlators — namely, the expectation
values 〈TrMn〉. We recall that it is defined by (2.11),

W (P ) ≡ 1
N
〈 1
P −M

〉 (5.59)

and it can be computed from H(h) via (4.9) which for convenience we repeat here:

W = P − h

P
(5.60)

with
P 2 = heH . (5.61)

Notice that for the purely gaussian model we would have ρ = 1 (corresponding to the
empty Young tableau) and thus H = log h

h−1 which gives

W = P −
√
P 2 − 4
2 (5.62)

which, as was noticed already in [27], corresponds to the tree-like configurations stemming
from pairwise Wick contractions of links of the boundary in a planar way. We see that
h has to stay finite and generic as it is related to the expansion parameter P via (5.60).
However, in the ‘flattening’ regime discussed above, h is close to b due to (5.34), as the
r.h.s. of that equation contains the small parameter β. Moreover in that regime the cut
[a, b] of H(h) collapses and becomes visible as simply a pole, so that inverting the function
H(h) (which we need to do in (5.61)) would only lead to a somewhat trivial result for
the resolvent W (P ). This suggests that we have to look for a somewhat different scaling
regime here.

In order to find a suitable scaling limit we will restore the parameter ε that we have
set to 1 above. While the dependence of the correlators 〈tr (A4M̃)2n〉 we computed before
on ε is rather trivial (see section 4.5), this is not the case for the averages 〈tr (M)2n〉 which
offer the possibility for a more nontrivial behavior. We found that it is natural to still take
the ‘flattening’ limit when β, v, τ are all small but at the same time to send now ε to zero
together with β while keeping their ratio finite,

D = β/ε = fixed , β → 0 . (5.63)

The parameters τ and v are taken to be of order β like before (see (5.31), (5.30)) so that

v = V β , τ ' β 2V 2 + 1
4V . (5.64)

We will shortly see that in this regime h naturally stays arbitrary as we wanted, rather than
being close to b. The nontrivial scaling also introduces D as an extra tunable parameter in
addition to V while keeping the computation similar in many ways to the one done above,
and allowing us to use several results from section 5.1. We will be able to compute the
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resolvent explicitly in this scaling regime which, as we will see, offers a variety of interesting
features to explore.

Let us discuss how one can reinstate ε in various expressions. We first notice
from (4.22), (4.23) that v and q do not have any ε-dependence. Then from (4.24) we
see that the dependence of ∆ on ε is simply

∆ = ∆ε=1
ε2

(5.65)

and moreover
X − 1 = (X − 1)ε=1

ε2
(5.66)

with X = a, b, c, d. Thus we can use results from section 5.1.1 such as (5.6) and (5.9) which
provide these parameters with exponential precision in β. For instance, at leading order
we read off

b ' 1 + 2βD2V
2V 2 − 3

3π (5.67)

a ' 1 + 4D2V 2 , d ' −4D2/β2 , (5.68)

while b − c is exponentially suppressed for small β. We see an important feature that,
unlike in the flattening limit, the cut [a, b] of H(h) remains of finite size in our regime.

These observations also mean that the expression for H, which is the most nontrivial
component of the calculation, can be directly extracted from our solution with exponential
precision in section 5.1 and we do not have to compute any new integrals. We find that

H = log h

h− b
+ 2Φ + iπρ (5.69)

where Φ is given by (5.20). Expanding it at small β ∼ τ we find

H = log h

h− b
+
[
πτ

2 −
2τu2

π
− 2iτu+ 2βV (−2 + (2u+ iπ) tanh(u))

π

]
+ . . . .(5.70)

Finally, the relation between h and u reads

h− b ' 4 V
2D2

cosh2 u
(5.71)

and we see that in contrast to (5.34) the r.h.s. does not contain any small parameters and
h can be kept arbitrary (with finite u like before) which is just what we would like to have,
as explained in the beginning of this section.

