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Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow
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We report on a series of fully resolved simulations of the flow around a rigid sphere translating steadily near
a wall, either in a fluid at rest or in the presence of a uniform shear. Non-rotating and freely rotating spheres
subject to a torque-free condition are both considered to evaluate the importance of spin-induced effects. The
separation distance between the sphere and wall is varied from values at which the wall influence is weak down
to gaps of half the sphere radius. The Reynolds number based on the sphere diameter and relative velocity
with respect to the ambient fluid spans the range 0.1 − 250, and the relative shear rate defined as the ratio of
the shear-induced velocity variation across the sphere to the relative velocity is varied from −0.5 to +0.5, so
that the sphere either leads the fluid or lags behind it. The wall-induced interaction mechanisms at play in the
various flow regimes are analyzed qualitatively by examining the flow structure, especially the spanwise and
streamwise vorticity distributions. Variations of the drag and lift forces at low-but-finite and moderate Reynolds
number are compared with available analytical and semiempirical expressions, respectively. In more inertial
regimes, empirical expressions for the two force components are derived based on the numerical data, yielding
accurate fits valid over a wide range of Reynolds number and wall-sphere separations for both non-rotating and
torque-free spheres.

I. INTRODUCTION

Determining the forces acting on particles moving parallel to a wall in a shear flow is of primary importance to understand
and predict many features of wall-bounded particle-laden flows. In particular, the wall-normal force component governs crucial
phenomena characterizing the dynamics and transfer properties in these flows, such as particle deposition, resuspension, saltation
and near-wall preferential concentration. This force, albeit usually small in magnitude, plays a central role in separation techniques
involving nearly neutrally buoyant particles, such as field-flow fractionation or crossflow filtration. Considering very dilute suspen-
sions in which inter-particle or wall-particle collisions and direct hydrodynamic interactions play little role, quantitative predictions
of how the particles move within the fluid and how in turn their presence possibly affects the flow require accurate expressions for
the forces acting on an isolated particle to be available. The present work aims at contributing to this goal by considering a variety
of near-wall configurations and flow regimes, identifying the dominant physical mechanisms at play in each of them, and providing
accurate fits for the drag and lift components of the force acting on a spherical particle translating with respect to the wall and
obeying either a non-rotating or a torque-free condition.

Due to its symmetrical shape and to the reversibility of Stokes equations, a sphere does not experience any lift force in the
creeping-flow regime [1]. Therefore, this force arises through inertial effects associated with the ambient shear and/or the sphere
translation and/or rotation with respect to the ambient flow. In a fluid with kinematic viscosity ν, inertial effects associated with
these three contributions become comparable to viscous effects at a distance r from the sphere center such that

r ∼ O(L̃u) , r ∼ O(L̃ω) , r ∼ O(L̃Ω) , (1)

respectively. In (1), L̃u = ν/|Urel|, L̃ω = (ν/γ)1/2 and L̃Ω = (ν/Ω)1/2 are the so-called Oseen, Saffman and Magnus lengths,
respectively, Urel, γ and Ω denoting the relative (or slip) velocity between the sphere and fluid, the shear rate in the undisturbed
flow, and the norm of the sphere rotation rate Ω, respectively. The slip, shear and rotation Reynolds numbers based on the particle
diameter d may then be defined as d/L̃u = |Urel|d/ν, (d/L̃ω)2 = γd2/ν and (d/L̃Ω)2 = Ωd2/ν, respectively. In an unbounded
shear flow, the vorticity generated at the sphere surface is advected asymmetrically in the wake by the ambient shear, yielding a
transverse pressure gradient at distances of O(L̃ω) downstream from the sphere, which results in a lift force directed toward the
high- (low-) velocity side if the sphere lags behind (leads) the fluid. A similar mechanism is involved at distances of O(L̃Ω) in the
wake of a spinning sphere translating in a fluid at rest, and results in a Magnus or spin-induced lift force. A closed-form expression
was obtained for this force in [2], assuming the slip and rotation Reynolds numbers to be small. If the sphere obeys a torque-free
condition, as freely moving particles usually do if they do not collide with another particle or a wall, the spinning rate remains slow,
implying L̃Ω > max(L̃u, L̃ω). In this case, the parameter ε = L̃u/L̃ω determines whether inertial effects are rather dominated by the
ambient shear (ε > 1) or the particle slip (ε < 1). Saffman [3, 4] considered a small sphere translating in an unbounded linear shear
flow and obtained the shear-induced lift force in closed form in the limit ε � 1, assuming the slip and shear Reynolds numbers
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to be small. His prediction was extended to finite ε in [5] and [6], the results revealing that the lift force strongly decreases as the
relative influence of the sphere translation increases, i.e. as ε decreases. Experiments [7] and simulations [8] have confirmed these
predictions down to ε ≈ 0.4 for particles with slip Reynolds numbers up to unity. Further insight into the shear-induced lift force
in an unbounded fluid at higher Reynolds number was obtained through numerical studies [9, 10], revealing in particular that the
distribution of the viscous stresses in the recirculating flow region at the back of the sphere makes this force reverse beyond a slip
Reynolds number of some tens. Influence of the sphere rotation on the drag and lift forces in inertia-dominated regimes has also
been examined, both for an imposed spinning motion and a torque-free condition [9, 11].

When the flow is bounded by a single flat wall, the separation distance L̃ from the sphere center to the wall competes with the
above three visco-inertial length scales through the ratios

Lu = L̃/L̃u =
L̃|Urel|

ν
, Lω = L̃/L̃ω =

L̃γ1/2

ν1/2 , LΩ = L̃/L̃Ω =
L̃Ω1/2

ν1/2 , (2)

which may be thought of as Reynolds numbers based on L̃ rather than on the particle size. In the sense of matched asymptotic
expansions, the wall is located in the inner region of the disturbance if max(Lu, Lω, LΩ) < 1 (strictly speaking � 1), while it
stands in the outer region otherwise. Fundamental results were established by Cox & Brenner [12] in the former case, showing in
particular that, owing to the screening effect exerted by the wall, the leading-order estimate of the lift force may then be obtained
through a regular expansion procedure. This work also enlightened the manner in which the generalized reciprocal theorem may
be employed to obtain the lift force in the form of a volume integral solely involving creeping-flow solutions past the sphere.

Asymptotic predictions for the slip-induced lift force acting on rigid spheres sedimenting close to a vertical wall in a fluid at rest
in the low-Reynolds-number regime were obtained in [13] (based on the results of [12]) and [14], assuming that the wall lies in the
inner and outer regions of the disturbance, respectively. In this configuration, the lift force always tend to repel the particle from the
wall and decreases gradually with increasing Lu. Considering the physical origin of the wall-particle interaction responsible for this
force, which directly stems from wall-induced corrections to the flow in the wake region, the prediction of [14] was extended in a
semiempirical manner up to slip Reynolds numbers ofO(100), based on experiments performed with contaminated nearly-spherical
air bubbles [15]. Fully resolved simulations [16, 17] subsequently confirmed this semiempirical prediction.

