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Abstract

We improve the communication complexity in the Private Simultaneous Messages (PSM)
model, which is a minimal model of non-interactive information-theoretic multi-party computa-
tion. The state-of-the-art PSM protocols were recently constructed by Beimel, Kushilevitz and
Nissim (EUROCRYPT 2018).

We present new constructions of k-party PSM protocols. The new protocols match the
previous upper bounds when k = 2 or 3 and improve the upper bounds for larger k. We also
construct 2-party PSM protocols with unbalanced communication complexity. More concretely,

• For infinitely many k (including all k ≤ 20), we construct k-party PSM protocols for

arbitrary functionality f : [N ]k → {0, 1}, whose communication complexity is Ok(N
k−1
2 ).

This improves the former best known upper bounds of Ok(N
k
2 ) for k ≥ 6, O(N7/3) for

k = 5, and O(N5/3) for k = 4.

• For all rational 0 < η < 1 whose denominator is ≤ 20, we construct 2-party PSM protocols
for arbitrary functionality f : [N ] × [N ] → {0, 1}, whose communication complexity is
O(Nη) for one party, O(N1−η) for the other. Previously the only known unbalanced
2-party PSM has communication complexity O(log(N)), O(N).

1 Introduction

Private Simultaneous Messages (PSM) is a minimal model of secure multi-party computation. It
was introduced by Feige, Kilian and Naor [FKN94], and was generalized to the multi-party setting
by Ishai and Kushilevitz [IK97].

In a PSM protocol for evaluating a k-ary functionality f : [N ]k → {0, 1}, there are k parties.
They all share a common random string. For all i ∈ [k], the i-th party holds a private input xi.
There is additionally a special party, called the referee. The referee receives one message from each
party and is able to compute f(x1, . . . , xk), and should learn no other information about x1, . . . , xk.

PSM is studied as an information-theoretic primitive. The key complexity measure is the
communication complexity. The common random string is crucial for the model as the common
random string is the only mean to protect the privacy against an unbounded adversarial referee,
when the k parties cannot communicate with each other.

In the PSM model, there are relatively efficient PSM protocols for computing non-deterministic
branching programs [FKN94] and modular branching programs [IK97]. But for general function-
alities, little is known regarding their communication complexity in the PSM model. Assuming
every party holds an input in [N ], the best known lower bound of 2-party PSM is 3 logN −
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Figure 1: Illustration of a multi-party PSM protocol

O(log logN) [AHMS20]. In k-party PSM where each party holds a 1-bit input, Ball et al. showed
an Ω(k2/ log k) lower bound [BHI+20]. Though the lower bounds are at most polynomial in the
total input length, all known upper bounds are exponential, leaving an exponential gap between
upper and lower bounds. For any functionality f : [N ]k → {0, 1}, a “näıve” k-party PSM requires
O(Nk−1) communication (the 2-party version was presented in [FKN94]). The first novel upper
bound is O(

√
N) for 2-party PSM [BIKK14], and it was recently generalized to an Ok(N

k/2) upper
bound for k-party PSM [BKN18]. In the same paper, Beimel, Kushilevitz and Nissim also further
optimize the communication complexity for small k = 3, 4, 5. In particular, they obtain an O(N)
upper bound for 3-party PSM. For k = 4 or 5, they improve the protocol by letting parties jointly
emulate their 3-party PSM. Their results are summarized in Table 1.

1.1 Our Contributions

In the paper, we present two classes of results: We present new k-party PSM protocols that improve
the communication complexity for infinitely many k. We introduce the notion of unbalanced 2-party
PSM protocols, which allows a flexible repartition of the communication complexity among the two
parties, and we such protocols.

k-party PSM protocols. We present a framework for constructing multi-party PSM. The new
framework improves the communication complexity upper bounds for infinitely many k. To com-
pute any k-ary functionality f : [N ]k → {0, 1},

• For all k ≤ 20, our framework yields a k-party PSM protocol of communication complexity

O(N
k−1

2 ).

• For all k such that k + 1 is a prime or a prime power, our framework yields a k-party PSM

protocol of communication complexity Ok(N
k−1

2 ).

• For all k, we conjecture that our framework will yield a k-party PSM protocol of communi-

cation complexity Ok(N
k−1

2 ).

2-party unbalanced PSM protocols. We also present a framework for constructing 2-party
PSM protocols with unbalanced communication complexity. The new framework allows us to reduce
the message length of one party at the cost of increasing the communication of the other party.
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Number of parties [BIKK14] [BKN18] This work

2 O(N1/2) O(N1/2) O(N1/2)

3 O(N) O(N)

4 O(N5/3) O(N3/2)

5 O(N7/3) O(N2)

k ≥ 6 O(poly(k) ·Nk/2) 2O(k) ·N
k−1

2

for infinitely many k
including all k ≤ 20

Table 1: The communication complexity of computing general f : [N ]k → {0, 1} in multi-party
PSM model

Communication complexity

of one party

Communication complexity

of the other party

[FKN94] O(logN) N

[BIKK14] O(N1/2) O(N1/2)

This work O(Nη) O(N1−η)

Table 2: The unbalanced communication complexity of general f : [N ] × [N ] → {0, 1} in 2-party
PSM model

We offer an almost smooth trade-off between the communication complexity of the two parties. To
compute any functionality f : [N ]× [N ]→ {0, 1},

• For every rational η ∈ (0, 1) whose denominator is no more than 20, our framework yields a
2-party PSM protocol, where one party sends O(Nη) bits and the other sends O(N1−η) bits.

• For every rational η ∈ (0, 1), we conjecture that our framework will yield a 2-party PSM
protocol, where one party sends Oη(N

η) bits and the other sends Oη(N
1−η) bits.

To some extent, such a trade-off was known in the literature when η = 0. The first 2-party PSM
protocol is of communication complexity O(N) but is strongly unbalanced: one of the two parties
only sends O(logN) bits [FKN94].

1.2 Proof Overview

This section presents the main ideas behind our new multi-party PSM protocols. We start with a
warm-up example of a 3-party PSM, which is originally constructed by [BKN18]. We present it in
a way that matches the framework we will later introduce. Then we present a new 5-party PSM to
demonstrate the power of our framework. The 5-party PSM example relies on new technique such
as “hard terms cancelling”. It can be easily generalized into a framework for constructing k-party
PSM protocols for any odd k. But we do not formally present this framework in the paper.

Instead, in section 3, we develop a modified framework that supports odd as well as even values
of k. The modified framework evenly divides every party’s input into two halves, this idea was first
introduced in [BIKK14]. When we formally present the modified framework in Section 3.1, we use
a 4-party PSM as an example.

In section 4, we develop another framework for constructing unbalanced 2-party PSM protocols.
Most terminologies and techniques are shared between the framework for k-party and the framework
for unbalanced 2-party. Informally, the unbalanced 2-party PSM framework is the “tensor product”
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of two copies of the k-party framework. When we present the new framework in Section 4.1, we
use as an exmaple a 2-party PSM with unbalanced communication O(N1/3), O(N2/3).

Background: 3-Party PSM [BKN18]. In this 3-party PSM protocol, three parties hold
x1, x2, x3 ∈ [N ] respectively. The protocol takes O(N) communication and allows the referee
to learn f(x1, x2, x3).

Fix a finite field F. Let the i-th party locally computes a unit vector xi ∈ FN . That is, all entries
in xi are zero except for xi[xi] = 1. Let F be the truth table of f represented as an N × N × N
array, we have f(x1, x2, x3) = 〈F,x1 ⊗ x2 ⊗ x3〉, where ⊗ denotes the tensor product and 〈·, ·〉
denotes the inner product.

Therefore, it is sufficient to construct a 3-party PSM protocol, where the i-th party has input
xi ∈ FN (not necessarily being an unit vector) and the referee learns 〈F,x1 ⊗ x2 ⊗ x3〉 for some
public F ∈ FN×N×N .

We start by letting the i-th party sample random ri ∈ FN and send the one-time padded
x̄i := xi + ri to the referee. Then the referee can compute 〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉. We call this term a
“masked term”, because it is computed from the masked inputs x̄1, x̄2, x̄3. This masked term can
be decomposed as the sum of several “pure terms”

〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉 = 〈F,x1 ⊗ x2 ⊗ x3〉+

〈F,x1 ⊗ x2 ⊗ r3〉+ 〈F,x1 ⊗ r2 ⊗ x3〉+ 〈F, r1 ⊗ x2 ⊗ x3〉+

〈F,x1 ⊗ r2 ⊗ r3〉+ 〈F, r1 ⊗ x2 ⊗ r3〉+ 〈F, r1 ⊗ r2 ⊗ x3〉+

〈F, r1 ⊗ r2 ⊗ r3〉.

(1)

We classify the pure terms into two categories:

Target Term The term 〈F,x1 ⊗ x2 ⊗ x3〉. It is the term that the referee should learn as a
consequence of the 3-party PSM protocol.

Easy Term All the other terms fall into this category. As the name suggested, there also exist
“hard terms”, which will be introduced in the next example of 5-party PSM.

The easy terms are called “easy” because each of them can be securely revealed to the ref-
eree using only O(N) communication. More formally, let the parties additionally sample random
r1, . . . , r7 ∈ F from their common random string such that r1 + · · · + r7 = 0. There exist sub-
protocols revealing each of

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, r2 + 〈F,x1 ⊗ r2 ⊗ x3〉, r3 + 〈F, r1 ⊗ x2 ⊗ x3〉,
r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, r5 + 〈F, r1 ⊗ x2 ⊗ r3〉, r6 + 〈F, r1 ⊗ r2 ⊗ x3〉,

r7 + 〈F, r1 ⊗ r2 ⊗ r3〉
(2)

to the referee without leaking any other information, taking at most O(N) communication.
Assume that such sub-protocols exist, we can easily finish the 3-party PSM: The i-th party

sends x̄i := xi + ri, they use the the aforementioned sub-protocols to reveal (2). The correctness
follows almost directly from (1).

The only missing piece is to contruct sub-protocols for computing the terms in (2). Let us
discuss them individually:

• For the last term r7 + 〈F, r1 ⊗ r2 ⊗ r3〉, any party (e.g. the first party) can compute it and
send it to the referee.
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• For the term r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, the first party computes it and sends it to the referee.
Similarly for r5 + 〈F, r1 ⊗ x2 ⊗ r3〉 and r6 + 〈F, r1 ⊗ r2 ⊗ x3〉.