The relations we just described are enough to compute the resolvent, namely we express
u in terms of h from (5.71), plug it into (5.70) and then solve (5.61) for h(P ) perturbatively
in β. The result to order O(β) reads

W = L

2D + β
16D3

L2(4D2 − L2) (5.72)

×
[
L2 sin−1(ξ)2 − ξ2

4πξ + ξ3 + 12
√

1− ξ2 sin−1(ξ)− 12ξ + 3ξ sin−1(ξ)2

6π

]
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where to make the formula more compact we introduced the notation

ξ = V L , L = D(P −
√
P 2 − 4). (5.73)

The formula (5.72) represents another important result of this paper. In the next subsection
we will discuss its properties and limiting cases.

The first term in the r.h.s. of (5.72) is the additive contribution of tree-like configura-
tions of the boundary, as mentioned before. Notice that all the bulk cosmological constant
dependence is hidden in the parameter ξ, which can be considered as a renormalized bound-
ary fugacity controlling its length. The factor P −

√
P 2 − 4 there that comes from summing

up the tree-like configurations of parts of the boundary, as well as D controlling the curva-
ture fluctuations, also enter that renormalization. Similarly to the parameter y in (5.43),
the ξ dependence of the two terms in the 2nd line of (5.72) provides the most interesting
information about the critical behaviors of disc quadrangulations with this boundary con-
dition. Actually, these two formulas have a very close structure and we will discuss later
in this section their similarities and differences.

5.4.1 Limits and properties of the result

The large P expansion of the resolvent (5.72) reads

PW = 1 +
8βD4V 3(5−6V 2)

15π + 1
P 2 +

−256βD6V 5(10V 2−7)
315π − 32βD4V 3(6V 2−5)

15π + 2
P 4 (5.74)

+
−512βD8V 7(14V 2−9)

315π − 512βD6V 5(10V 2−7)
105π + 8βD4V 3(5−6V 2)

π + 5
P 6 + . . . .

From the coefficients here we read off the values of the correlators to order O(β) as

1
N
〈tr M2〉 = 1 + 8βD4V 3 (5− 6V 2)

15π (5.75)

1
N
〈tr M4〉 = 2− 256βD6V 5 (10V 2 − 7

)
315π − 32βD4V 3 (6V 2 − 5

)
15π

and so on.
One important test is the behavior of the resolvent for x→ 1. Like for the case of W̃

discussed in section 5.3.2, we expect that the leading singularity should be (x− 1)3/2 and
not (x− 1)1/2. Indeed, plugging V as a function of x into (5.72) and expanding it, we find

W = g1 + g2(x− 1) + g3(x− 1)3/2 + . . . (5.76)

where gk are some functions of P,D and β. Thus we see that the (x − 1)1/2 singularity
non-trivially cancels and we have instead (x− 1)3/2 as expected, in perfect agreement with
the 2d QG behavior of the sphere partition function with a marked point [5, 6].

Just like the result in the flattening limit from section 5.2, our resolvent interpolates
between the almost flat and pure gravity regimes. The AF regime corresponds to V → 0
(equivalently, x→∞) when the resolvent becomes

W = L

2D + β
4D3

4D2 − L2
sin−1(ξ)2 − ξ2

πξ
. (5.77)
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We have also re-checked this result by repeating the derivation of the resolvent starting
from the explicit solution given in [28] for the AF case.

Now let us consider the pure gravity limit. Like in section 5.3.2 we expect that it should
correspond to sending the parameter P to a branch point of the resolvent. Notice that W
has potential branch points at P = ±2 and also P = ±(1/(2V D)+2V D) (i.e. ξ = ±1). As
we are interested in the large P expansion (that generates the correlators), the latter two
branch points are the relevant ones as they are always closer to infinity. Moreover, similarly
to the case of the previous resolvent, the branch point P = −1/(2V D)−2V D cancels. Thus
we will take P to be near the remaining branch point at P = 1/(2V D)+2V D. Equivalently,
we send L →