Still in the low-but-finite Reynolds number regime, predictions for the shear-induced lift force in the presence of a wall standing
in the inner region of the disturbance were also obtained in [13], both for neutrally buoyant and negatively or positively buoyant
particles. These results were then extended to the case of a wall standing in the outer region, first in the limit ε � 1 [18], then for
arbitrary ε [5, 19]. These predictions were found to be valid up to slip Reynolds numbers of order unity in experiments performed
under conditions ε . 1 [20, 21]. They bridge the gap between those of [13] and [6] (hence [3] in the limit ε � 1), the latter
being recovered in the limit where the wall is moved to infinity. While the slip-induced and shear-induced contributions to the
lift superimpose linearly when the wall stands in the inner region, they are intrinsically coupled otherwise, owing to the nonlinear
nature of the Oseen equation. Both contributions are directed away from the wall if the sphere lags behind the fluid, which is the
case for a negatively (positively) buoyant particle in an upward (downward) shear flow near a vertical wall. Conversely, if the
sphere leads the fluid, as for a light (heavy) particle in an upward (downward) shear flow, the shear-induced contribution tends to
attract it toward the wall. In this case, the total lift force is attractive for large enough separations, but becomes repulsive again for
short separations. This is because the wall influence gradually weakens the shear-induced contribution as the separation decreases,
making the slip effect eventually dominant very close to the wall. In the above studies, the wall was considered sufficiently distant
from the particle for the latter to be shrunk to a point. Obviously, this approximation is not tenable when the separation becomes
of the order of a few sphere radii or less. Higher-order corrections accounting for the sphere finite size were obtained through
the ‘reflection’ technique [22] (see also appendix A of [23]), but this approach cannot deal with situations in with the gap is less
than typically the sphere radius. The combined use of exact creeping-flow solutions based on bi-spherical coordinates and the
generalized reciprocal theorem allowed rational fits for the various contributions to the lift force to be obtained down to very small
separations for both non-rotating and torque-free spheres [23–25]. The limit case of a sphere held fixed on the wall, and that of a
freely sliding and rolling sphere were worked out in [26] and [27], respectively.

Numerical studies of hydrodynamic forces in near-wall configurations are quite scarce, presumably because they demand ac-
curate boundary-fitted grids or refined immersed boundary techniques to properly capture the flow within the wall-particle gap.
Variations of the slip- and shear-induced drag and lift forces in the low-but-finite Reynolds number regime with the wall located
in either region of the disturbance were recently explored for both neutrally buoyant particles [28] and arbitrarily buoyant particles
[29]. The characteristics of the slip-induced lift force in a wall-bounded fluid at rest were examined in detail in [16] and [17] down
to small gaps and from Reynolds numbers of O(1) up to a few hundred. The same range of separations and Reynolds numbers was
considered in [17] for a sphere held fixed with respect to the wall in a linear shear flow, a very specific choice corresponding to
Lu = L2

ω. Near-wall forces acting on a sphere forced to spin in a fluid at rest were determined in [30] over a quite similar range
of parameters, together with those experienced by a sphere immersed in a shear flow which either slides on the wall or spins very
close to it.

From the above review it appears that no study has considered inertia-dominated regimes for an arbitrarily translating and possi-
bly freely rotating rigid sphere immersed in a wall-bounded shear flow, a situation of particular relevance to the widely encountered
case of buoyant particles moving near a vertical wall. This is the problem addressed in the present work. The same problem was
recently considered in [31] for spherical bubbles with a clean, i.e. shear-free, surface. Compared to the rigid sphere case, this
difference in the dynamic boundary condition at the particle surface is known to affect the magnitude of the wall-induced forces in
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FIG. 1. Schematic of a sphere moving in a wall-bounded linear shear flow.

the low-Reynolds-number regime, but not the manner they vary with the flow parameters [22]. This is no longer the case beyond
Reynolds numbers of a few units, due to the much larger amount of vorticity produced at the sphere surface when the no-slip
condition applies. In particular this difference results in the fact that the flow does not separate past a spherical bubble even at large
Reynolds number while it does past a rigid sphere beyond a Reynolds number of O(10).

In what follows we report on the results of fully resolved simulations of the flow past a freely translating and possibly rotating
sphere. The sphere is immersed in a wall-bounded linear shear flow, may either lead the fluid or lag behind it, and obeys a non-
rotating or a torque-free condition. In Sec. II we formulate the problem, specify the considered range of parameters and outline
the numerical approach which is essentially similar to that employed in [31]. Section III summarizes theoretical and semiempirical
expressions for the forces acting on a sphere in an unbounded shear flow and in wall-bounded configurations. Numerical results are
first used in Sec. IV to examine the physical mechanisms induced by the presence of the wall and the corresponding alterations of
the near-sphere flow in the various regimes. Variations of the drag and lift forces with the flow parameters are analyzed in Sec. V.
Empirical fits reproducing the observed variations in specific regimes or throughout the entire parameter range of the simulations
are established. A summary of the main outcomes, especially regarding these empirical fits of direct interest in applications, is
provided in Sec. VI.

II. STATEMENT OF THE PROBLEM AND OUTLINE OF THE SIMULATION APPROACH

We define a Cartesian coordinate system (Oxyz) with the origin located at the center of the sphere, as illustrated in Fig. 1.
We assume that the sphere moves parallel to a single planar wall with a translational velocity V = Vez and a rotational velocity
Ω = −Ωey. The wall is located at x = −L̃ and ex denotes the wall-normal unit vector pointing into the fluid. In the reference frame
translating with the sphere, the undisturbed flow is a one-dimensional linear shear flow with a velocity profile u∞ = [γ(L̃+ x)−V]ez

and a spanwise vorticity ω∞ = −γey. The relative (or slip) velocity of the fluid with respect to the sphere is then Urel = (γL̃−V)ez.
The fluid velocity and pressure fields in the presence of the sphere are denoted by u and p, respectively, and ω = ∇ × u denotes
the vorticity.

Assuming the fluid to be Newtonian and considering the flow as incompressible, the continuity and Navier-Stokes equations
read

∇ · u = 0 ;
∂u

∂t
+ u · ∇u = −

1
ρ
∇p + ν∇2u , (3a, b)

with ρ and ν the fluid density and kinematic viscosity, respectively. Boundary conditions at the sphere surface, at the wall, and in
the far field read, respectively

u =


Ω × r for r = d/2 ,
−Vez for x = −L̃ ,
u∞ = [γ(L̃ + x) − V]ez for r → ∞ ,

(4)

where r = (x2 + y2 + z2)1/2 denotes the distance to the sphere center, and d is the sphere diameter.
With the above boundary conditions, the steady flow field past the sphere depends on four characteristic parameters, namely the

slip Reynolds number, Re, the dimensionless shear rate, Sr, the dimensionless sphere rotation rate, Rr, and the normalized wall
distance, LR. These control parameters are defined as

Re =
|Urel|d
ν

, Sr =
γd
Urel

, Rr =
Ωd
Urel

, LR =
2L̃
d
, (5)
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with Urel = Urel · ez and Ω = −Ω · ey. Under the torque-free condition, Rr is entirely determined by the other three parameters and
is no longer an independent control parameter. Considering that the slip velocity Urel may either be positive or negative while γ and
Ω are always positive, Sr and Rr change sign with Urel. A positive (negative) Sr indicates that the sphere lags (leads) the fluid, the
former case corresponding to the flow configuration sketched in Fig. 1. In most of this work, Re, Sr, and LR are varied in the range
[0.1, 250], [−0.5, 0.5], and [1.5, 8], respectively. Hence ε is up to 2.2 for Re = 0.1 and becomes less than 1 as soon as Re > 0.5, and
even less than 0.1 beyond Re = 50. In an unbounded fluid, the shear-induced transverse force is proportional to Sr, so that its sign
changes with that of Urel. In the presence of a nearby wall, three different regimes are encountered. If Sr � 1, the transverse force
results primarily from the particle relative translation with respect to the wall, which at low-but-finite Reynolds number makes it
proportional to Re. In contrast, when Sr � 1, i.e. the slip velocity is small compared to the shear-induced velocity variation at
the particle scale, the dominant contribution to the transverse force is proportional to Sr2. This regime, relevant to small nearly
neutrally buoyant particles, will not be considered here (it was recently specifically examined in [29, 32] in the low-Re range, with
applications to inertial microfluidics in mind). The near-wall transverse force does not change sign with Urel in the above two
regimes, being repulsive in both cases. In contrast, it may change sign when Sr . 1, which is the regime we are primarily interested
in.