• For the term r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, both first and second party need to participate. Since
the first party knows F,x1, r3, it can locally compute a vector g ∈ FN such that

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉 = r1 + 〈g,x2〉.

Then they can jointly reveal it to the referee using the PSM for inner product (more details
are provided in Section B.1). Similarly for r2 + 〈F,x1 ⊗ r2 ⊗ x3〉 and r3 + 〈F, r1 ⊗ x2 ⊗ x3〉.

Example: 5-Party PSM. We will sketch a 5-party PSM protocol for any f : [N ]5 → {0, 1}
with communication complexity O(N2).

Let F be a finite field. Following the same observation we made in the 3-party PSM example, it is
sufficient to construct a PSM protocol for any function of the form (x1, . . . ,x5) 7→ 〈F,x1⊗· · ·⊗x5〉,
where ⊗ denotes the tensor product, the i-th party having input xi ∈ FN , F is public and fixed
being the truth table of f .

For each Ω ⊆ {1, 2, 3, 4, 5}, parties sample a dimension-|Ω| tensor RΩ ∈ FN |Ω| from the common
random string. Define X̄Ω := RΩ +

⊗
i∈Ω xi. For example, X̄{2} := R{2} + x2 and X̄{3,4} :=

R{3,4}+x3⊗x4. Since the communication budget is O(N2), they can perform a PSM sub-protocol
so that the referee learns X̄Ω for all Ω such that |Ω| ≤ 2.

Learning those tensors allows the referee to compute many terms, including 〈F, X̄{1,2}⊗X̄{3,4}⊗
X̄{5}〉. This term can be decomposed into the sum of the following 8 terms:

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗R{5}〉

+ 〈F,x1 ⊗ x2 ⊗R{3,4} ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗R{3,4} ⊗R{5}〉
+ 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉+ 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗R{5}〉
+ 〈F,R{1,2} ⊗R{3,4} ⊗ x5〉+ 〈F,R{1,2} ⊗R{3,4} ⊗R{5}〉.

(3)

Any term that is formed in the same way as the left-hand side of (3), i.e. 〈F, X̄S1 ⊗ · · · ⊗ X̄St〉
for some S1 + · · ·+ St = {1, 2, 3, 4, 5}, is called a masked term. It can be computed by the referee
if |Si| ≤ 2 for all i.

Any term that is formed in the same way as the right-hand side of (3), i.e. 〈F,RS1⊗· · ·⊗RSt⊗
xi1 ⊗· · ·⊗xiw〉 for some S1 + · · ·+St+{i1, . . . , iw} = {1, 2, 3, 4, 5}, is called a pure term. As hinted
by equation (3), every masked term is equal to the sum of 2t pure terms.

The pure terms fall naturally into three categories. In particular, we introduce a new category
called hard terms.

Target term The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉 is called the target term.

Easy term A pure term 〈F,RS1⊗· · ·⊗RSt⊗xi1⊗· · ·⊗xiw〉 is easy if w ≤ 3. Every easy term can
be computed using a PSM protocol with communication complexity O(N2). For example,
〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 is an easy term. The 5th party, based on its view, can compute a

tensor G ∈ FN2
such that 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 = 〈G,x3 ⊗ x4〉. And 〈G,x3 ⊗ x4〉 can

be computed using a PSM protocol (Section B.1) with communication complexity O(N2).

Hard term Any pure term that is neither the target term nor an easy term.
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Let us ignore the easy terms for now. Then equation (3) can be rewritten as

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗R{5}〉+ easy terms.

There is only one hard term left. We would like to cancel out the hard term by combining a
few masked terms. Let us consider the following masked terms: 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉,
〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 and 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉.

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗R{3} ⊗ x4 ⊗ x5〉+ easy terms,

〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4} ⊗ x5〉+ easy terms,

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗R{3} ⊗ x4 ⊗ x5〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4} ⊗ x5〉+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗R{5}〉
+ easy terms.

By carefully combining these masked tensors, we have

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉+ 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
+ 〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 − 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉

= 2 · 〈F,x1 ⊗ · · · ⊗ x5〉+ easy terms.

(4)

Equation (4) shows us how to construct the desired PSM protocol. All of the masked tensors on
the left-hand side of (4) can be computed by the referee. The parties perform a PSM sub-protocol
so that the referee learns the sum of these easy terms. (The details are demonstrated in the last
example of 3-party PSM, and are explained in Section 3.2.) Then from equation (4), the referee
learns 2 · 〈F,x1 ⊗ · · · ⊗ x5〉.

As long as F is a finite field in which 2 6= 0, the referee has learned the target term. The protocol
takes a communication cost of O(N2) field elements.

1.3 Related Works

Besides [BIKK14, BKN18], our construction of PSM protocols is also inspired by the progress in
Conditional Disclosure of Secrets (CDS). Until recently, CDS had a similar exponential gap between
known upper and lower bounds. CDS can be viewed as a variant of PSM where the referee knows
all but 1 bit of the input: Consider the 2-party case and let [N ] be the input domain for both
parties. The upper bounds of O(

√
N) is conserved [BIKK14, GKW15]. A similar lower bound

of Ω(logN) is known [GKW15, AARV17]. Recently, Liu, Vaikuntanathan and Wee improved the

CDS upper bound for arbitrary function to 2Õ
√

logN [LVW17]. In a slightly different setting, the
amortized CDS upper bound per party is improved to Θ(1) [AARV17, AA18].

Gay, Kerenidis and Wee constructed 2-party CDS with smooth communication complexity
trade-off between the two party [GKW15]. In particular, for any η ∈ [0, 1], they constructed a
2-party CDS protocol where one party sends O(Nη) bits and the other sends O(N1−η) bits.

In [ABF+19, CGO21], constructions of ad hoc PSM are presented. In this framework, there
are k parties, but only a subset of them will perform the computation. This notion, expanded
in [BIK17], was shown to imply obfuscation.
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2 Preliminaries

Let N := {0, 1, . . .} denote the set of all natural numbers, and let [n] := {1, . . . , n}. In this paper,
F denotes a field, R denotes a finite commutative ring. For some prime power p, let Fp denote the
unique finite field of order p. A vector will be denoted by a bold face lowercase letter. For a vector
v, let v[i] denote its i-th entry.

2.1 Tensor

A tensor refers to the generalization of vectors and matrices which have multiple indices. Roughly
speaking, a tensor is a multi-dimensional array. In the paper, a tensor will be denoted by a
bold face capital letter. A k-dimensional tensor T ∈ Fn1×n2×...×nk is essentially an array of size
n1 × n2 × · · · × nk. The entries in T are indexed by (i1, . . . , ik) ∈ [n1] × · · · × [nk], and denoted
by T[i1, . . . , ik]. A tensor can also be viewed as a representation of a multi-linear function: any
k-linear function f : Fn1 ×Fn2 × . . .×Fnk → F can be uniquely determined by its coefficient tensor
F ∈ Fn1×...×nk , such that

f(v1, . . . ,vk) =
∑

i1∈[n1],··· ,ik∈[nk]

F[i1, . . . , ik] · v1[i1] · . . . · vk[ik]. (5)

The inner product of two tensors S,T ∈ Fn1×n2×...×nk is defined as

〈S,T〉 :=
∑

i1∈[n1],··· ,ik∈[nk]

S[i1, . . . , ik] ·T[i1, . . . , ik].

Given two tensors S ∈ Fn1×...×nk and T ∈ Fm1×...×m` , we define S⊗T, their tensor product. It
is a tensor in Fn1×...×nk×m1×...×m` such that

(S⊗T)[i1, . . . , ik, j1, . . . , j`] = S[i1, . . . , ik] ·T[j1, . . . , j`].

Using the notation of inner product and tensor product, Equation (5) can also be written as
f(v1, . . . ,vk) = 〈F,v1 ⊗ . . .⊗ vk〉.

2.2 Private Simultaneous Messages

Definition 1 (private simultaneous message). A k-party functionality is a mapping f : X1 × . . .×
Xk → Y, where X1, . . . ,Xk are its input spaces and Y is its output space.

A private simultaneous message (PSM) protocol for a functionality f consists of a randomness
space W and a tuple of deterministic functions (M1, . . . ,Mk,R)

Mi : Xi ×W → {0, 1}cci , for all i ∈ [k],

R : {0, 1}cc1 × . . . {0, 1}cck → {0, 1},

where cci is the communication complexity of the i-th party, cc := cc1 + . . . + cck is the total
communication complexity.

A perfectly secure PSM protocol for f satisfies the following properties:

(correctness.) For all input tuple (x1, . . . , xk) ∈ X1 × . . .×Xk and randomness w ∈ W,

R(M1(x1, w), . . . ,Mk(xk, w)) = f(x1, . . . , xk)

(privacy.) There exists a randomized simulator S, such that for any input (x1, . . . , xk) ∈ X1 ×
. . .×Xk, the joint distribution of M1(x1, w), . . . ,Mk(xk, w) is the same as the distributions of
S(f(x1, . . . , xk)), where the distributions are taken over w ←W and the coin tosses of S.

7



2.3 Randomized Encoding

Randomized encoding is a primitive closely relate to PSM. The randomized encoding of a function
f is a randomized function f̂ . The output f̂(x,w), where w denotes the randomness, contains
sufficient information to recover f(x) and no other information about x.

Definition 2 (randomized encoding). A randomized encoding for a function f : X → Y consists of
a randomized encoding function f̂ : X ×W → Ŷ and a deterministic decoding function R : Ŷ → Y,
where W denotes the randomness space and Ŷ denotes the coding space.

A perfectly secure randomized encoding satisfies the following properties:

(correctness.) For all x ∈ X and randomness w ∈ W,

R(f̂(x,w)) = f(x)

(privacy.) There exists a randomized simulator S, such that for any input x ∈ X , the joint
distribution of f̂(x,w) is the same as the distributions of S(f(x)), where the distributions are
taken over w ←W and the coin tosses of S.

Follows directly from the definitions, (M1, . . . ,Mk,R) is a PSM protocol for f if and only if
(f̂ ,R) is a randomized encoding for f , where f̂(x1, . . . , xk, w) := (M1(x1, w), . . . ,Mk(xk, w)).