√
2. Introducing a convenient normalization, we take the scaling similar to

the one in section 5.3.2

L =
√

2(1− ζ) , x = 1 + Λ
2 , z =

√
Λ
ζ

= fixed (5.78)

where again we view Λ as the (renormalized) bulk cosmological constant and ζ as the
boundary one. Then we find for the nontrivial part of the resolvent the behavior

1
β

[
W − L

2D

]
=
(
28− 3π2)D3

π (3− 6D2) + D3 ((6π2 − 88
)
D2 − 9π2 + 100

)
ζ

3π (1− 2D2)2 (5.79)

−ζ3/2(z − 2)
√
z + 1 4

√
2D3

3 (2D2 − 1) +O
(
ζ2
)
.

We see that the last term indeed reproduces the correct scaling function

ζ3/2(z − 2)
√
z + 1 (5.80)

as expected from [10].

5.4.2 Comparison of two resolvents

Curiously, we observed that the two resolvents W̃ and W that we have computed in sec-
tions 5.3 and 5.4 are quite closely related to each other. Namely, after a certain simple
substitution and redefinition of the parameters they become equal up to a rational part.
The latter may be viewed as not that important since it essentially does not affect the
critical behavior, which is determined by branch point singularities.

Concretely, comparing (5.43) and (5.72) we observed that they become almost equal
if we identify y ↔ ξ and also make in the first one the formal replacement arccos y →
− arcsin y. The meaning of that last replacement is not fully clear to us at the moment,
though it looks rather suggestive.24 To make the matching exact we also need to multiply
one of the resolvents by an overall rational factor. As an outcome we find(

C1W̃ (P )
∣∣∣
arccos y→− arcsin y, y→ξ

)
− C2

(
W − L

2D

)
= R0 (5.81)

where

C1 = 1
β3
√
G
, C2 = 4D2L2 − ξ4

2βD3L3 , R0 = −L
3(πξ + 8)
ξ6 − L(4ξ + π)

2ξ3 . (5.82)

24Perhaps it can be viewed as a change of branch in some sense.
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The matching of all the parts including the arcsin and square root functions between
the two resolvents is quite nontrivial and perhaps indicates that the result for the disc
partition function shows a certain universality, regardless of how precisely we construct the
boundary (as a tr (A4M̃)n or a tr (M̃)n insertion). It would be interesting to understand
more rigorously the reason for this matching.

The remaining different rational parts might be attributed to the finite (and generic)
size of the boundary in our setup which introduces essentially lattice artefacts. It is worth
reminding that both formulas (5.43) and (5.72) represent the disc partition functions of
continuous flat manifolds with conical defects scattered over them, but at the same time
with the boundary of any finite lattice size, i.e. consisting of any finite number of links.
This sounds somewhat eclectic and needs some interpretation. Perhaps one may view
such zig-zag boundary as a collection of conical defects stuck on it, making the continuous
picture more consistent. However, at the moment all these possible interpretations are
quite speculative and the relation (5.81) is just a nontrivial observation.

6 Conclusions and prospects

The main result of this work is the derivation of disc partition functions of abstract random
2D manifolds, flat everywhere except conical singularities (with the angle deficits ∆φ =
π, 0,−π,−2π,−3π, . . .) inserted at arbitrary positions and weighted with a certain fugacity
controlling the fluctuations of |∆φ|. Since the deficit of angle is akin to the insertion of
a curvature defect, such fugacity controls the overall scale of the curvature fluctuations of
these manifolds. The area of the manifold and the length of the boundary are weighted
with the corresponding cosmological constants. For two different types of the boundary, we
found that these partition functions are given by expressions (5.43) and (5.72). Due to this
extra curvature fugacity, the formulas interpolate between the “almost flat” regime and the
2D quantum gravity regime. The “almost flat” regime arises in the limit when the curvature
fugacity is such that the overall curvature fluctuations are highly suppressed. It corresponds
to all the negative angle deficit (negative curvature) concentrated at the boundary of the
disc, whereas the positive curvature defects represented by conical singularities with ∆φ =
π are scattered in the interior of the disc. The partition functions (5.43) and (5.72) behave
slightly differently in this regime, i.e. they depend on the type of the boundary conditions.
The 2D quantum gravity regime dominates in the limit opposite to the almost flat case,
when the curvature fugacity favors the proliferation of curvature defects of both signs,
i.e. the local metric of the manifold is highly fluctuating. In this regime, both formulas
reproduce the well known universal answer for the disc partition function of pure 2d QG.