Let us briefly illustrate some flow configurations covered by the above parameter range. Consider for instance a 1 mm-diameter
particle sedimenting in water and assume the particle is twice as dense as the fluid. Then the standard drag law predicts that its
slip Reynolds number is approximately 115. With |Sr| = 0.5, this yields γ ≈ 57 s−1. This is for instance the near-wall shear rate
in the laminar flow in a 15 mm-high plane channel, the corresponding Reynolds number ReH based on the channel height and
depth-averaged fluid velocity being ReH ≈ 2200. In the same configuration, a particle ten times smaller (d = 0.1 mm) has a slip
Reynolds number close to 0.55 and the shear rate corresponding to |Sr| = 0.5 is 27 s−1, the near-wall value reached in a 1.5 mm-
high channel with ReH ≈ 10. Consider now that the largest of the above two particles is immersed in a vertical turbulent boundary
layer and stands 1 mm apart from the wall (which corresponds to LR = 2) in the logarithmic region. Then, equating γ to the local
time-averaged shear rate u∗/(κLR), with κ = 0.4 the von Kármán constant, the associated friction velocity u∗ is close to 2.25 cm.s−1,
which corresponds to an outer velocity close to 0.6 m.s−1, i.e. ReH ≈ 3 × 104 if the flow takes place in a 5 cm-high channel. Still
with LR = 2, the d = 0.1 mm particle rather stands within the viscous sublayer. There, the time-averaged shear rate corresponding
to |Sr| = 0.5 is γ = u∗2/ν ≈ 27 s−1, which yields u∗ ≈ 5.2 mm.s−1, hence an outer velocity close to 15 cm.s−1 corresponding to
ReH ≈ 7500.

In the present problem, the drag force FD parallel to Urel, i.e. parallel or antiparallel to ez depending on whether the sphere lags
or leads the fluid, the lift force parallel to ex, FL, and the torque antiparallel to ey, M, acting on the sphere are defined as

FD =
Urel

||Urel||
·

∫
Γ

Σ · n dΓ, FL = ex ·

∫
Γ

Σ · n dΓ, M = −ey ·

∫
Γ

r × (Σ · n) dΓ, (6)

where Σ is the stress tensor and n denotes the outward unit normal to the sphere surface Γ. Results concerning the two force
components will be expressed in terms of the lift and drag coefficients, CL and CD, obtained by dividing the corresponding force
by πd2ρU2

rel/8. According to the above definition, a negative (positive) CL corresponds to a force directed toward (away from) the
wall. In the case of a non-rotating sphere, results concerning the hydrodynamic torque will be expressed using the torque coefficient
CM = M/(πd3ρU2

rel/16). We use the notations CW
D (CW

L ) and CU
D (CU

L ) to denote the drag (lift) coefficients in wall-bounded and
unbounded flows, respectively. Situations where the wall lies in the inner or outer region of the disturbance will be distinguished by
superscripts W-in and W-out, respectively. Results for the drag coefficient are usually given in the form of the relative wall-induced
change ∆CD = (CW

D − CU
D0)/CU

D0, with CU
D0 denoting the drag coefficient on a sphere translating in an unbounded uniform fluid.

Drag (lift) contributions corresponding to the slip-induced effect are denoted with the subscript Du (Lu), while those corresponding
to the shear-induced effect are denoted with the subscript Dω (Lω). Similar conventions are applied to the rotation rate, Rr.

The three-dimensional flow field past the sphere is computed with the JADIM code developed at IMFT. The sphere center stands
on the axis of a large cylindrical computational domain, one base of which coincides with the wall. The reader is referred to [31]
for numerical aspects concerning the specificities of the code, the grid system and the boundary conditions. The only difference
between the present problem and that considered in [31] is the boundary condition at the particle surface, the shear-free condition
suitable for a clean bubble being now replaced by a no-slip condition. The consequence of this change on the flow field is that
stronger velocity gradients, hence larger levels of vorticity, are encountered around a rigid sphere. The increase in the vorticity
magnitude is modest at low Reynolds number. In contrast it is large at high Reynolds number, especially within the boundary
layer and the near wake, since the vorticity in the former varies like Re1/2 in the presence of a no-slip condition while it becomes
Re-independent with a shear-free condition. However, the boundary layer thickness is of O(dRe−1/2) in both cases. The difference
in the vorticity magnitude has a dramatic influence on the nature of the flow when the Reynolds number exceeds a few hundred.
In particular, in an unbounded domain with the fluid at rest at infinity, the flow past a steadily translating spherical bubble remains
stationary and axisymmetric whatever Re. In contrast, the axial symmetry of a rigid sphere wake is known to break down at
Re ≈ 212, while the flow becomes unsteady beyond Re ≈ 272 [33]. In [31], the grid was designed in such a way that the flow
was properly described up to Re = 103, especially within the wall and bubble boundary layers. Here, since we wish to focus on
stationary regimes, we only consider Reynolds numbers up to Re = 250. Similar to [31], the size of the computational domain is
varied with Re so as to minimize confinement effects in all flow regimes. Since no vortex shedding is expected downstream of the
sphere up to the maximum Reynolds number considered here, we keep the domain size unchanged compared to the bubble case.
That is, the radius R∞ and height of the domain from the sphere center to the top of the cylinder are set to 50d for Re < 1, 40d
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for 1 ≤ Re < 100 and 20d for Re ≥ 100, respectively. The grid makes use of 128 uniformly distributed cells along the azimuthal
direction (i.e. the cylinder periphery), while 60 cells are employed to describe the sphere surface from pole to pole (only half
that number was used in the bubble case). Given the maximum Reynolds number of 250, the thinnest boundary layers expected
here are typically twice as thick as those considered in [31]. Nevertheless, the velocity gradients being larger, we keep the same
discretization in the direction normal to the sphere surface. That is, with R∞ = 20d, the first node stands a distance 10−3d from this
surface in the equatorial plane (x = 0). The grid being strongly nonuniform in the radial direction, a total of 54 cells is used in that
direction irrespective of R∞, with a typical number of 12 cells standing within the boundary layer at Re = 250. Along the cylinder
axis, the discretization is identical to that used in the bubble case. That is, 58 cells are non-uniformly distributed from the pole
opposed to the wall (x = d/2, y = z = 0) to the top of the cylinder (x = R∞), while the number of cells in between the other pole
(x = −d/2, y = z = 0) and the wall is varied from 10 to 40 depending on LR and Re in the manner detailed in [31]. Some runs were
also performed to obtain reference values in an unbounded shear flow. In these cases, we set L̃ = R∞ (with the aforementioned
Re-dependent values of R∞) in order to keep the domain symmetric.
Comparison with available data and asymptotic predictions available for a clean bubble, together with grid convergence tests, were
presented in [31]. In the rigid sphere case, extensive comparisons and grid convergence tests in both wall-bounded and unbounded
shear flows were reported in [34]. Results obtained with the grid characteristics described above were shown to compare well with
those of [16, 17] in the former case and those of [35] (once properly transposed to a rigid sphere) and [9, 11] in the latter case. As
will become apparent in Sec. V, the most convincing comparison in wall-bounded configurations is for the case of a translating
particle in a fluid at rest (Figs. 10 and 12), since data from [16] span a parameter range close to that explored here. In wall-bounded
shear flows, available studies ([29] in the low-Re range, [17, 30] for moderate-to-large Re) only marginally overlap the parameter
space considered here. Whenever possible, comparisons with these data will be presented in Sec. V.B. In the unbounded shear
flow configuration, some comparisons with references [9, 11] for the lift force on a non-rotating sphere will also be provided in
Figs. 18 and 19, while the rotation rate on a torque-free sphere will be compared with the fit based on the results from [11] in Fig.
21.
To achieve the torque-free condition, the sphere rotation rate Rr is computed through an iterative approach. First, the steady
flow around a non-rotating sphere is determined to obtain the corresponding torque coefficient, CM0. Then the rotation rate is
updated as Rr1 = Rr0 + CM0Re/16 and the corresponding steady flow field is determined to obtain the new torque coefficient, CM1.
This procedure is continued until the torque coefficient becomes less than 0.05CM0. In Appendix A we show how this procedure
converges in a wall-bounded shear flow at two widely different Reynolds numbers. We also report sensitivity tests proving that the
forces acting on the particle, especially the lift force, only marginally vary (typically by 1% for the latter) when the rotation rate is
varied from the value achieving a torque coefficient of 0.05CM0 to the value corresponding to the strict torque-free condition.