In other words, PSM is a special form of randomized encoding, where the input is divided into
a few portions, and each bit of the encoding only depends on the randomness and one portion of
the input.

3 New Multi-party PSM Protocols

In this section, we present one of our main results: for many k, every functionality f : [N ]k → {0, 1}
admits a PSM protocol of communication complexity Ok(N

k−1
2 ).

Theorem 3.1. Let f : [N ]k → {0, 1} be an arbitrary k-party functionality.

• There is a k-party PSM protocol for f with communication and randomness complexity

O(N
k−1

2 ), if k ≤ 20.

• There is a k-party PSM protocol for f with communication and randomness complexity

Ok(N
k−1

2 ), if k + 1 is a prime or a prime power.

In this section, we prove a stronger statement. Let F be a finite field, consider the following
auxiliary k-party functionality AuxkN :

k-party functionality AuxkN

• The i-th party has input x2i−1,x2i ∈ F
√
N

• The output is 〈F,x1 ⊗ · · · ⊗ x2k〉, where F is public and fixed

As shown in the beginning of Section 3.1, a PSM protocol for AuxkN implies a PSM for f : [N ]k →
{0, 1} with the same communication complexity. The reduction consists of having F be the truth
table of f .
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We will present a framework of constructing k-party PSM for AuxkN , whose communication

complexity is Ok(N
k−1

2 ). Roughly speaking, the framework reduces the problem to a system of
linear equations. A solution of the system implies a PSM protocol with the desired communication
complexity. Therefore, we should rule out the possibility that the induced system has no solution.
We partially achieve such a goal. We solve the induced system for infinitely many k:

• For all k ≤ 20, we checked that the induced system of linear equations is solvable. For small
k we solve the system by hand, and for larger k we verified it with a computer program.

• For all k such that k + 1 is a prime power, we prove that the system is solvable.

Backed by the above observations, we strongly believe the induced system is solvable for all k.

Conjecture 1. Let f : [N ]k → {0, 1} be an arbitrary k-party functionality. There is a k-party

PSM protocol for f with communication and randomness complexity Ok(N
k−1

2 ).

Organization Section 3.1 presents our framework for constructing multi-party PSM, introduces
new notations, and gives a 4-party PSM as a concrete example. The following Sections 3.2, 3.3, 3.4
are independent. Section 3.2 provides more technical detail of the PSM protocols yielded by our
framework. Section 3.3 shows how the framework works for small k, and Section 3.4 shows how
the framework works for any integer k such that k + 1 is a prime power.

3.1 A Framework for Multi-party PSM

As mentioned in the beginning of Section 3, the functionality f : [N ]k → {0, 1} can be reduced to
functionality AuxkN . The reduction works as follows: Let x1, . . . , xk be the input, the j-th party has

input xj ∈ [N ]. We evenly divide xj into x′2j−1, x
′
2j ∈ [

√
N ]. For each i ∈ [2k], let xi := ex′i ∈ F

√
N

be the x′i-th standard unit vector. We reduce f to AuxkN :

f(x1, . . . , x2k) = 〈F,x1 ⊗ . . .⊗ x2k〉

where F is the truth-table of f . For the remainder of the section, it is thus sufficient to construct
a PSM protocol for AuxkN .

For each non-empty Ω ⊆ [2k], our protocol will sample a random dimension-|Ω| tensor RΩ ∈
R(
√
N)|Ω| from the common random string1. Define X̄Ω := RΩ +

⊗
i∈Ω xi. E.g., X̄{2} := R{2}+ x2,

X̄{3,4} := R{3,4} + x3 ⊗ x4.

Within the communication complexity budget O(N
k−1

2 ), we can let the referee learn X̄Ω for
all Ω such that |Ω| ≤ k − 1 (more details in Section 3.2). The referee does not learn extra infor-
mation as X̄Ω is one-time padded by RΩ. For example when k = 4, we can let the referee learn
tensors X̄{1}, X̄{2}, . . . , X̄{8}, X̄{1,2}, X̄{1,3}, . . . , X̄{7,8}, X̄{1,2,3}, X̄{1,2,4}, . . . , X̄{6,7,8}. The referee
learns those tensor by having subsets of the parties recursively perform PSM ptocols with a smaller
number of parties, so that the referee learns the required information. Learning those tensors allows
the referee to compute many terms including 〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉, which equals to the

1A note on the randomness complexity: The final protocol uses RΩ only if |Ω| ≤ k − 1.
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sum of the following 8 terms,

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗R{7,8}〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉
+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗R{7,8}〉.

(6)

Before we continue, let us introduce a few notations to describe the terms appearing in (6). The
term (tensor) on the left hand side of the equation will be called a masked term (masked tensor).
The terms (tensors) on the right hand side of the equation will be called pure terms (pure tensors).

Definition (masked tensor & masked term). A masked tensor is a tensor product X̄Ω1 ⊗ . . . ⊗
X̄Ωt

2 such that Ω1, . . . ,Ωt are disjoint and their union equals [2k]. The shape of a masked tensor
X̄Ω1 ⊗ . . . ⊗ X̄Ωt is the multiset {|Ω1|, . . . , |Ωt|}. The inner product of a masked tensor and F is
called a masked term.

For any multiset P such that sum(P ) = 2k, let
∑

X̄(P ) denote the sum of all masked tensors
of shape P , let

∑
〈F, X̄(P )〉 denote the sum of all masked terms of shape P . We thus have∑

〈F, X̄(P )〉 = 〈F,
∑

X̄(P )〉.

Definition (pure tensor & pure term). A pure tensor is a tensor product RΩ1 ⊗ . . .⊗RΩt ⊗ xi1 ⊗
. . .⊗ xiw such that {i1, . . . , iw},Ω1, . . . ,Ωt are disjoint and their union equals [2k]. The shape of a
pure tensor RΩ1 ⊗ . . .⊗RΩt ⊗ xi1 ⊗ . . .⊗ xiw is the multiset {|Ω1|, . . . , |Ωt|}. The inner product of
a pure tensor and F is called a pure term.

For any multiset P such that sum(P ) ≤ 2k, let
∑

R(P ) denote the sum of all pure tensors of
shape P , let

∑
〈F,R(P )〉 denote the sum of all pure terms of shape P . We thus have

∑
〈F,R(P )〉 =

〈F,
∑

R(P )〉.

The pure terms (pure tensors) can be grouped into 3 natural categories:

target term (target tensor) 〈F,x1 ⊗ . . . ⊗ x2k〉 is called the target term as it is desired func-
tionality output. The corresponding tensor x1 ⊗ . . .⊗ x2k is called the target tensor.

easy terms (easy tensors) A pure tensor RΩ1 ⊗ . . . ⊗ RΩt ⊗ xi1 ⊗ . . . ⊗ xiw is called an easy
tensor if at most k+1 out of the 2k dimensions are contributed by vector xi’s (i.e., w ≤ k+1).
The corresponding term is called an easy term. Every easy term admits a PSM protocol with

communication complexity no more than O(poly(k) · N
k−1

2 ) field elements (more details in
Section 3.2).

hard terms (hard tensors) The rest.

2We implicitly exchange the order of indices in tensor product. E.g. when k = 2, the masked tensor X̄{1,4}⊗X̄{2,3}
is defined by (X̄{1,4} ⊗ X̄{2,3})[j1, j2, j3, j4] = X̄{1,4}[j1, j4] · X̄{2,3}[j2, j3].
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With this terminology, we can give an overview of our PSM protocol. As the referee can learn
X̄Ω for all Ω such that |Ω| ≤ k − 1, the referee can compute any masked term of shape P if
max(P ) ≤ k − 1. As suggested by Equation (6), every masked term is the linear combination of a
few pure terms. Ideally, the referee only has to combine some computable masked terms, so that
all the hard terms cancel out, resulting a linear combination of the target term and easy terms:

a linear combination of masked terms = target term + some easy terms. (7)

Once we are in this ideal case, the easy terms can be easily removed by standard techniques,
resulting the desired k-party PSM protocol for AuxkN . (More details are presented in Section 3.2.)
Therefore, the task is reduced to a linear algebra problem: is the target term (resp. tensor) spanned
by the referee-computable masked terms (resp. tensors) and easy terms (resp. tensors)?

When solving such linear algebra problem, it is fair to assume that the solution is symmetric.
(Otherwise, assume that a solution that looks like (7) is asymmetric, it can be symmetrized by
applying the symmetric sum on both sides.)

We have defined the (symmetric) sum of terms or tensors of the same shape. For example when
k = 4,

∑
X̄(3, 3, 2) is defined as the sum of all masked tensors X̄Ω1 ⊗ X̄Ω2 ⊗ X̄Ω3 such that the

multiset {|Ω1|, |Ω2|, |Ω3|} equals {3, 3, 2}, i.e.∑
X̄(3, 3, 2) := X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8} + X̄{1,2,3} ⊗ X̄{4,5,7} ⊗ X̄{6,8}

+ X̄{1,2,3} ⊗ X̄{4,5,8} ⊗ X̄{5,6} + X̄{1,2,3} ⊗ X̄{4,6,7} ⊗ X̄{5,8}

+ . . .+ X̄{3,4,5} ⊗ X̄{6,7,8} ⊗ X̄{1,2}.

Let’s revisit Equation (6),

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉︸ ︷︷ ︸
a masked term of shape {3, 3, 2}

= 〈F,x1 ⊗ · · · ⊗ x8〉︸ ︷︷ ︸
a pure term of shape {}

+ 〈F,x1 ⊗ · · · ⊗ x6 ⊗R{7,8}〉︸ ︷︷ ︸
a pure term of shape {2}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗ x7 ⊗ x8〉+ 〈F,R{1,2,3} ⊗ x4 ⊗ · · · ⊗ x8〉︸ ︷︷ ︸
pure terms of shape {3}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗R{7,8}〉+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉︸ ︷︷ ︸
pure terms of shape {3, 2}

+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗ x7 ⊗ x8〉︸ ︷︷ ︸
a pure term of shape {3, 3}

+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗R{7,8}〉︸ ︷︷ ︸
a pure term of shape {3, 3, 2}

.

