Unitary representations of locally compact groups as metric structures - Archive ouverte HAL
Article Dans Une Revue Notre Dame Journal of Formal Logic Année : 2023

Unitary representations of locally compact groups as metric structures

Isaac Goldbring
  • Fonction : Auteur
  • PersonId : 1115656

Résumé

For a locally compact group $G$, we show that it is possible to present the class of continuous unitary representations of $G$ as an elementary class of metric structures, in the sense of continuous logic. More precisely, we show how non-degenerate $*$-representations of a general $*$-algebra $A$ (with some mild assumptions) can be viewed as an elementary class, in a many-sorted language, and use the correspondence between continuous unitary representations of $G$ and non-degenerate $*$-representations of $L^1(G)$. We relate the notion of ultraproduct of logical structures, under this presentation, with other notions of ultraproduct of representations appearing in the literature, and characterise property (T) for $G$ in terms of the definability of the sets of fixed points of $L^1$ functions on $G$.
Fichier principal
Vignette du fichier
LCGAction.pdf (161.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire Ce PDF est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing)

Dates et versions

hal-03413121 , version 1 (03-11-2021)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Itaï Ben Yaacov, Isaac Goldbring. Unitary representations of locally compact groups as metric structures. Notre Dame Journal of Formal Logic, 2023, 64 (2), ⟨10.1215/00294527-10670015⟩. ⟨hal-03413121⟩
42 Consultations
76 Téléchargements

Altmetric

Partager

More