III. ANALYTICAL SOLUTIONS AND EMPIRICAL PREDICTIONS

1. Unbounded linear shear flow

At low-but-finite Reynolds number, the presence of a uniform shear in an unbounded flow domain results in a transverse or lift
force on a sphere in the direction of Urel × ω. For Sr � 1, the leading-order force is proportional to (|Sr|/Re)1/2. In the case of a
non-rotating sphere, the corresponding lift coefficient takes the form [5, 6]

CU
Lω(Re � 1) =

18
π2 sgn(Sr)εJL(ε) (7)

where ε = L̃u/L̃ω = (|Sr|/Re)1/2 is the ratio of the Oseen and Saffman lengths, and sgn(Sr) = Sr/|Sr|. Saffman’s original result [3]
corresponds to the limit ε � 1 for which JL(ε) → 2.254. In [6], the pre-factor JL(ε) was obtained for arbitrary ε in the form of
a three-dimensional integral which was evaluated numerically for specific values of ε. Based on fully-resolved simulations at low
Reynolds number and Sr ≤ 0.5, a useful approximation of JL(ε) was established in [35] in the form

JL(ε) ≈ 2.254(1 + 0.2ε−2)−3/2 . (8)

Assuming Re and ReRr to be small, a rotating sphere translating in a fluid at rest experiences a transverse force π
8ρd3Ω × Urel

[2], which yields a lift coefficient CU
LΩ

[Re � 1] = Rr. When ambient shear and rotation act together, the total lift force including
O(Rr)- and O(Sr)-effects is the sum of the two individual contributions, and involves a second-order shear-induced contribution
lowering the lift coefficient by − 11

8 Sr in the limit |Sr| � 1 [3]. Therefore, the total lift coefficient takes the form

CU
Lω(Re � 1) ≈

18
π2 sgn(Sr)εJL(ε) −

11
8

Sr + Rr , (9)

If the torque-free condition holds, the leading-order sphere rotation rate in the low-Re regime is half the undisturbed flow vorticity,
i.e.

Rr = RrU(Re � 1) ≈
1
2

Sr . (10)
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Consequently, the rotation-induced and second-order shear-induced lift forces combine in a correction of − 7
8 Sr to (7) [3].

At low-to-moderate Reynolds numbers, the shear-induced lift force predicted by (7) agrees well with numerical data for non-
rotating spheres up Re ≈ 10 [9]. Increasing Re, this force first exhibits weak positive values up to Re ≈ 50. Beyond this range,
it changes sign, owing to the influence of the standing eddy on the stress distribution at the rear of the sphere. For Re & 50, the
numerical results of [9] and [11] are adequately fitted by the empirical correlation [36]

CU
Lω[Re = O(100)] ≈ − sgn(Sr)|Sr|1/3

{
0.0525 + 0.0575 tanh

[
11.5 log

(
Re
120

)]}
. (11)

The spin-induced lift coefficient CU
LΩ

(Re) remains linearly proportional to the rotation rate at moderate Reynolds number. Setting
CU

LΩ
(Re) = cU

LΩ
(Re)Rr, the coefficient cU

LΩ
is found to be smaller than unity and nearly independent of the Reynolds number for

Re & 1. According to [11], one has at moderate Re

cU
LΩ[Re = O(1 − 100)] ≈ 0.55 . (12)

In the same range of Reynolds number, the torque-free spin rate normalized by the ambient rotation rate is found to depend only
on Re in the form [11]

Rr = RrU[Re = O(1 − 100)] ≈ f U
Ω (Re)

Sr
2

(13)

with

f U
Ω (Re) ≈ 1 − 0.0364Re0.95 for 0.5 ≤ Re ≤ 5 and f U

Ω (Re) ≈ 1 − 0.0755Re0.455 for Re > 5 . (14)

Available DNS results for torque-free rotating spheres suggest that contributions of shear and rotation still superpose linearly in the
lift force up to Re = 100 [37].

2. Low-Re wall-bounded shear flow

The presence of a nearby wall results in a drag increase, while for reasons mentioned above it may either increase or decrease
the transverse force, depending on the sign of Sr. For Re � 1, situations where the wall lies in the inner region of the disturbance,
i.e. max (Lu, Lω, LΩ) � 1, were investigated in [13, 22, 23, 38, 39].

In the case of a non-rotating sphere, the results of [23] indicate that the lift coefficient is approximately [40]

CW-in
L (Sr, LR) =

9
8

(
1 +

1
8

L−1
R − 0.413L−2

R + 0.270L−3
R

)
︸                                           ︷︷                                           ︸

CW-in
Lu

+
33
32

(
LR +

17
48

+ 0.643L−1
R − 0.280L−2

R

)
Sr +

61
192

(
1 + 0.527L−1

R − 1.200L−2
R + 0.657L−3

R

)
Sr2︸                                                                                                                     ︷︷                                                                                                                     ︸

CW-in
Lω

.

(15)

Similarly, in the case of a torque-free rotating sphere, one has

CW-in
L (Sr, LR) =

9
8

(
1 +

3
16

L−1
R − 0.511L−2

R + 0.287L−3
R

)
︸                                             ︷︷                                             ︸

CW-in
Lu

+
33
32

(
LR +

443
528

+ 0.258L−1
R − 0.145L−2

R

)
Sr +

55
192

(
1 +

9
16

L−1
R − 1.090L−2

R + 0.568L−3
R

)
Sr2︸                                                                                                                   ︷︷                                                                                                                   ︸

CW-in
Lω

.

(16)

The difference between (15) and (16) indicates an increase of the lift coefficient by 1
2 Sr and a decrease by − 1

32 Sr2 for large LR,
when switching from the zero-rotation condition to the zero-torque one. The 1

2 Sr-increase is in line with the contribution of the
torque-free rotation to the lift force found in the unbounded case.