By applying a symmetric sum on both sides, we get∑
〈F, X̄(3, 3, 2)〉 = 280 ·

∑
〈F,R()〉︸ ︷︷ ︸

the target term

+ 10 ·
∑
〈F,R(2)〉︸ ︷︷ ︸

hard pure terms

+ 10 ·
∑
〈F,R(3)〉+

∑
〈F,R(3, 2)〉+

∑
〈F,R(3, 3)〉+

∑
〈F,R(3, 3, 2)〉︸ ︷︷ ︸

easy pure terms

.
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As another example of the symmetric sum of masked term that the referee can compute,∑
〈F, X̄(2, 2, 2, 2)〉 = 105 ·

∑
〈F,R()〉︸ ︷︷ ︸

target term

+ 15 ·
∑
〈F,R(2)〉︸ ︷︷ ︸

hard pure terms

+ 3 ·
∑
〈F,R(2, 2)〉+

∑
〈F,R(2, 2, 2)〉+

∑
〈F,R(2, 2, 2, 2)〉︸ ︷︷ ︸

easy pure terms

.

By carefully combining the above two equations, we get

3 ·
∑
〈F, X̄(3, 3, 2)〉 − 2 ·

∑
〈F, X̄(2, 2, 2, 2)〉 = 630 ·

∑
〈F,R()〉+ easy terms, (8)

which induces a 4-party PSM whose communication complexity is O(N3/2), if we let F to be any
field in which 630 6= 0. (Section 3.2 explains how Equation (8) implies a 4-party PSM with desired
communication complexity.)

In the general k-party case, for each legit shape P of masked term (i.e., P is a multiset consisting
of positive integers and sum(P ) = 2k),∑

〈F, X̄(P )〉 =
∑
Q⊆P

α(Q) ·
∑
〈F,R(P \Q)〉, (9)

where P \Q is the multiset subtraction and

α(Q) :=
(sum(Q))!∏

i∈Q i! ·
∏
m∈Z+(number of m’s in Q)!

(10)

is the following combinatoric number: α(Q) is the number of ways to partition sum(Q) distinct
elements into some unordered subsets S1, . . . , St such that Q = {|S1|, . . . , |St|}. Equations (9), (10)
are proved in Appendix A.

3.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped some technique details in Section 3.1.
In this section, we will show how to construct a k-party PSM protocol assuming that the target
term is spanned by referee-computable masked terms and easy pure terms.

By our assumption, there are referee-computable masked terms X̄(1), . . . , X̄(t), easy pure terms
R(1), . . . ,R(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F such that

〈F,x1 ⊗ · · · ⊗ x2k〉 =

t∑
j=1

ajX̄
(j) +

s∑
j=1

bjR
(j). (11)

A k-party PSM for f , together with its correctness and security, is yielded by the following
facts:

• Fact I:
∑s

j=1 bjR
(j) and X̄Ω for all 0 < |Ω| ≤ k − 1 form a randomized encoding of 〈F,x1 ⊗

· · · ⊗ x2k〉. That is, they contain the sufficient information to recover 〈F,x1⊗ · · · ⊗ x2k〉, and
they are garbled with additional randomness so that no other information can be recovered.

• Fact II: For every Ω ⊆ [2k] such that 0 < |Ω| ≤ k − 1, there is a PSM protocol for X̄Ω with

communication complexity poly(k) ·N
k−1

2 field elements.
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• Fact III: There is a PSM protocol for
∑s

j=1 bjR
(j) with communication complexity poly(k) ·

s ·N
k−1

2 field elements.

The k-party PSM for f works as the follows: For each Ω ⊆ [2k] such that 0 < |Ω| ≤ k − 1, use
the PSM guaranteed by Fact II to reveal X̄Ω to the referee. Use the PSM guaranteed by Fact III
to reveal

∑s
j=1 bjR

(j) to the referee. Then Fact I allows the referee to compute the output from
Equation (11).

Proof of Fact I. Equation (11) shows that 〈F,x1⊗· · ·⊗x2k〉 can be computed from the encoding.
Moreover, the distribution of the encoding is perfectly simulatable: The joint distribution of tensors
X̄Ω for 0 < |Ω| ≤ k − 1 is uniform distribution, as they are independently one-time padded. Then
the value of

∑s
j=1 bjR

(j) is uniquely determined by equation (11).

Proof of Fact II. Each coordinate of XΩ is defined as

X̄{j1,...,jt}[i1, . . . , it] = R{j1,...,jt}[i1, . . . , it] + xj1 [i1] · . . . · xjt [it],

which is an arithmetic formula of size O(k). Thus each coordinate has a PSM protocol with
communication complexity poly(k) field elements [IK00].

Proof of Fact III. Sample random c1, . . . , cs ∈ F from the common random string such that
c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM protocol for computing bjR

(j) + cj for
each j. Say this easy pure term R(j) is 〈F,RΩ1 ⊗ . . . ⊗ xi1 ⊗ . . . ⊗ xiw〉. By our definition of an
easy term, w ≤ k + 1. There exists a special party, such that the other parties hold at most k − 1
of xi1 , . . . ,xiw . When w = k + 1, the special party is the one who holds two of xi1 , . . . ,xiw (the
existence is guaranteed by the pigeonhole principle). W.l.o.g. assume that the other parties hold
xi1 , . . . ,xiw′ such that w′ ≤ k − 1. Then the special party knows a dimension-w′ tensor G (which
is determined by its input and bj ,RΩ1 ,RΩ2 , . . . ) such that

bjR
(j) + cj = 〈G,xi1 ⊗ . . .⊗ xiw′ 〉+ cj ,

which admits a PSM protocol (presented in Section B.1) with communication complexityO(poly(k)·
Nw′/2) field elements.

3.3 When k is Small

As shown in Section 3.1, to construct PSM protocol for AuxkN with communication complexity

Ok(N
k−1

2 ), it is sufficient to prove the target term is spanned by the referee-computable masked
terms and easy pure terms. In this section, we verify the condition holds for all k ≤ 20, which
proves the first bullet of Theorem 3.1. However, we do not have a general construction of such
linenar systems of equations for an arbitrary k.

The case when k = 2 was solved by [BIKK14]. Our framework yields the same protocol from∑
〈F, X̄(1, 1, 1, 1)〉 =

∑
〈F,R()〉+ easy terms.

The case when k = 3 was solved by [BKN18]. Our framework yields a similar protocol from∑
〈F, X̄(2, 2, 2)〉 =

∑
〈F,R()〉+ easy terms.

The case when k = 4 is solved in section 3.1.
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For k = 5, consider the following two masked terms,∑
〈F, X̄(4, 4, 2)〉 = 1575 ·

∑
〈F,R()〉+ 35 ·

∑
〈F,R(2)〉+ easy terms,∑

〈F, X̄(4, 2, 2, 2)〉 = 3150 ·
∑
〈F,R()〉+ 210 ·

∑
〈F,R(2)〉+ easy terms.

We have 6 ·
∑
〈F, X̄(4, 4, 2)〉 −

∑
〈F, X̄(4, 2, 2, 2)〉 = 6300 ·

∑
〈F,R()〉+ easy terms, which induces

a 5-party PSM with communication complexity O(N2).
For k = 6, consider the following masked terms ∑〈F, X̄(5, 4, 3)〉∑

〈F, X̄(4, 4, 4)〉∑
〈F, X̄(3, 3, 3, 3)〉

 =

27720 126 56
5775 35
15400 280

∑〈F,R()〉∑
〈F,R(3)〉∑
〈F,R(4)〉

+ easy terms

Therefore, 100 ·
∑
〈F, X̄(5, 4, 3)〉 − 160 ·

∑
〈F, X̄(4, 4, 4)〉 − 45 ·

∑
〈F, X̄(3, 3, 3, 3)〉 = 1155000 ·∑

〈F,R()〉+ easy terms, which induces a 6-party PSM with communication complexity O(N2.5).
For k = 7, consider the following masked terms∑〈F, X̄(4, 4, 4, 2)〉∑

〈F, X̄(6, 6, 2)〉∑
〈F, X̄(6, 4, 4)〉

 =

525525 5775 1575
42042 462
105105 210

∑〈F,R()〉∑
〈F,R(2)〉∑
〈F,R(4)〉

+ easy terms

Therefore, 14 ·
∑
〈F, X̄(4, 4, 4, 2)〉 − 175 ·

∑
〈F, X̄(6, 6, 2)〉 − 105 ·

∑
〈F, X̄(6, 4, 4)〉 = −11036025 ·∑

〈F,R()〉+ easy terms, which induces a 7-party PSM with communication complexity O(N3).
For larger k, we wrote a simple program3 to check if the target term can be spanned by referee-

computable masked terms and easy terms. For simplicity, our program requires specifying the finite

field in advance. Our program verifies that the framework yields a PSM protocol with c.c. O(N
k−1

2 )
for every k ≤ 20. For example when k = 20, our program found:

∑
〈F,R()〉 = 2895 ·

∑
〈F, X̄(19, 19, 2)〉 + 1902 ·

∑
〈F, X̄(19, 17, 4)〉 + 2843 ·

∑
〈F, X̄(19, 16, 5)〉 + 1025 ·

∑
〈F, X̄(19, 16, 3, 2)〉 + 691 ·

∑
〈F, X̄(19, 15, 6)〉 + 2507 ·∑

〈F, X̄(19, 15, 4, 2)〉 + 1923 ·
∑
〈F, X̄(19, 14, 7)〉 + 1836 ·

∑
〈F, X̄(19, 14, 5, 2)〉 + 2385 ·

∑
〈F, X̄(19, 13, 8)〉 + 2073 ·

∑
〈F, X̄(19, 13, 6, 2)〉 + 1312 ·

∑
〈F, X̄(19, 12, 9)〉

+2963·
∑
〈F, X̄(19, 12, 7, 2)〉+568·

∑
〈F, X̄(19, 11, 10)〉+975·

∑
〈F, X̄(19, 11, 8, 2)〉+2445·

∑
〈F, X̄(19, 10, 9, 2)〉+2047·

∑
〈F, X̄(19, 9, 8, 4)〉+318·

∑
〈F, X̄(19, 9, 8, 2, 2)〉

+ 2118 ·
∑
〈F, X̄(19, 9, 6, 6)〉 + 2189 ·

∑
〈F, X̄(19, 9, 6, 4, 2)〉 + 1271 ·

∑
〈F, X̄(19, 9, 6, 2, 2, 2)〉 + 1557 ·

∑
〈F, X̄(19, 9, 4, 4, 4)〉 + 2482 ·

∑
〈F, X̄(19, 9, 4, 4, 2, 2)〉 + 173 ·∑

〈F, X̄(19, 9, 4, 2, 2, 2, 2)〉+1943·
∑
〈F, X̄(19, 9, 2, 2, 2, 2, 2, 2)〉+29·

∑
〈F, X̄(18, 18, 4)〉+1247·

∑
〈F, X̄(18, 17, 5)〉+1768·

∑
〈F, X̄(18, 17, 3, 2)〉+2735·

∑
〈F, X̄(18, 16, 6)〉

+ 416 ·
∑
〈F, X̄(18, 16, 4, 2)〉+ 1009 ·

∑
〈F, X̄(18, 15, 7)〉+ 130 ·

∑
〈F, X̄(18, 15, 5, 2)〉+ 138 ·

∑
〈F, X̄(18, 14, 8)〉+ 52 ·

∑
〈F, X̄(18, 14, 6, 2)〉+ 2661 ·

∑
〈F, X̄(18, 13, 9)〉

+ 26 ·
∑
〈F, X̄(18, 13, 7, 2)〉+ 731 ·

∑
〈F, X̄(18, 12, 10)〉+ 16 ·

∑
〈F, X̄(18, 12, 8, 2)〉+ 145 ·

∑
〈F, X̄(18, 11, 11)〉+ 12 ·

∑
〈F, X̄(18, 11, 9, 2)〉+ 818 ·

∑
〈F, X̄(18, 10, 8, 4)〉

+ 1728 ·
∑
〈F, X̄(18, 10, 8, 2, 2)〉+ 2676 ·

∑
〈F, X̄(18, 10, 6, 6)〉+ 1533 ·

∑
〈F, X̄(18, 10, 6, 4, 2)〉+ 2490 ·

∑
〈F, X̄(18, 10, 6, 2, 2, 2)〉+ 760 ·

∑
〈F, X̄(18, 10, 4, 4, 4)〉+ 747 ·∑

〈F, X̄(18, 10, 4, 4, 2, 2)〉+ 2752 ·
∑
〈F, X̄(18, 10, 4, 2, 2, 2, 2)〉+ 83 ·

∑
〈F, X̄(18, 10, 2, 2, 2, 2, 2, 2)〉+ easy terms mod 3001

which induces a PSM protocol with c.c. O(N9.5).

3.4 When k + 1 is a Prime Power

As shown in Section 3.1, to construct PSM protocol for AuxkN with communication complexity

Ok(N
k−1

2 ), it is sufficient to prove the target term is spanned by the referee-computable masked
terms and easy pure terms. In this section, we prove that the condition holds for all k such that
k + 1 is a prime power, which proves the second bullet of Theorem 3.1.

When k + 1 is a prime p or a prime power pe, we obtain a simple k-party PSM, by doing
computations in the finite field Fp.

3The source code can be downloaded from https://github.com/tianren/psm.
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Proof. Consider the symmetric sum of all masked terms of shape {k − 1, 1, . . . , 1}∑
〈F, X̄(k − 1, 1, . . . , 1︸ ︷︷ ︸

k+1 1’s

)〉

=
k+1∑
i=0

α(k − 1, 1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉

+
k+1∑
i=0

α(1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(k − 1, 1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉

= α(k − 1, 1, . . . , 1︸ ︷︷ ︸
k+1 1’s

) ·
∑
〈F,R()〉

+

k−2∑
i=1

α(k − 1, 1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉+ easy terms.

(12)

(Recall that a pure term of shape P is easy iff sum(P ) ≥ k − 1.)
W.l.o.g. assume k > 2. By definition, α(k − 1, 1, . . . , 1︸ ︷︷ ︸

t 1’s

) =
(
k−1+t
k−1

)
. Lemma 3.3 shows that

α(k − 1, 1, . . . , 1︸ ︷︷ ︸
k+1 1’s

) =
(

2k
k−1

)
≡ 1 mod p, while α(k − 1, 1, . . . , 1︸ ︷︷ ︸

k+1−i 1’s

) =
(

2k−i
k−1

)
is a multiple of p for all

1 ≤ i ≤ k − 2. Therefore,∑
〈F, X̄(k − 1, 1, . . . , 1︸ ︷︷ ︸

k+1 1’s

)〉 =
∑
〈F,R()〉+ easy terms mod p,

which induces a k-party PSM protocol with c.c. Ok(N
k−1

2 ).

Lemma 3.2. For any prime p and positive integer e,
(
pe

t

)
is a multiple of p for all 0 < t < pe.

Proof. (
pe

t

)
=
pe

t
·
(
pe − 1

t− 1

)
.

Lemma 3.3. For any prime p and positive integer e, binomial coefficient
(
pe+t
pe−2

)
is a multiple of p

for all 0 ≤ t ≤ pe − 3, while binomial coefficient
(

2pe−2
pe−2

)
≡ 1 mod p.

Proof. For every 0 ≤ t ≤ pe − 3,(
pe + t

pe − 2

)
=

t∑
j=0

(
t

j

)(
pe

pe − 2− j

)
︸ ︷︷ ︸

multiple of p

is a multiple of p. While(
2pe − 2

pe − 2

)
=

pe−3∑
j=0

(
pe − 2

j

)(
pe

pe − 2− j

)
︸ ︷︷ ︸

multiple of p

+

(
pe − 2

pe − 2

)(
pe

0

)
≡ 1 mod p.
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4 Unbalanced 2-party PSM Protocols

The two parties in 2-party PSM are conventionally called Alice and Bob. Let x ∈ [N ] denote Alice’s
and y ∈ [N ] denote Bob’s input. In this section, we show that every functionality f : [N ]× [N ]→
{0, 1} admits a 2-party PSM protocol, where Alice sends O(Nη) bits and Bob sends O(N1−η) bits.

Theorem 4.1. For any functionality f : [N ] × [N ] → {0, 1}, and any η = d/k such that d, k are
integers and 0 < d < k ≤ 20, there is a 2-party PSM protocol for f with unbalanced communication
complexity O(Nη), O(N1−η).

In this section, we prove a stronger statement. Let F be a finite field, consider the following
auxiliary 2-party functionality Aux2

k,N :

2-party functionality Aux2
k,N

• Alice has input x1, . . . ,xk ∈ F
k√N

• Bob has input y1, . . . ,yk ∈ F
k√N

• The output is 〈F,x1 ⊗ . . . ⊗ xk ⊗ y1 ⊗ . . . ⊗ yk〉, where F is public and
fixed

A PSM protocol for Aux2
k,N implies a PSM for f : [N ]× [N ]→ {0, 1} with the same communication

complexity of each party. The reduction consists of having F be the truth table of f .
We present a framework for the construction of 2-party PSM protocols for Aux2

k,N , where Alice

sends Oη(N
η) bits and Bob sends Oη(N

1−η) bits, for all η ∈ { 1
k , . . . ,

k−1
k }. Similar to the framework

in Section 3, the framework in this section also reduces the problem to a system of linear equa-
tions. A solution of the system implies a 2-party PSM protocol with the desired communication
complexity. By verifying with a computer, we find that our framework works well for all η whose
denominator is no larger than 20. Backed by those observations, we believe that our framework
allows for a smooth trade-off between the communication complexity of Alice and Bob:

Conjecture 2. For any functionality f : [N ]× [N ]→ {0, 1}, and any 0 < η < 1, there is a 2-party
PSM protocol for f with unbalanced communication complexity Oη(N

η), Oη(N
1−η).

Organization Section 4.1 presents our framework for constructing multi-party PSM, introduces
new notations, and gives as a concrete example a 2-party PSM with communicationO(N1/3), O(N2/3).
The following Sections 4.2, 4.3 are independent. Section 4.2 provides more technical detail of the
PSM protocols yielded by our framework. Section 4.3 shows how the framework works for small k.

4.1 A Framework for 2-party PSM

Consider a rational η = d
k ∈ (0, 1). Let F be a finite commutative ring that we will fix later. All

the operations are within ring F unless otherwise specified.
As mentioned in the beginning of Section 4, there is an non-interactive reduction from the

functionality f : [N ] × [N ] → {0, 1} to functionality Aux2
k,N . The reduction works as follows: Let

x, y ∈ [N ] be the input of Alice and Bob respectively. Evenly divide x into x1, . . . , xk ∈ [ k
√
N ],

similarly divide y into y1, . . . , yk ∈ [ k
√
N ]. For each j ∈ [k], let xj := exj ∈ F

√
N be the xj-th
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standard unit vector. Similarly let yi := eyi ∈ F
k√N for every i ∈ [k]. The functionality f can be

reduced to Aux2
k,N by doing:

f(x1, . . . , xk, y1, . . . , yk) = 〈F,x1 ⊗ . . .⊗ xk ⊗ y1 ⊗ . . .⊗ yk〉.

where F is the truth-table of f . For the remainder of the section, it is thus sufficient to construct
a PSM protocol for Aux2

k,N .

For every Ω ⊆ [k], our protocol will sample random RΩ,SΩ ∈ F( k√N)|Ω| from the common
random string. Let X̄Ω := RΩ +

⊗
i∈Ω xi and ȲΩ := SΩ +

⊗
i∈Ω yi.

As the communication complexity of Alice is Oη(N
d
k ), she can send X̄Ω to the referee for every

Ω that |Ω| ≤ d. So far no information is leaked as X̄Ω is one-time padded by RΩ. Similarly, Bob
can send ȲΩ for every Ω that |Ω| ≤ k − d.

There are many meaningful terms that the referee can compute once he receives (X̄Ω)|Ω|≤d and
(ȲΩ)|Ω|≤k−d. For example, when η = d/k = 1/3, the referee can compute:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ S{3}〉
+ . . . (28 other terms)

+ 〈F,R{1} ⊗R{2} ⊗R{3} ⊗ S{1,2} ⊗ S{3}〉.

(13)

Before we continue, we have to introduce a few notations. We will define shape, masked tensor,
pure tensor, easy & hard tensor, etc., in the same way as in Section 3.1.

Definition (masked tensor & masked term). An Alice-side masked tensor is a tensor product
X̄Ω1 ⊗ . . . ⊗ X̄Ωt such that Ω1, . . . ,Ωt are disjoint and their union equals [k]. The shape of an
Alice-side masked tensor X̄Ω1 ⊗ . . .⊗ X̄Ωt is the multiset {|Ω1|, . . . , |Ωt|}. Bob-side masked tensors
are defined symmetrically.