It would be also important to compute the sphere and disc partition functions for
other types of conical defects via DWG. For example the explicit solution for H(h) for
triangulations, i.e. for the conical defects with angle deficits ±π was already written in
appendix 1 of [29] in terms of contour integrals (see also [37]). However, it is rather
involved and needs special efforts for its study. Whereas in the 2d QG regime the results
should be still universal, the limit of almost flat surfaces should depend on the type of
conical defects.
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Interestingly, a somewhat similar problem was approached in the series of papers on
Jackiw-Teitelboim gravity [18–21, 38], where one finds the partition functions (with or
without boundaries) of the manifolds with constant negative intrinsic curvature R < 0 (i.e.
Lobachevski, or AdS2 metric), also with insertions of any number of conical singularities
with arbitrary fixed ∆φ. It seems to be tempting to try to reproduce our results (5.43)
and (5.72) from the results of these papers in the limit R→ 0, at least in the “almost flat”
limit. However, it appears to be a very singular limit in JT gravity, so such a comparison
is still an open question.25

On the other hand, one of our motivations for the current research was to construct and
solve a DWGmodel that would imitate directly the sum over 2D manifolds with dominating
AdS2 background. At first sight, it seems to be easy: for example we can take in the
DWG model (2.3) the following choice of the constants: t∗q = δq,4 (quadrangulations) and
tq = gδq,4 +γδq,6 (only zero or negative curvatures). This guarantees the AdS2 background,
at least on average, for large quadrangulations. However, the Euler theorem tells us that
this can be achieved only with a boundary, i.e. for the disc, and all the positive curvature
should be concentrated at this boundary. It is precisely the last condition which is difficult
to achieve in DWG model. For both types of the boundary conditions, (5.43) and (5.72)
contain both positive and negative curvatures in the bulk. It seems that to guarantee
such a localisation of positive curvature on the boundary we have to compute a different
disc partition function. One possibility is to take WL =

〈
1
N tr (A−1

4 M̃)L
〉
, with the same

condition for quadrangulations 1
N tr Aq4 = δq,4. That means that near the boundary, instead

of the squares we will have the triangles contributing the angles π/3. For example, two
neighboring squares and one triangle give at such vertex the positive angle deficit 2π −
(π/2 + π/2 + π/3) = 2π/3. Consequently, we should be able to localize all such defects at
the boundary. It would be fascinating to explore this direction further.

It would be also interesting to investigate in-depth the analytic structure of the disc
partition function of quadrangulations in the exponential approximation (5.19), (5.22). It
might contain new interesting critical regimes, inaccessible in the “flattening” approxima-
tion used in (5.43) and (5.72).

Another future direction is to properly formulate and explore the spectral curve for
the generic DWG model. It would be very interesting to uncover what type of integrability
arises in such matrix models, and also whether and how some kind of tau functions could
appear here (even at finite N).