Still for a torque-free sphere, the dimensionless rotation rate is approximately [22, 38, 39]

RrW-in(Sr, LR) ≈ −
3

16
L−4

R

(
1 −

3
8

L−1
R

)
︸                   ︷︷                   ︸

RrW-in
u

+
1
2

(
1 −

5
16

L−3
R

)
Sr︸                ︷︷                ︸

RrW-in
ω

, (17)



7

while the variation of the drag force is [22]

∆CW-in
D (Sr, LR) =

(
9

16
L−1

R −
1
8

L−3
R +

45
256

L−4
R +

1
16

L−5
R

) (
1 −

9
16

L−1
R +

1
8

L−3
R −

45
256

L−4
R −

1
16

L−5
R

)−1

︸                                                                                                      ︷︷                                                                                                      ︸
∆CW-in

Du

−
5

32

(
L−2

R +
9
16

L−3
R

)
Sr ,︸                      ︷︷                      ︸

∆CW-in
Dω

(18)

where ∆CW-in
D (Sr, LR) =

(
CW-in

D (Sr, LR) −CU
D0(Re→ 0)

)
/CU

D0(Re → 0), with CU
D0(Re → 0) = 24/Re the drag coefficient in the

creeping flow limit. Since the leading contribution of the particle rotation to the drag force is known to be proportional to L−4
R Rr

[38], the above O(L−5
R ) − O(L−3

R Sr) approximation for ∆CW-in
D (Sr, LR) also holds for a non-rotating sphere.

When the wall lies in the outer region of the disturbance, the relative length scales Lu, Lω, and LΩ are no longer small. Hence,
in addition to LR, the drag and lift forces depend on these three visco-inertial length scales. This situation was investigated in
the shearless non-rotating case (Lω → 0, LΩ → 0) in [14], neglecting the finite size of the particle. The relevant solutions were
obtained in the form of double integrals which can be approximated as [31]

16
9

LR∆CW-out
Du (Re . 1) = f ′D(Lu) ≈

1
1 + 0.16Lu(Lu + 4)

, (19)

and

8
9

CW-out
Lu (Re . 1) = f ′L(Lu) ≈

{
[1 + 0.13Lu(Lu + 0.53)]−1 for Lu ≤ 10 ,
7.95L−2.09

u for Lu > 10 ,
(20)

with ∆CW-out
Du (Re � 1) =

(
CW-out

Du (Lu, LR) −CU
D0(Re→ 0)

)
/CU

D0(Re → 0). The two functions f ′D and f ′L describe how the wall-
induced drag modification and the transverse force decay as inertial effects in the bulk become dominant compared to the wall
influence.

In the presence of shear, the case of a non-rotating sphere close to a wall standing in the outer region of the disturbance was
worked out in [19]. Again, the solution was obtained in the form of a volume integral in Fourier space. The value of this integral
cannot be obtained in closed form but was tabulated for various values of Lω and ε = L̃u/L̃ω. These results were fitted in [20] to
obtain tractable estimates of the lift force. This fit was further modified in [31] to take into account the effects of the finite particle
size, which tend to lower the transverse force when the particle gets very close to the wall. The same argument was used to derive
an empirical expression for the drag variation. Making use of the approximate expressions (7)-(8) for CU

Lω(Re � 1) and of the
asymptotic form for CW-in

Lu in (15), the final expression for the lift force in the case of a non-rotating sphere takes the form

CW
L (Re . 1) ≈ fL(Lω, ε) f ′L(Lu)CW-in

Lu + hL(Lω, ε)CU
Lω(Re � 1) , (21)

with f ′L(Lu) as given in (20) and

fL(Lω, ε) = e−0.22ε0.8L2.5
ω and hL(Lω, ε) = 1 − e−

11
96 π

2 Lω
JL(ε) (1+ 17

48 L−1
R +0.643L−2

R −0.280L−3
R )
. (22a, b)

Thanks to these empirical pre-factors, (21) approaches the inner solution (15) when Lu → 0 and Lω → 0, with the exception of
the Sr2-term, usually much smaller than the Sr-term as far as |Sr| . 1. Similarly, making use of (18) and (19), the total slip-induced
near-wall correction to the drag taking into account the finite size of the sphere may be approximated as

∆CW
D (Re . 1) ≈ f ′D(Lu)∆CW-in

D . (23)

3. Approximate expression for the slip-induced transverse force in a fluid at rest at moderate-to-large Re

No theoretical solution for the hydrodynamic loads can be found when inertial effects are dominant. However, reliable empirical
extensions of the low-Reynolds-number predictions may be achieved based on accurate data. Several experimental and numerical
studies [15–17] examined the motion of a rigid sphere close to a wall in a quiescent fluid. They revealed that the transverse force
exhibits a faster decay with increasing Lu than predicted by the low-but-finite Re solution. In [15], experimental observations were
performed with fully contaminated spherical bubbles rising near a wall in a liquid at rest under conditions Re . 100; such bubbles
behave essentially as rigid torque-free spheres. Theoretical considerations about the nature of the particle-wall interaction were
summarized through the semi-empirical expression for the transverse force coefficient

CW
Lu[Re = O(1 − 100)] ≈ a2(Re)(LR/3)g(Re)CW-out

Lu (Re . 1) , (24)

with

a(Re) = 1 + 0.6Re0.5 − 0.55Re0.08 and g(Re) = −2.0 tanh(0.01Re) . (25a, b)
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FIG. 2. Distribution of the streamwise velocity disturbance (u −u∞) · ez/Urel along the x-axis (to magnify the flow in the gap, the ] − 1,+1[ part
of the axis has been cut, so that the sphere is shrunk to a point). (a) Stagnant fluid (Sr = 0) for different separation distances; (b) linear shear flow
for LR = 2. The wall stands at 2x/d = −1.5, −2, and −4 for LR = 1.5, 2, and 4, respectively. In (a), the fluid domain has arbitrarily been cut on
the left at x/d = −1 irrespective of LR; the black lines (LR = ∞) on the left and right of the particle are of course symmetric.

IV. FLOW FIELD AND FUNDAMENTAL MECHANISMS

A. Non-rotating sphere

Figure 2(a) shows how the distribution of the streamwise velocity disturbance along the line (y = 0, z = 0) perpendicular to
the wall, i.e. the x-axis, varies with flow conditions in the case of a sphere translating in a stagnant fluid. The sphere leading the
fluid, Urel is negative, so that negative (positive) normalized velocities correspond to an upward (downward) fluid motion. At high
Reynolds number (Re = 200), the no-slip condition induces a thin boundary layer around the sphere, within which the disturbance
is always negative. Outside this boundary layer, the fluid is accelerated by the sphere motion, making the disturbance become
positive on both sides. Owing to the finite-gap offered to the fluid, this acceleration is more pronounced on the wall-facing side and
the maximum velocity increases as the wall-sphere separation decreases. In this high-Re configuration, the velocity disturbance
outside the boundary layer remains positive throughout the gap. Wall-proximity effects sharply decrease as the gap widens and
are almost negligible for LR & 4, which results in a left/right symmetry of the streamwise velocity distribution in Fig. 2(a). The
boundary layer thickens as Re decreases and viscous effects increasingly control the flow in the gap. For instance, the velocity
disturbance keeps a negative sign throughout the gap for LR = 1.5 when Re = 10, and only passes through a tiny positive maximum
for LR = 2 before returning to zero at the wall. In such cases, the fluid in the gap is essentially entrained by the sphere translation.
For each LR, the velocity disturbance at a given distance from the sphere surface is seen to reach larger negative values on the
wall-facing side compared to the ‘free’ side, illustrating the enhancement of viscous effects in the gap due to the nearby wall.

