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Abstract

We construct 2N real parameter solutions to the Burgers’ equation

in terms of determinant of order N and we call these solutions, N order

solutions.

We deduce general expressions of these solutions in terms of exponentials

and study the patterns of these solutions in functions of the parameters

for N = 1 until N = 4.
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1 Introduction

The Burgers’ equation is considered in the following normalization

ut = αuxx − uux (1)

where the subscripts x and t denote partial derivatives, and α an arbitrary real
number.
Bateman [1] introduced this equation (1) in 1915 in a quite similar form. This
equation appears in gas dynamics [2], acoustics [3], heat conduction [4], in soil
water [5], in hydrodynamics turbulence [6, 7, 8], in shock waves [9],...
Bateman [1] constructed the first solutions in 1915. A lot of methods have
been used to solve this equation : the exp-function method [10], the tanh-coth
method [11], the groups actions on coset bundles [12], the Cole-Hopf method
[13, 14, 15], the homotopy perturbation method [16],...
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Solutions to the Burgers’ equation are constructed in this paper. We give so-
lutions in terms of determinant of order N depending on 2N real parameters.
We study some patterns of the solutions in the (x, t) plane for orders 1 to 4.

2 Multi-parameter solutions to the Burger’s equa-

tion

2.1 A first representation

Theorem 2.1 The function v defined by

v(x, t) = −2α∂x ln det(fij)1≤i≤N, 1≤j≤N , (2)

where

fi1 = 1 + aibi exp(−aix+ αa2i t),

fij = a
j
i (3)

is a solution to the Burgers’ equation (1) depending on 2N real parameters ai,
bi, 1 ≤ i ≤ N .

2.2 Another expression of the solutions of the Burgers’

equation

We can expand the determinant in the preceding formula along the first column
to give another expression of the solutions of the Burgers’ equation. It is given
in the following statement :

Proposition 2.1 The function v defined by

v(x, t) = 2α

∑N

i=1(−1)i+1a2i bi exp(−aix+ αa2i t)
∏

1≤l<k≤N, k 6=i, l 6=i(ak − al)
∏

j 6=i aj
∑N

i=1(−1)i+1(1 + aibi exp(−aix+ αa2i t))
∏

1≤l<k≤N, k 6=i, l 6=i(ak − al)
∏

j 6=i aj
, (4)

is a solution to the Burgers’ equation (1) depending on 2N real parameters ai,
bi, 1 ≤ i ≤ N .

Remark 2.1 By convention, for N = 1 or N = 2,
∏

1≤l<k≤N, k 6=i, l 6=i(ak − al)
will be equal to 1.
For N = 1,

∏
j 6=i aj will be equal also to 1.

3 Study of the patterns of solutions for the first

orders

Unlike other equations like the NLS equation for example, the figures in the
plane of the coordinates vary little according to the orders and the values of the
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parameters.
In all the following study, to construct solutions in the (x, t) plane, we choose
the parameter α equal to 1.
We present for orders 1 until 4 some figures depending on parameters. Unfor-
tunately, no specific feature appears from this study.
The following expressions of the solutions to the Burgers’ equation are given
for the coefficient α equal to 1. These results are a consequence of the previous
section. But it is also possible to replace the expression of the solution given in
the proposition in the equation (1) and check that the relation is verified.

3.1 First order solutions

Proposition 3.1 The function v defined by

v(x, t) =
−2 a1

2b1e
a1(−x+ta1)

a1b1e(−x+ta1)a1 + 1
, (5)

is a solution to the Burgers’ equation (1).

Figure 1. Solution of order 1 to (1); on the left, a1 = 1, b1 = 1; on the right,
a1 = 1, b1 = 103.

3.2 Solutions of order two

Proposition 3.2 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (6)

with
n(x, t) = −2 a2a1(−a1b1e

a1(−x+ta1) + a2b2e
a2(−x+ta2))

d(x, t) = −a1a2b1e
(−x+ta1)a1 + a1a2b2e

(−x+ta2)a2 + a1 − a2
is a solution to the Burgers’ equation (1).

3



Figure 2. Solution of order 2 to (1); on the left, a1 = 1, a2 = 2, b1 = 2,
b2 = 0; on the right, a1 = 1, a2 = 2, b1 = 100, b2 = 0.

3.3 Solutions of order three

Proposition 3.3 The function v defined by

v(x, t) =
n(x, t)

d(x, t)2
, (7)

with
n(x, t) = −2 a1a2a3(−a1b1e

a1(−x+ta1)a3+a1b1e
a1(−x+ta1)a2+a2b2e

a2(−x+ta2)a3
−a2b2e

a2(−x+ta2)a1 − a3b3e
a3(−x+ta3)a2 + a3b3e

a3(−x+ta3)a1)

d(x, t) = −a1
2a2a3b2e

(−x+ta2)a2+a1
2a2a3b3e

(−x+ta3)a3+a1a2
2a3b1e

(−x+ta1)a1−

a1a2
2a3b3e

(−x+ta3)a3 − a1a2a3
2b1e

(−x+ta1)a1 + a1a2a3
2b2e

(−x+ta2)a2 + a1
2a2 −

a1
2a3 − a1a2

2 + a1a3
2 + a2

2a3 − a2a3
2

is a solution to the Burgers’ equation (1).