The tensor product of an Alice-side masked tensor and a Bob-side masked tensor is called a
masked tensor. The inner product of F and a masked tensor is called a masked term.

An Alice-side masked tensor of shape P is referee-computable if max(P ) ≤ d. A Bob-side
masked tensor of shape Q is referee-computable if max(Q) ≤ k − d. An masked tensor (and its
corresponding masked term) is called referee-computable if it’s the tensor product of a referee-
computable Alice-side masked tensor and a referee-computable Bob-side masked tensor.

Definition (pure tensor & pure term). An Alice-side pure tensor is a tensor product RΩ1 ⊗ . . .⊗
RΩt ⊗ xi1 ⊗ . . .⊗ xiw such that {i1, . . . , iw},Ω1, . . . ,Ωt are disjoint and their union equals [k]. The
shape of an Alice-side masked tensor RΩ1⊗ . . .⊗RΩt⊗xi1⊗ . . .⊗xiw is the multiset {|Ω1|, . . . , |Ωt|}.
Bob-side pure tensors are defined symmetrically.

The tensor product of an Alice-side pure tensor and a Bob-side pure tensor is called a pure
tensor. The inner product of a pure tensor and F is called a pure term.

For any legit shape, let
∑

R(P ) denote the sum of all Alice-side pure tensor whose shape is P .
Similarly, define Bob-side pure tensor sum

∑
S(P ).

Let’s go back to the example when η = 1/3: examine the pure terms on the right side
of equation (13), and check which of them has a 2-party PSM with communication complexity

O(N
1
3 ), O(N

2
3 ).
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• The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 is the desired functionality.

• The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 has a PSM protocol with communication complex-

ity O(N
1
3 ). Because Alice knows a vector g (which is determined by F, Alice’s input and

randomness (RΩ)Ω, (SΩ)Ω) such that 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 = 〈g,y3〉.

• The term 〈F,S{1}⊗x2⊗x3⊗y1⊗y2⊗y3〉 admits a PSM protocol with unbalanced commu-

nication complexity O(N
1
3 ), O(N

2
3 ). Because Bob knows a dimension-2 tensor G such that

〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 = 〈x2 ⊗ x3,G〉. (This PSM is presented in Section B.2.)

The discussion above hints at the right classification of pure tensors.

target tensor The only Alice-side target tensor is x1 ⊗ · · · ⊗ xk. The only Bob-side target tensor
is y1 ⊗ · · · ⊗ yk. The only target tensor is x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk.

easy tensor An Alice-side pure tensor of shape P is called easy if sum(P ) ≥ d. A Bob-side pure
tensor of shape Q is called easy if sum(Q) ≥ k − d. A pure tensor R ⊗ S is called easy if
either R or S is easy.

hard tensor The rest.

The inner product of F and a target/easy/hard tensor is called a target/easy/hard term.
Then, equation (13) can be rewritten by grouping and ignoring the easy terms:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉+ easy terms

.

By a symmetric sum, we get

〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(2, 1)〉
= 3 · 〈F,

∑
R()⊗

∑
S()〉︸ ︷︷ ︸

target

+〈F,
∑

R()⊗
∑

S(1)〉+ easy terms.

Similarly, we have decomposed another referee-computable term

〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(1, 1, 1)〉
= 〈F,

∑
R()⊗

∑
S()〉︸ ︷︷ ︸

target

+〈F,
∑

R()⊗
∑

S(1)〉+ easy terms.

Combine them to cancel out the hard terms:

〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(2, 1)〉 − 〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(1, 1, 1)〉
= 2 · 〈F,

∑
R()⊗

∑
S()〉+ easy terms.

Thus, by setting F to be any finite field where 2 6= 0, the above equation induces a 2-party PSM
protocol with unbalanced communication complexity O(N

1
3 ), O(N

2
3 ).
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In general, a masked term 〈F,
∑

X̄(P )⊗
∑

Ȳ(Q)〉 can be decomposed into pure terms by∑
X̄(P ) =

∑
P ′⊆P

α(P ′)
∑

X̄(P \ P ′),

∑
Ȳ(Q) =

∑
Q′⊆Q

α(Q′)
∑

Ȳ(Q \Q′),

〈F,
∑

X̄(P )⊗
∑

Ȳ(Q)〉 =
∑
P ′⊆P
Q′⊆Q

α(P ′)α(Q′)
〈
F,
∑

X̄(P \ P ′)⊗
∑

Ȳ(Q \Q′)
〉
.

with the combinatoric number α defined as in Section 3.1. The first two equations are essentially
the same as equation (9) and they imply the third equation.

To construct a PSM protocol of the desired unbalanced communication complexity, it is sufficient
to show the target term is spanned by the referee-computable masked terms and the easy terms.
Namely,

the target term = a linear combination of referee-computable masked terms +

a linear combination of easy terms. (14)

The details of how this sufficient condition implies a PSM with desired communication complexity
is presented in Section 4.2.

This sufficient condition of form (14) is unfortunately too combinatorically hard to use in
practice, especially since we are going to use a program to search for the proof for different values
of η. There are too many distinct masked terms and pure terms – their number is equal to the
number of pairs of legit shapes (P,Q).

Fortunately, we come up with a simpler sufficient condition. A PSM protocol of the desired
unbalanced communication complexity exists if both of the following hold:

• The Alice-side target tensor is spanned by referee-computable Alice-side masked tensors and
Alice-side easy tensors;

• The Bob-side target tensor is spanned by referee-computable Bob-side masked tensors and
Bob-side easy tensors.

The proof is quite straight-forward: Assume the new sufficient condition,

a linear combination of referee-computable Alice-side masked tensors

=
∑

R() + Alice-side easy tensors,

a linear combination of referee-computable Bob-side masked tensors

=
∑

S() + Bob-side easy tensors.

The tensor product of the above two equations is

a linear combination of referee-computable masked tensors

=
∑

R()⊗
∑

S() + a linear combination of easy tensors.

Multiplying both sides of the above equation with F yields the desired sufficient condition of
form (14).
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4.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped the technique details on how the
condition (14) implies a 2-party PSM of the desired communication complexity. In this section, we
will show how to construct such a 2-party PSM protocol assuming that the target term is spanned
by referee-computable masked terms and easy pure terms.

By the condition (14), there are referee-computable masked terms Z̄(1), . . . , Z̄(t), easy pure terms
T(1), . . . ,T(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F such that

〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 =
t∑

j=1

ajZ̄
(j) +

s∑
j=1

bjT
(j). (15)

A 2-party PSM for f , together with its correctness and security, is yielded by the following
facts:

• Fact I:
∑s

j=1 bjT
(j) together with X̄Ω for all 0 < |Ω| ≤ d and ȲΩ for all 0 < |Ω| ≤ k− d form

a randomized encoding of the functionality output.

• Fact II: There is a PSM protocol for
∑s

j=1 bjT
(j), in which Alice sends k ·s ·N

d
k field elements,

Bob sends k · s ·N1− d
k field elements.

The 2-party PSM for f works as the follows: For each Ω ⊆ [k] such that 0 < |Ω| ≤ d, Alice sends
X̄Ω to the referee. Symmetrically, for Ω ⊆ [k] such that 0 < |Ω| ≤ k − d, Bob sends ȲΩ to the
referee. Use the PSM guaranteed by Fact II to reveal

∑s
j=1 bjT

(j) to the referee. Then Fact I
allows the referee to compute the output from Equation (15).

Proof of Fact I. (Similar to the proof of Fact I in Section 3.2.) Equation (15) shows that
〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 can be computed from the encoding. Moreover, the distribution
of the encoding is perfectly simulatable: The joint distribution of tensors X̄Ω for 0 < |Ω| ≤ d and
ȲΩ for 0 < |Ω| ≤ k − d is uniform, as they are independently one-time padded. Then the value of∑s

j=1 bjT
(j) is uniquely determined by Equation (15).

Proof of Fact II. Sample random c1, . . . , cs ∈ F from the common random string such that
c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM protocol for computing bjT

(j) + cj for
each j.

Because T(j) is an easy term, we have T(j) = 〈F,R(j) ⊗ S(j)〉, where R(j) is an Alice-side pure
tensor, S(j) is a Bob-side pure tensor, and either R(j) is an Alice-side easy tensor, S(j) is a Bob-side
easy tensor. W.l.o.g., assume R(j) is an Alice-side easy tensor.

Say this Alice-side easy pure term R(j) is RΩ1 ⊗ . . . ⊗ xi1 ⊗ . . . ⊗ xiw . By the definition of an
Alice-side easy term, w ≤ k − d. Then Bob knows a dimension-w tensor G (which is determined
by S(j), bj ,RΩ1 ,RΩ2 , . . . ) such that

bjT
(j) + cj = 〈G,xi1 ⊗ . . .⊗ xiw〉+ cj ,

which admits a PSM protocol (presented in Section B.2) in which Alice sends O(w · N1/k) field
elements, Bob sends Nw/k field elements.
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4.3 When η has a Small Denominator

Section 4.1 proves a sufficient condition that implies 2-party PSM protocols with the desired un-
balanced communication complexity. In this section, we will verify that the sufficient condition
holds for all rational η ∈ (0, 1) whose denominator is no larger than 20. Theorem 4.1 follows as a
consequence.

For η = 1/3, the 2-party PSM protocol in Section 4.1 is also induced by∑
X̄(1, 1, 1) =

∑
R() + Alice-side easy tensors,∑

Ȳ(2, 1)−
∑

Ȳ(1, 1, 1) = 2 ·
∑

S() + Bob-side easy tensors.

For η = 1/4, a 2-party PSM protocol with c.c. O(N1/4), O(N3/4) is induced by∑
X̄(1, 1, 1, 1) =

∑
R() + Alice-side easy tensors,∑

Ȳ(1, 1, 1, 1) + 2 ·
∑

Ȳ(3, 1)

+
∑

Ȳ(2, 2)−
∑

Ȳ(2, 1, 1) = 6 ·
∑

S() + Bob-side easy tensors.