The influence of the shear on the disturbance flow is illustrated in Fig. 2(b), based on the results obtained with two opposite
relative shear rates, Sr = ±0.5, for a separation distance LR = 2. In the moving frame, the presence of a positive (negative) shear,
corresponding to the configuration where the sphere lags (leads) the fluid, accelerates (decelerates) the flow on the wall-facing side,
while it decelerates (accelerates) it on the opposite side. Consequently, compared to the un-sheared situation, the fluid acceleration
is enhanced (reduced) on the wall-facing side by a positive (negative) shear when Re is large (Re=100 or 200 in Fig. 2(b)), while the
opposite takes place on the ‘free’ side. At moderate Reynolds number (Re = 10), shear-induced acceleration/deceleration effects
remain significant within the boundary layer and extend beyond it (x/d > 1) on the ‘free’ side. The shear-induced asymmetry is
still present throughout the flow at low Reynolds number (Re = 0.1), the disturbance velocity remaining negative everywhere (i.e.
directed upstream of the local carrying flow) in this case.

The distribution of the spanwise component of the vorticity disturbance in the symmetry plane y = 0 is displayed in Fig. 3 for
the specific separation LR = 2. Vorticity is generated both at the sphere surface and at the wall, owing to the no-slip condition on
both surfaces. We refer to the corresponding two contributions in the vorticity field as the ‘surface’ vorticity and ‘wall’ vorticity,
respectively. When the fluid is at rest at infinity, the surface vorticity is advected asymmetrically, preferentially towards the wall
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FIG. 3. Iso-contours of the normalized spanwise vorticity disturbance d/(2Urel)(ω − ω∞) · ey in the symmetry plane y = 0 for LR = 2. Left
column: Sr = −0.5 (Urel < 0); central column: Sr = 0 (Urel < 0); right column: Sr = 0.5 (Urel > 0). The wall stands at the bottom of each panel.
The relative flow with respect to the sphere is from left to right, i.e. in the z-direction for Sr = 0.5 and in the −z-direction for Sr = 0 and −0.5.

at high Reynolds number (Fig. 3(k)). A thin layer of wall vorticity, the strength of which increases with Re, takes place in the
lower part of the gap. In the same panel, it may be noticed that the stagnation point at the back of the sphere stands slightly
below the plane x = 0, i.e. it is shifted towards the wall compared to unbounded flow configuration, in agreement with previous
observations [16]. When the Reynolds number decreases, the thickness of the two boundary layers increases (e.g. Re = 50 in Fig.
3(h)), reinforcing their interaction. At lower Reynolds number (Re = 10 and 0.1, Figs. 3(e) and 3(b)), diffusion in the crosswise
(x) direction is sufficiently efficient to allow the surface vorticity to control the wall region, except in the narrowest part of the gap
(|z|/d � 1). In this regime, the vorticity distribution is essentially similar to that observed in [31] with a spherical bubble, up to a
factor 3/2 resulting from the difference in the magnitude of the Stokeslet (hence the drag force) associated with the two types of
bodies. Thus, the mechanisms responsible for the drag enhancement and the transverse force are similar to those discussed in [31].
In particular, the gradual slowing down of the fluid displaced by the sphere along the wall as the downstream distance increases
induces a small transverse flow correction directed away from the wall, which is responsible for the repulsive transverse force
acting on the sphere.

In the presence of an ambient shear, a shear-flow type correction has to take place within the boundary layer for the no-slip
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FIG. 4. Iso-surfaces d/(2|Urel|)ω · ez = ±0.25 of the streamwise vorticity in the wake of a sphere moving parallel to a wall at Re = 200 (the black
thread corresponds to positive values). Left column: Sr = −0.5 (Urel < 0); central column: Sr = 0 (Urel < 0); right column: Sr = 0.5 (Urel > 0).
The flow with respect to the sphere is from left to right, i.e. in the z-direction for Sr = 0.5 and in the −z-direction for Sr = 0 and −0.5. Since
(x, y, z) is right-handed, the wall stands at the back of the sphere for Sr = 0.5 and at its back for Sr = 0 and −0.5.
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FIG. 5. Same as Fig. 4 for Re = 250.

condition to be satisfied at the sphere surface, yielding a negative correction in the spanwise vorticity therein when the sphere lags
the fluid. Hence this correction enhances the primary negative vorticity on the ‘free’ side (x > 0), while it lowers the primary
positive vorticity in the part of the boundary layer facing the wall (x < 0), as Fig. 3(i) confirms. The process reverses when
the sphere leads the fluid, in agreement with Fig. 3(g). The wall vorticity in the gap is also modified by the shear: it increases
(decreases) for Sr > 0 (Sr < 0), owing to the acceleration (deceleration) of the fluid on the wall-facing side caused by the positive
(negative) shear, as Figs. 3(l) and (j) confirm.

The near-wall situation makes the flow past the sphere intrinsically three-dimensional, even when the fluid is at rest at infinity.
Consequently, the streamwise component of the vorticity, ωz = ω · ez, is nonzero in the wake, unlike in the axisymmetric con-
figuration prevailing in the unbounded case at low and moderate Re. The ωz-distribution in the un-sheared case is shown in Figs.
4(b) and 4(e) at Re = 200 for the two separations LR = 1.5 and LR = 2.0, respectively. The streamwise vorticity is concentrated
within two elongated vortices standing on both sides of the symmetry plane y = 0. The fluid located in between the two vortex
threads is entrained downwards, bending the iso-contours of the spanwise vorticity towards the wall, as seen in Fig. 3(k). Three-
dimensional effects sharply decrease as LR increases, and so does the strength of ωz as shown by Fig. 4(e). In an unbounded
flow, the axial symmetry in the wake of a sphere is known to break down at a critical Reynolds number ReS S ≈ 212.6 through
a stationary bifurcation [33, 41], leading to a stationary flow with a double-threaded wake structure qualitatively similar to that
depicted in Fig. 4(b), and a symmetry plane whose orientation is selected by some initial disturbance. In the presence of a nearby
wall, the flow structure observed for Re & ReS S results from the combination of the above two mechanisms, the presence of the
wall dictating the orientation of the symmetry plane [16]. The corresponding wake structure is illustrated in Fig. 5(e) for Re = 250
and two separations, LR = 1.5 and 8. Now, the strength of the streamwise vortices is significant even for LR = 8, owing to the
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FIG. 6. Iso-surfaces of the streamwise vorticity in the wake of a sphere moving in an unbounded linear shear flow with Sr = 0.5 (the black thread
corresponds to the positive value). (a) Re = 50, d/(2|Urel|)ω · ez = ±0.1; (b) Re = 200, d/(2|Urel|)ω · ez = ±0.25. The relative upstream flow is
from left to right and the free vorticity −γ lies along the y-direction.
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FIG. 7. Same as Fig. 5(a) and (c) for Sr = ±0.2.

intrinsic instability of the axisymmetric wake. At such large separations and Reynolds number, the sign of the streamwise vorticity
in each vortex thread is dictated by the slight acceleration of the fluid in the gap: based on Bernoulli’s theorem, this acceleration
is seen to imply a pressure minimum there, forcing the fluid located within the symmetry plane y = 0 (i.e. in between the two
streamwise vortices) to be deviated toward the wall. Continuity then implies that the fluid must go away from the wall on the outer
side of the streamwise vortices, yielding a transverse force toward x > 0. Consequently, the wall-interaction and the intrinsic wake
instability mechanisms cooperate when the separation distance decreases, enhancing the strength of the streamwise vortices, as the
comparison between Fig. 5(b) and Figs. 5(e) and 4(b) confirms.