We hope to return to these questions in the future.
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A Derivation of the partition function and details on characters

Here we discuss some technical details for the derivations in sections 2 and 3, based on [27].
Using the completeness relation for characters, the integral in (2.1) can be expanded

into characters of couplings tq and t∗q as follows:

Z(t, t∗) =
∑
h

χ{h}[t]
∫
dN

2
M expNtr

(
−N2 M

2
)
χ{h}(AM)

=
∑
h

1
dh
χ{h}[t] χ{h}[t∗]

∫
DMi∆(M) det

k,l
(Mhl

k ) expNtr
(
−N2 M

2
)

(A.1)

where Mi are eigenvalues of M . The integral then can be computed explicitly and is
equal to∫

DMi∆(M) det
k,l

(Mhl
k ) expNtr

(
−N2 M

2
)

= c(N)dh
∏
i(hei − 1)!!hoi !!∏
i,j(hei − hoj)

. (A.2)

The Schur characters with all but one vanishing couplings can be computed explicitly.
For the character with the couplings tq = sδq,m we have (see appendix 8 of [27]):

χ{h}(s) = c(s)
1
m

∑
j
hj
(
N

m

) 1
m

Σihi m−1∏
ε=0

∆(h(ε))∏
i

(h(ε)
i −ε
m

)
!

sgn
[ ∏

0≤ε1<ε2≤(m−1)

∏
i,j

(h(ε2)
i − h(ε1)

j )
]

(A.3)

where h(ε) = ε mod m.
For our principal case of interest in this paper, m = 4, we have from here

χ{h}(A4) ∼
3∏
ε=0

∆(h(ε))∏
i

(h(ε)
i −ε
m

)
!

sgn
[ ∏

0≤ε1<ε2≤3

∏
i,j

(h(ε2)
i − h(ε1)

j )
]

(A.4)

where h(ε) = ε mod 4.
In order to compute the correlator 〈tr M2L〉 as discussed in section 3, we use the

formula similar to (3.6)

tr ML · χ{h}[M ] =
N∑
j=1

χ{h+Lδj}[M ] (A.5)

and, performing the gaussian integral over M via (A.2) we obtain at the saddle point
of (A.1) the result (3.17) given in the main text.

B Mathematica notation for elliptic functions

Here we summarize the Mathematica notation corresponding to some elliptic functions we
use in the text.

Function Mathematica command

K EllipticK[k2]

K ′ EllipticK[1− k2]

v = sn−1
(√

a−c
a−d , k

′
)

InverseJacobiSN[
√

a−c
a−d , 1− k2]

E(v, k′) EllipticE[ArcSin[JacobiSN[v, 1− k2]]]

(B.1)
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C Details on the exponential approximation

Let us show that, as discussed in section 5.1.2, with exponential precision in τ we can do
the following simplifications in the integral in r.h.s. of (5.14):

• Replace the upper integration limit by ∞

• Use the approximation (5.13) for ρ

• Use (5.15) for the quantity J(w) ≡ dh
dw

1
h(u)−h(w)

To demonstrate the 1st point, we recall that K ' π/(2τ) with exponential precision,
and for w greater than this (large) value we can estimate the integrand as

ρ ∼ 1, J(w) ∼ e−2w (C.1)

where the second estimate follows from (5.15). This gives for the part we are dropping∫ ∞
K

dwJ(w)ρ(w) ∼ e−π/τ (C.2)

so it is indeed exponentially small.
Concerning the 2nd point, notice that (5.13) holds as long as q′2 sinh 2u� 1, i.e. up to

values u ∼ 1/τ . For larger u again we can replace ρ→ 1 in order to estimate the integral,
and by the same argument as above we see that the region where (5.13) is not applicable
gives an exponentially small contribution.

Finally to demonstrate the 3rd point, we compute the quantity J(w) by starting
from (4.19), writing it is a series in k around k = 1 and then looking at the large w
behavior. While at leading order we get (5.15), at higher orders we find potentially dan-
gerous terms, e.g. at 2nd order we get a term that at large w behaves as ∼ (k2 − 1)2e2w.
Since the integral goes from 0 to K we can estimate its contribution as ∼ (k2 − 1)2e2K .
Although the second factor here is large and of order e2K ∼ eπ/τ , it is still outmatched
by the first one since (k2 − 1)2 ∼ e−2π/τ so in combination they give ∼ e−π/τ , i.e. an
exponentially small contribution again. One can repeat a similar estimate at higher orders
and verify explicitly that any extra contributions are exponentially suppressed.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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