For η = 1/5, a 2-party PSM protocol with desired c.c. is induced by∑
X̄(1, 1, 1, 1, 1) =

∑
R() + Alice-side easy tensors,

6 ·
∑

Ȳ(4, 1) + 2 ·
∑

Ȳ(3, 2)

− 2 ·
∑

Ȳ(3, 1, 1)−
∑

Ȳ(2, 2, 1)

+
∑

Ȳ(2, 1, 1, 1)−
∑

Ȳ(1, 1, 1, 1, 1) = 24 ·
∑

S() + Bob-side easy tensors.

For η = 2/5, a 2-party PSM protocol with desired c.c. is induced by

2 ·
∑

X̄(2, 2, 1)−
∑

X̄(2, 1, 1, 1) = 20 ·
∑

R() + Alice-side easy tensors,

3 ·
∑

Ȳ(3, 2) +
∑

Ȳ(3, 1, 1)

−
∑

Ȳ(2, 2, 1)−
∑

Ȳ(1, 1, 1, 1, 1) = 24 ·
∑

S() + Bob-side easy tensors.

For larger denominators, we wrote a computer program4 to assist us in the proof. For example,
for η = 7/20, a 2-party PSM with desired c.c. is induced by

ΣR() = Alice-side easy tensors + 18 · ΣX̄(7, 7, 6) + 10 · ΣX̄(7, 7, 5, 1) + 14 · ΣX̄(7, 7, 4, 2) + 14 · ΣX̄(7, 7, 4, 1, 1) + 17 · ΣX̄(7, 7, 3, 3) + 20 · ΣX̄(7, 7, 3, 2, 1) + 20 ·
ΣX̄(7, 7, 3, 1, 1, 1) + 10 · ΣX̄(7, 7, 2, 2, 2) + 10 · ΣX̄(7, 7, 2, 2, 1, 1) + 10 · ΣX̄(7, 7, 2, 1, 1, 1, 1) + 10 · ΣX̄(7, 7, 1, 1, 1, 1, 1, 1) + 6 · ΣX̄(7, 6, 6, 1) + 19 · ΣX̄(7, 6, 5, 2) +
19 · ΣX̄(7, 6, 5, 1, 1) + 21 · ΣX̄(7, 6, 4, 3) + 22 · ΣX̄(7, 6, 4, 2, 1) + 22 · ΣX̄(7, 6, 4, 1, 1, 1) + 7 · ΣX̄(7, 6, 3, 3, 1) + 15 · ΣX̄(7, 6, 3, 2, 2) + 15 · ΣX̄(7, 6, 3, 2, 1, 1) + 15 ·
ΣX̄(7, 6, 3, 1, 1, 1, 1) + 19 · ΣX̄(7, 6, 2, 2, 2, 1) + 19 · ΣX̄(7, 6, 2, 2, 1, 1, 1) + 19 · ΣX̄(7, 6, 2, 1, 1, 1, 1, 1) + 19 · ΣX̄(7, 6, 1, 1, 1, 1, 1, 1, 1) mod 23

ΣS() = Bob-side easy tensors + 13 ·ΣȲ(13, 7) + 20 ·ΣȲ(13, 6, 1) + 2 ·ΣȲ(13, 5, 2) + 22 ·ΣȲ(13, 5, 1, 1) + 1 ·ΣȲ(13, 4, 3) + 17 ·ΣȲ(13, 4, 2, 1) + 3 ·ΣȲ(13, 4, 1, 1, 1) +
19 ·ΣȲ(13, 3, 3, 1) + 21 ·ΣȲ(13, 3, 2, 2) + 1 ·ΣȲ(13, 3, 2, 1, 1) + 11 ·ΣȲ(13, 3, 1, 1, 1, 1) + 12 ·ΣȲ(13, 2, 2, 2, 1) + 17 ·ΣȲ(13, 2, 2, 1, 1, 1) + 3 ·ΣȲ(13, 2, 1, 1, 1, 1, 1) + 10 ·
ΣȲ(13, 1, 1, 1, 1, 1, 1, 1)+11·ΣȲ(12, 8)+17·ΣȲ(12, 7, 1)+1·ΣȲ(12, 6, 2)+11·ΣȲ(12, 6, 1, 1)+17·ΣȲ(11, 9)+14·ΣȲ(11, 8, 1)+6·ΣȲ(11, 7, 2)+20·ΣȲ(11, 7, 1, 1)+
7 ·ΣȲ(11, 6, 3)+4 ·ΣȲ(11, 6, 2, 1)+21 ·ΣȲ(11, 6, 1, 1, 1)+2 ·ΣȲ(10, 10)+4 ·ΣȲ(10, 9, 1)+15 ·ΣȲ(10, 8, 2)+4 ·ΣȲ(10, 8, 1, 1)+1 ·ΣȲ(10, 7, 3)+17 ·ΣȲ(10, 7, 2, 1)+
3 ·ΣȲ(10, 7, 1, 1, 1) + 21 ·ΣȲ(10, 6, 4) + 8 ·ΣȲ(10, 6, 3, 1) + 4 ·ΣȲ(10, 6, 2, 2) + 21 ·ΣȲ(10, 6, 2, 1, 1) + 1 ·ΣȲ(10, 6, 1, 1, 1, 1) + 20 ·ΣȲ(9, 9, 2) + 13 ·ΣȲ(9, 9, 1, 1) + 4 ·
ΣȲ(9, 8, 3)+22·ΣȲ(9, 8, 2, 1)+12·ΣȲ(9, 8, 1, 1, 1)+14·ΣȲ(9, 7, 4)+13·ΣȲ(9, 7, 3, 1)+18·ΣȲ(9, 7, 2, 2)+14·ΣȲ(9, 7, 2, 1, 1)+16·ΣȲ(9, 7, 1, 1, 1, 1)+11·ΣȲ(9, 6, 5)+
13 ·ΣȲ(9, 6, 4, 1)+12 ·ΣȲ(9, 6, 3, 2)+17 ·ΣȲ(9, 6, 3, 1, 1)+20 ·ΣȲ(9, 6, 2, 2, 1)+13 ·ΣȲ(9, 6, 2, 1, 1, 1)+5 ·ΣȲ(9, 6, 1, 1, 1, 1, 1)+19 ·ΣȲ(8, 8, 4)+16 ·ΣȲ(8, 8, 3, 1)+
8 ·ΣȲ(8, 8, 2, 2) + 19 ·ΣȲ(8, 8, 2, 1, 1) + 2 ·ΣȲ(8, 8, 1, 1, 1, 1) + 17 ·ΣȲ(8, 7, 5) + 18 ·ΣȲ(8, 7, 4, 1) + 6 ·ΣȲ(8, 7, 3, 2) + 20 ·ΣȲ(8, 7, 3, 1, 1) + 10 ·ΣȲ(8, 7, 2, 2, 1) + 18 ·
ΣȲ(8, 7, 2, 1, 1, 1) + 14 ·ΣȲ(8, 7, 1, 1, 1, 1, 1) + 18 ·ΣȲ(8, 6, 6) + 6 ·ΣȲ(8, 6, 5, 1) + 13 ·ΣȲ(8, 6, 4, 2) + 5 ·ΣȲ(8, 6, 4, 1, 1) + 1 ·ΣȲ(8, 6, 3, 3) + 17 ·ΣȲ(8, 6, 3, 2, 1) + 3 ·
ΣȲ(8, 6, 3, 1, 1, 1)+20·ΣȲ(8, 6, 2, 2, 2)+13·ΣȲ(8, 6, 2, 2, 1, 1)+5·ΣȲ(8, 6, 2, 1, 1, 1, 1)+9·ΣȲ(8, 6, 1, 1, 1, 1, 1, 1)+5·ΣȲ(7, 7, 6)+1·ΣȲ(7, 7, 5, 1)+6·ΣȲ(7, 7, 4, 2)+
20 · ΣȲ(7, 7, 4, 1, 1) + 4 · ΣȲ(7, 7, 3, 3) + 22 · ΣȲ(7, 7, 3, 2, 1) + 12 · ΣȲ(7, 7, 3, 1, 1, 1) + 11 · ΣȲ(7, 7, 2, 2, 2) + 6 · ΣȲ(7, 7, 2, 2, 1, 1) + 20 · ΣȲ(7, 7, 2, 1, 1, 1, 1) + 13 ·
ΣȲ(7, 7, 1, 1, 1, 1, 1, 1)+15·ΣȲ(7, 6, 6, 1)+13·ΣȲ(7, 6, 5, 2)+5·ΣȲ(7, 6, 5, 1, 1)+18·ΣȲ(7, 6, 4, 3)+7·ΣȲ(7, 6, 4, 2, 1)+8·ΣȲ(7, 6, 4, 1, 1, 1)+20·ΣȲ(7, 6, 3, 3, 1)+10·
ΣȲ(7, 6, 3, 2, 2)+18·ΣȲ(7, 6, 3, 2, 1, 1)+14·ΣȲ(7, 6, 3, 1, 1, 1, 1)+9·ΣȲ(7, 6, 2, 2, 2, 1)+7·ΣȲ(7, 6, 2, 2, 1, 1, 1)+8·ΣȲ(7, 6, 2, 1, 1, 1, 1, 1)+19·ΣȲ(7, 6, 1, 1, 1, 1, 1, 1, 1)
mod 23

We checked every rational η = d/k such that k ≤ 20, and verified that our framework does in
fact yield a 2-party PSM protocol with unbalanced communication complexity O(Nη), O(N1−η).

4The source code can be downloaded from https://github.com/tianren/psm.
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5 Open Problems

This paper presents two frameworks: a framework of constructing k-party PSM protocols for general

f : [N ]k → {0, 1} with c.c. Ok(N
k−1

2 ), and a framework of constructing 2-party PSM protocols for
general f : [N ] × [N ] → {0, 1} where one party sends Oη(N

η) bits and the other party sends
Oη(N

1−η) bits. An immediate open problem is to prove our frameworks work for all integer k and
all rational η. Currently, we can only prove it works for some k and η.

For simplicity, our analysis only considers the symmetric sum of terms. The symmetric sum
incurs a blow-up exponential on k. Thus the communication complexity of our k-party PSM

protocols is exp(k) ·N
k−1

2 . While [BKN18] achieves communication complexity poly(k) ·N
k
2 . Our

protocols are less efficient in the domain where logN < k. A possible approach of getting rid of
the exponential dependency in k is to break the symmetry. The potential of such an approach is
evidenced by the 5-party PSM protocol in Section 1.2, which is asymmetric.