In the presence of a mean shear, the ‘free’ vorticity ω∞ = ∇ × u∞ = −γey comes into play. In an unbounded flow domain,
it yields the classical shear-induced lift force associated with the lift coefficient (7) in the low-Re regime. In the case of a rigid
non-rotating sphere, a remarkable feature is that this force changes sign for Re & 50 [9, 11], mostly because of the nearly-uniform
shear stress distribution within the recirculation attached to the rear part of the sphere. This change of sign, which follows that of
the streamwise vorticity within each vortex thread, is confirmed in Fig. 6. In the presence of a nearby wall, a consequence of this
change of sign is that, provided Re & 50, the shear-induced and slip-induced mechanisms cooperate when Sr is negative and act in
an antagonistic manner when Sr is positive, while the reverse happens for Re . 50. The influence of the sign of Sr in the former
case is confirmed in Fig. 4 (Re=200), since the trailing vortices observed when Sr < 0 (Figs. 4(a) and 4(d)) are thicker than in the
unbounded case (Fig. 6(b)), while they are thinner when Sr > 0 (Figs. 4(c) and 4(f)). The presence of the double-threaded wake
and the variation of its strength with the sign of Sr have a direct influence on the advection of the surface vorticity downstream of
the sphere. Indeed, according to the direction of the streamwise vorticity in each vortex thread, this wake structure entrains the
fluid standing close to the mid-plane y = 0 towards (away from) the wall when Sr < 0 (Sr > 0). Since the streamwise vortices are
stronger in the former case, so is the resulting bending of the wake towards the wall (Fig. 3(j)), as compared to its bending toward
the fluid interior when Sr is positive (Fig. 3(l)).

For supercritical Reynolds numbers, i.e. Re > ReS S , the above picture still holds when Sr is negative, since all mechanisms
involved in the generation of the streamwise vorticity cooperate. The only difference is that the magnitude of ωz is increased com-
pared to subcritical conditions, since the wake instability contributes to reinforce this vorticity component (compare the diameters
of the ωz-iso-surfaces corresponding to Re = 200 and 250 in Figs. 4(a) and 5(a)). In contrast, when Sr is positive, the mechanism
associated with the free vorticity and those related to the wall proximity and wake instability act in an antagonistic manner. There-
fore, the resulting sign of the streamwise vorticity in each vortex thread depends on the magnitude of Sr. For large enough relative
shear rates, this sign follows that found in the unbounded configuration. As the comparison between Figs. 5(c) and 6(b) shows,
this is the case with Sr = 0.5 at Re = 250. In contrast, mechanisms related to the wall proximity and wake instability dominate
when the ambient shear is weak enough. This situation is illustrated in Fig. 7(b) (Sr = 0.2), where the sign of ωz in each vortex
thread is seen to be opposite to that found in Fig. 5(c) with Sr = 0.5 at the same Reynolds number and separation from the wall.

As the Reynolds number decreases, shear-induced advective effects in the wake weaken and vorticity diffusion across the wall-
particle gap becomes increasingly important. For instance, bending of the surface vorticity toward or away from the wall is no
longer observed in Figs. 3(g-i) at Re = 50. At Re = 10, the boundary layer is thick enough for the positive vorticity disturbance
generated on the wall-facing part of the sphere surface to interact directly with the negative wall vorticity disturbance, similar to the
un-sheared case. As Re further decreases, viscous diffusion becomes so strong that the surface vorticity virtually controls the entire
wall region. Nevertheless, influence of the ambient shear is still present, favoring (reducing) the diffusion of the surface vorticity
toward the wall when Sr is negative (positive), as the iso-contours in Figs. 3(a-c) reveal. The surface vorticity being enhanced
(reduced) on the wall-facing side for negative (positive) Sr, the drag acting on the sphere is increased (reduced), which is reflected
in the last term in the right-hand side of (18). The wall- and shear-induced mechanisms both yield a transverse force directed
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FIG. 8. Influence of the sphere rotation on the distribution of the streamwise velocity disturbance (u − u∞) · ez/Urel along the x-axis for LR = 2.
(a) Sr = −0.5; (b) Sr = 0.5. The wall stands at position 2x/d = −2 and the interval ] − 1,+1[ has been cut. The magnitude of the normalized
sphere rotation rate 2Rr/Sr = 2Ω/γ in the torque-free case is indicated in each panel.

toward x > 0 if Sr is positive in the low-but-finite Re regime. Hence they act together to produce an enhanced repulsive force in
this configuration, as reflected in (15), whereas their antagonistic action yields a reduced transverse force when Sr is negative.

B. Torque-free sphere

Figure 8 compares the profiles of the streamwise velocity disturbance along the x-axis in the case of a torque-free sphere with that
of a non-rotating sphere, both with Sr = ±0.5 and LR = 2. Values of the normalized rotation velocity 2Rr/Sr = 2Ω/γ indicated in
each panel reveal a significant decrease of the rotation rate as Re increases, Rr typically reducing by a factor of five from Re = 0.1
to Re = 200. A similar tendency has been reported in the unbounded case [11, 42]. Rotation being clockwise for Sr > 0, the
streamwise velocity is found to decrease on the wall-facing side and increase on the opposite side; the reverse happens when Sr is
negative. However the corresponding changes are minimal and vanish beyond a distance to the sphere surface of the order of its
radius. Analyzing the spatial distribution of the spanwise vorticity disturbance (not shown) leads to the same conclusion.

Things differ at high Reynolds number for the streamwise vorticity component. Figure 9 shows the structure of the ωz-field in
the wake of a torque-free sphere for Sr = ±0.5 and a separation distance LR = 2. The aforementioned rotation-induced changes in
the fluid velocity at the particle surface lower the actual shear ‘felt’ by the sphere whatever the sign of Sr. Therefore the source term
responsible for the generation of the streamwise vorticity is lowered by the rotation, resulting in a weaker pair of vortex threads
compared to the non-rotating configuration. Comparing Fig. 9 with its counterpart in the case of a non-rotating sphere (Figs.
4(d) and (f)) confirms this conclusion. In contrast, under supercritical conditions, the generation of ωz for similar levels of |Sr| is
essentially governed by the wake instability, not by the shear around the particle. Consequently, little change is expected between
the non-rotating and torque-free configurations, which Figs. 9(c)-(d) confirm.

V. HYDRODYNAMIC FORCES

We now discuss the variations of the computed drag and lift forces acting on the sphere with the various control parameters.
Most results were obtained by considering the parameter range 0.1 ≤ Re ≤ 250 and |Sr| ≤ 0.5, within which the flow field in the
particle frame is steady for all considered LR. Numerical data are systematically used to derive empirical or semiempirical force
models. Most of these models are valid only within a specific Re-range but we frequently combine them to obtain empirical fits
valid throughout the considered range of Reynolds number.
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FIG. 9. Iso-surfaces d/(2|Urel|)ω · ez = ±0.25 of the streamwise vorticity around a torque-free sphere for LR = 2 and |Sr| = 0.5.