Figure 3. Solution of order 3 to (1); on the left, a1 = 1, a2 = 2, b1 = 2,
b2 = 0; on the right, a1 = 1, a2 = 2, b1 = 100, b2 = 0.
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3.4 Solutions of order four

Proposition 3.4 The function v defined by

v(x, t) =
n(x, t)

d(x, t)2
, (8)

with
n(x, t) = −2 a1a2a3a4(a1b1e

a1(−x+ta1)a3a4
2−a1b1e

a1(−x+ta1)a3
2a4−a1b1e

a1(−x+ta1)a2a4
2+

a1b1e
a1(−x+ta1)a2

2a4+a1b1e
a1(−x+ta1)a2a3

2−a1b1e
a1(−x+ta1)a2

2a3−a2b2e
a2(−x+ta2)a3a4

2+
a2b2e

a2(−x+ta2)a3
2a4+a2b2e

a2(−x+ta2)a1a4
2−a2b2e

a2(−x+ta2)a1
2a4−a2b2e

a2(−x+ta2)a1a3
2+

a2b2e
a2(−x+ta2)a1

2a3+a3b3e
a3(−x+ta3)a2a4

2−a3b3e
a3(−x+ta3)a2

2a4−a3b3e
a3(−x+ta3)a1a4

2+
a3b3e

a3(−x+ta3)a1
2a4+a3b3e

a3(−x+ta3)a1a2
2−a3b3e

a3(−x+ta3)a1
2a2−a4b4e

a4(−x+ta4)a2a3
2+

a4b4e
a4(−x+ta4)a2

2a3+a4b4e
a4(−x+ta4)a1a3

2−a4b4e
a4(−x+ta4)a1

2a3−a4b4e
a4(−x+ta4)a1a2

2+
a4b4e

a4(−x+ta4)a1
2a2)

d(x, t) = −a1
3a2

2a3a4b3e
(−x+ta3)a3+a1

3a2
2a3a4b4e

(−x+ta4)a4+a1
3a2a3

2a4b2e
(−x+ta2)a2−

a1
3a2a3

2a4b4e
(−x+ta4)a4 − a1

3a2a3a4
2b2e

(−x+ta2)a2 + a1
3a2a3a4

2b3e
(−x+ta3)a3 +

a1
2a2

3a3a4b3e
(−x+ta3)a3 − a1

2a2
3a3a4b4e

(−x+ta4)a4 − a1
2a2a3

3a4b2e
(−x+ta2)a2 +

a1
2a2a3

3a4b4e
(−x+ta4)a4 + a1

2a2a3a4
3b2e

(−x+ta2)a2 − a1
2a2a3a4

3b3e
(−x+ta3)a3 −

a1a2
3a3

2a4b1e
(−x+ta1)a1 + a1a2

3a3
2a4b4e

(−x+ta4)a4 + a1a2
3a3a4

2b1e
(−x+ta1)a1 −

a1a2
3a3a4

2b3e
(−x+ta3)a3 + a1a2

2a3
3a4b1e

(−x+ta1)a1 − a1a2
2a3

3a4b4e
(−x+ta4)a4 −

a1a2
2a3a4

3b1e
(−x+ta1)a1 + a1a2

2a3a4
3b3e

(−x+ta3)a3 − a1a2a3
3a4

2b1e
(−x+ta1)a1 +

a1a2a3
3a4

2b2e
(−x+ta2)a2 + a1a2a3

2a4
3b1e

(−x+ta1)a1 − a1a2a3
2a4

3b2e
(−x+ta2)a2 +

a1
3a2

2a3 − a1
3a2

2a4 − a1
3a2a3

2 + a1
3a2a4

2 + a1
3a3

2a4 − a1
3a3a4

2 − a1
2a2

3a3 +
a1

2a2
3a4 + a1

2a2a3
3 − a1

2a2a4
3 − a1

2a3
3a4 + a1

2a3a4
3 + a1a2

3a3
2 − a1a2

3a4
2 −

a1a2
2a3

3 + a1a2
2a4

3 + a1a3
3a4

2 − a1a3
2a4

3 − a2
3a3

2a4 + a2
3a3a4

2 + a2
2a3

3a4 −

a2
2a3a4

3 − a2a3
3a4

2 + a2a3
2a4

3

is a solution to the Burgers’ equation (1).

Figure 4. Solution of order 4 to (1); on the left, a1 = 1, a2 = 2, a3 = 3,
a4 = 4, b1 = 1, b2 = 0, b3 = 0, b4 = 0; on the right, a1 = 1, a2 = 2, a3 = 3,

a4 = 4, b1 = 0, b2 = 0, b3 = 1, b4 = 0.
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4 Conclusion

We have constructed multi-parametric families of solutions to the Burgers equa-
tion.
In particular, we have constructed explicit solutions to the Burgers equation of
order 1− 4 and give some patterns of these solutions in the (x; t) plane.
But, unlike other equations, the characteristics of the solutions cannot be iden-
tified according to the type of parameters.
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