There is no clear reason why our framework will not yields more efficient PSM protocols. Can

our multi-party framework yield PSM protocols with communication complexity Ok(N
k
2
−1), when

k is sufficiently large? Can our 2-party framework might yield PSM protocol with communication
Oη(N

η) for some rational η < 1
2? Our technique transfers such questions into some linear systems.

Each question has an affirmative answer (for a given k or η) if and only if the corresponding linear
system is solvable. We have modified our program to generate and solve these linear systems, but
all the system we have tried are unsolvable. The failure suggests that our new upper bounds might
be tight, or are tight for a natural class of PSM protocols.

The question of the communication complexity trade-off for multi-party PSM remains widely

open. In our k-party PSM protocol, every party sends Ok(N
k−1

2 ) bits. A variant of [FKN94]
provides a k-party PSM protocol where the i-th party sends Õk(N

i−1) bits, whose geometric average

is Õk(N
k−1

2 ). Should a future work achieves the smooth trade-off between the two, there is little
doubt that it will bring us a deep insight into PSM.

Finally, this work belongs to a not-fully-successful attempt at constructing PSM with sub-
exponential communication complexity, which is probably the moonshot open problem in the PSM
literature.
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A Proof of Equation (9) and (10)

Proof of Equation (9). By definition:∑
〈F, X̄(P )〉 =

∑
(∗)

〈F, X̄S1 ⊗ . . .⊗ X̄St〉

where (∗) denotes “for all unordered E = {S1, . . . , St} being a partition of [2k] such that {|S1|, . . . , |St|} =
P”. Thus, ∑

〈F, X̄(P )〉 =
∑
(∗)

〈
F,
⊗
i∈[t]

(RSi +
⊗
j∈Si

xj)
〉

=
∑
(∗)

∑
G⊆E

〈
F,
⊗
S∈G

RS ⊗
⊗
j /∈

⋃
S∈G

S

xj

〉

=
∑
Q⊆P

∑
G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

β(P,G) ·
〈
F,
⊗
i∈[t]

RSi ⊗
⊗
j /∈

⋃
i∈[t]

Si

xj

〉
,

where β(P,G) accounts for the redundancy: define β(P,G) as the number of unordered partitions
E of [2k] such that G ⊆ E and P is the shape of E. It is equivalent to count the number of
F := E \G. That is, β(P,G) also equals the number of unordered partitions F of [2k] \

⋃
S∈G

S such

that Q is the shape of F . Thus by definition, β(P,G) = α(Q). The proof is concluded by∑
〈F, X̄(P )〉 =

∑
Q⊆P

∑
G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

α(Q) ·
〈
F,
⊗
i∈[t]

RSi ⊗
⊗
j /∈

⋃
i∈[t]

Si

xj

〉

=
∑
Q⊆P

α(Q) ·
∑
〈F,R(P \Q)〉.

Proof of Equation (10). Let n = sum(Q). By definition, α(Q) is the number of unsorted partitions
E = {S1, . . . , St} of [n] such that the multiset {|S1|, . . . , |St|} (i.e. the shape of E) equals Q.

To compute α(Q), we count the number of ways to arranging 1, . . . , n into a sequence.

• First, pick an unsorted partitions E of [n] s.t. the shape of E equals Q. The number of choices
is α(Q).
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• Then, sort the sets in the partion E = {S1, . . . , St}. Sort them by their sizes, i.e. |S1| ≤
|S2| ≤ · · · ≤ |St|. For any m, if several sets are of the size m, their order has to be specified,
the number of such choices is (number of m’s in Q)!.

• Finally, arrange the elements in each Si into a sub-sequence, the number of possible sequences
is |Si|!. Concatenate these sub-sequences in order.

α(Q) ·
∏
m∈Z+

(number of m’s in Q)! ·
∏
i∈Q

i! = n!

B Auxiliary PSM Protocols for 〈x1 ⊗ . . .⊗ xk,Y〉+ s

B.1 The Multi-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine by our multi-party
PSM in Section 3.

The functionality is 〈x1 ⊗ . . . ⊗ xk,Y〉 + s. It is a (k + 1)-party functionality where the i-th
party has as input xi ∈ FN for i ∈ [k], and the (k + 1)-th party has as inputs Y ∈ FN×···×Nk times and
s ∈ F. We will present a PSM protocol for this functionality with a communication complexity of
O(poly(k) ·Nk) field elements. This protocol is implicitly used in [BKN18].

First, we consider the special case when k = 1. That is, there are only two parties. Say we
call them Alice and Bob. Alice has x ∈ FN , Bob has y ∈ FN , s ∈ F. The functionality output is
〈x,y〉+ s. The PSM protocol works as follows:

• Random a,b ∈ FN , c ∈ F are sampled from the common random string, which is known by
both Alice and Bob.

• Alice sends x̄ := x + a, z := c− 〈b,x〉 to the referee.

• Bob sends ȳ := y + b, w := s− c− 〈a,y〉 − 〈a,b〉 to the referee.

• The referee outputs 〈x̄, ȳ〉+ z + w.

For the case k ≥ 2, the first k parties need to jointly emulate Alice. The protocol works as
follows:

• Random A,B,C ∈ FN×···×N are sampled from the common random string. Define c ∈ F as
the sum of entries in C.

• The (k + 1)-th party sends Ȳ := Y + B, z := s− c− 〈A,Y〉 − 〈A,B〉 to the referee.

• The first k parties jointly reveal X̄ := x1 ⊗ . . . ⊗ xk + A, w := c − 〈B,x1 ⊗ . . . ⊗ xk〉 to the
referee.

Since every coordinate of X̄ can be computed by an arithmetic formula of size O(k), each of
these coordinates can be computed by the referee by using a PSM protocol with communi-
cation complexity of O(poly(k)) field elements [IK00]. The referee learns X̄ after receiving
O(poly(k) ·Nk) field elements.

The term w := c−〈B,x1⊗. . .⊗xk〉 equals the sum of all entries in W := C−B◦p.w.(x1⊗. . .⊗
xk), where ◦p.w. denotes the point-wise product. In other words, we defines W ∈ FN×···×N as

W[i1, . . . , ik] = C[i1, . . . , ik]−B[i1, . . . , ik]x1[i1] . . .xk[ik].
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Due to the randomness of C, we know W is a randomized encoding of w. Thus, it is equivalent
for the first k parties to jointly reveal W to the referee. Since every coordinate of W can be
computed by an arithmetic formula of size O(k), each of them can be revealed by using the
Ishai-Kushilevitz PSM protocol [IK00], which has a communication complexity of O(poly(k))
field elements. The referee learns w after receiving O(poly(k) ·Nk) field elements.

• The referee outputs 〈X̄, Ȳ〉+ z + w.

The correctness of the protocol can be verified in the following equation:

〈X̄, Ȳ〉+ z + w

= 〈x1 ⊗ . . .⊗ xk + A,Y + B〉+ s− c− 〈A,Y〉 − 〈A,B〉+

c− 〈B,x1 ⊗ . . .⊗ xk〉
= 〈x1 ⊗ . . .⊗ xk,Y〉+ s.

The privacy is guaranteed by the following simulator:

• Simulate X̄, Ȳ,W as uniform random, since they are one-time-padded by A,B,C.

• Given X̄, Ȳ,W and the function output, w, z are uniquely determined since w =
∑

(W) and
〈X̄, Ȳ〉+ z + w = output.

• Simulate the transcripts of the inner Ishai-Kushilevitz PSM protocols using its own simulator,
which takes X̄,W as input.

B.2 The 2-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine by our unbalanced
2-party PSM in Section 4.

The functionality is 〈x1 ⊗ . . . ⊗ xk,Y〉 + s. It is a 2-party functionality where the first party,
namely Alice, has as inputs x1, . . . ,xk ∈ FN and the second party, namely Bob, has as inputs
Y ∈ FN×···×Nk times and s ∈ F. We will present a PSM protocol for this functionality with unbalanced
communication complexity, where Alice sends O(kN) field elements and Bob sends (N + 1)k field
elements.

As the first step, we consider a harder problem instead. Bob’s input is replaced by a multi-affine
function f : FN×· · ·×FN → F. Corresponding, the functionality is replaced by f(x1, . . . ,xk). Every
multi-affine function f can be uniquely represented by its coefficient tensor F ∈ F(N+1)×···×(N+1)

such that for any z1, . . . , zk ∈ FN ,

f(z1, . . . , zk) = 〈z1‖1⊗ · · · ⊗ zk‖1,F〉.

Here zi‖1 denotes the concatenation of zi and 1, which is a dimension-(N + 1) vector. Notice that,
if we let the “first” N×· · ·×N subtensor of F equal Y, let its “last” entry F[N+1, . . . , N+1] = s,
and let all other entries in F be 0, we have

f(x1, . . . ,xk) = 〈x1‖1⊗ · · · ⊗ xk‖1,F〉 = 〈x1 ⊗ . . .⊗ xk,Y〉+ s.

The protocol works as follows:

• Random r1, . . . , rk ∈ FN and a random multi-affine function g are sampled from the common
random string.
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• Alice sends x̄i = xi + ri to the referee, for all i ∈ [k].

• Bob computes the multi-affine function g, such that

g(z1, . . . , zk) := f(z1 − r1, . . . , zk − rk).

Bob sends ḡ = g + h to the referee.

• Alice additionally sends s = h(x̄1, . . . , x̄k) to the referee.

• The referee outputs ḡ(x̄1, . . . , x̄k)− s.

The correctness follows directly from the following equation:

ḡ(x̄1, . . . , x̄k)− s = g(x̄1, . . . , x̄k) + h(x̄1, . . . , x̄k)− h(x̄1, . . . , x̄k)

= g(x̄1, . . . , x̄k)

= f(x1 − r1 + r1, . . . ,xk − rk + rk)

= f(x1, . . . ,xk).

The privacy is guaranteed by the following simulator:

• Simulate x̄1, . . . , x̄k, ḡ as uniform random, since they are one-time padded by r1, . . . , rk, h.

• Given x̄1, . . . , x̄k, ḡ and the function output, simulate s by computing s from the equation
ḡ(x̄1, . . . , x̄k)− s = output.
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