A. Fluid at rest at infinity

1. Drag

It is known since Faxén’s pioneering work [43] that the presence of a wall increases the drag in the low-Re limit. This increase,
say, ∆CW

Du = (CW
Du − CU

D0)/CU
D0, with CU

D0 the drag coefficient on a sphere translating in an unbounded uniform flow, is displayed
for various separation distances in Fig. 10, the two panels of which focus on the Reynolds number ranges 0.1 ≤ Re ≤ 20 and
100 ≤ Re ≤ 250, respectively. Data for the wall-induced drag increase extracted from [16] and [29], both for a non-rotating sphere,
are also included. Since these references provide CW

Du but not CU
D0, we used our own results for the latter to compute ∆CW

Du. This
procedure introduces some uncertainty because ∆CW

Du is small in most cases and may therefore be sensitive to a small difference
in CU

D0. For instance, a 2% decrease in CU
D0 makes the data of [29] collapse perfectly on present results at Re = 0.2. Despite

this uncertainty, the estimates for ∆CW
Du obtained through the above procedure are found to be in good agreement with present

predictions whatever LR and Re. Most results from the present investigation presented in Fig. 10(a) were obtained by considering
a non-rotating sphere but data corresponding to the torque-free condition are also included for Re ≤ 1. No discernible difference is
found between the two configurations, confirming the vanishingly small effect of the rotation induced by the torque-free condition
on the drag in the range of separations considered here, in line with a previous remark on the asymptotic prediction (18). Numerical
results closely approach this prediction (solid lines in Fig. 10(a)) at Re = 0.1. Inertial effects become increasingly important as
the Oseen-length-based separation Lu increases, making the drag increase depart from (18). The decrease in ∆CW

Du as Re increases
is well captured by the low-but-finite-Re expression (23) up to Re = 1. Following [15], this expression may be extended semi-
empirically to moderate Reynolds numbers by noting that the drag increase in this regime is proportional to the square of the
maximum surface vorticity. Variations of this quantity with Re based on the results of [44] are expressed by the fitting function
a(Re) in (25a). We performed specific runs in an unbounded uniform flow to check this expression and found that, for Re . 10,
these variations are more accurately approached by the fit a(Re) ≈ (1 − 0.12Re1/2 + 0.37Re)1/2 which recovers the leading-order
0.6Re1/2-term of (25a) at high Reynolds number. However, compared with the unbounded situation, the presence of a nearby wall
tends to decrease the surface vorticity on the wall-facing side, as Fig. 3(e) indicates. For this reason, we found that a more accurate
estimate of the variations of the maximum surface vorticity in the near-wall configuration at moderate Re is provided by

aW(Re, LR) ≈
{
1 + tanh(0.05ReL2

R)(0.37Re − 0.12Re1/2)
}1/2

. (26)

Making use of (26), which tends toward the above expression for a(Re) at large distances from the wall, the low-but-finite-Re
wall-induced drag correction (23) may be extended toward moderate Reynolds numbers in the form

∆CW
Du[Re . 10)] ≈ f ′D(Lu)[aW(Re, LR)]2∆CW-in

Du (LR) , (27)

where ∆CW-in
Du corresponds to the low-Re asymptotic prediction (18) for Sr = 0 and f ′D is given by (19). As the dashed lines in Fig.

10(a) show, (27) accurately captures the variations of ∆CW
Du revealed by the simulations whatever LR up to Re = 20.

According to (27), the wall-induced drag increase should be vanishingly small beyond Re ≈ 100. However, as Fig. 10(b) reveals,
numerical data in this regime indicate that this increase is still significant when the particle is close enough to the wall. Within the
considered Reynolds number range (100 ≤ Re ≤ 250), this increase is found to depend only weakly on Re. In contrast, it varies
dramatically with the inverse of the separation distance, increasing from 5% for LR = 2 to 20% for LR = 1.25. Fitting the results
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FIG. 10. Relative wall-induced drag increase ∆CW
Du for a sphere moving parallel to a wall in a fluid at rest. (a) Low-to-moderate-Re regime. (b)

High-Re regime. � and +: numerical data corresponding to a non-rotating and a torque-free sphere, respectively; # and l: numerical data from
[16] and [29], respectively ; solid lines in (a): zero-Re asymptotic prediction (18); dotted lines: low-but-finite-Re prediction (23); dashed lines:
low-to-moderate-Re semiempirical prediction (27); solid lines in (b): high-Re expression (28).
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FIG. 11. Wall-induced drag correction ∆CW
Du for a non-rotating sphere translating parallel to a wall in a fluid at rest in the range 0.1 ≤ Re ≤ 250.

Symbols: numerical data; solid lines: high-Re correction (28); dashed lines: low-to-moderate-Re correction (27); dotted lines: composite fit (29).

corresponding to Re = 250 yields

∆CW
Du[Re = O(100)] ≈ 0.4L−3

R . (28)

Figure 10(b) shows that (28) captures the observed drag increase well for Re & 100. The −3 exponent in (28) is readily understood
by noting that there is little direct interaction between the near-sphere and near-wall vortical regions in this regime (see Fig. 3(k)).
Therefore, the sphere-wall interaction has an almost inviscid nature, meaning that the sphere perceives the wall essentially as a
free-slip plane and the latter perceives the sphere as an irrotational dipole (associated with its finite size). The image dipole required
to satisfy the non-penetration condition on a nearby plane is known to induce an O(L−3

R )-increase in the relative velocity of the fluid
at the sphere center, which in turn increases the viscous dissipation resulting from the sphere motion by a similar amount [45].
Equating the dissipation rate with the rate of work of the drag force then implies that ∆CW

Du is proportional to L−3
R .

Figure 11 compares the predictions provided by expressions (27) and (28) with the numerical data obtained throughout the Re-
range investigated. Obviously none of them is appropriate in the intermediate range 20 . Re . 100. For practical purposes, an
empirical fit resulting from the combination of the two models is desirable. Noting that the drag excess predicted by (27) becomes
vanishingly small when the Reynolds number exceeds a few tens, a linear combination of (27) and (28) with a suitable pre-factor
of the latter ensuring that its effect vanishes at low Reynolds number appears to be convenient. Calibrating this pre-factor in the
intermediate Re-range, we obtained

∆CW
Du(Re) ≈ ∆CW

Du[Re . 10] + cDu∞(Re)∆CW
Du[Re = O(100)] , with cDu∞(Re) = 1 − e−0.035Re0.75

. (29a, b)
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FIG. 12. Lift coefficient (divided by LR in (a) for a better readability) on a sphere translating parallel to a wall in a fluid at rest. (a) regime
0.1 ≤ Re ≤ 100. (b) high-Re regime Re ≥ 100. � and +: present numerical data for a non-rotating and a torque-free sphere, respectively; # and
I: numerical data from [16] and [29], respectively; dotted lines in (a): leading-order term of asymptotic expressions (15) and (16); dashed lines:
approximate low-but-finite Re expression (20); solid lines: low-to-moderate Re prediction (24) with a(Re) substituted with aW (Re) as given by
(26); dotted line in (b): prediction (30) for the lift force in an unbounded fluid beyond the stationary bifurcation.

As the dotted lines in Fig. 11 show, this composite expression correctly reproduces the observed wall-induced drag increase
whatever the Reynolds number.

2. Transverse force

Numerical data obtained for the wall-induced transverse force are displayed in Fig. 12. Data from [16] for a non-rotating sphere
are also included. The two sets of results are found to be in excellent agreement throughout the explored parameter space. Close
to the low-Re bound of the domain (Re = 0.2), present results are compared with those of [29]. Again a very good agreement is
observed. Figure 12(a) shows the transverse force coefficient in the range 0.1 ≤ Re ≤ 150. Most data correspond to a non-rotating
sphere but some of them, obtained at small wall distances and Reynolds numbers less than unity, correspond to a torque-free sphere.
Given the vanishingly small difference between the results corresponding to these two configurations at small Re and the similar
behavior observed in the moderate-to-high Re regime in [16], it may be concluded that the sphere rotation associated with the
torque-free condition has a negligible effect on the wall-induced transverse force. Although this effect is reflected in the difference
among the pre-factors involved in (15) and (16), the overall difference between the two predictions amounts only to 0.3% for
LR = 1.5 and 0.4% for LR = 1.25, confirming the above statement. Numerical results at Re = 0.1 are in good agreement with these
asymptotic predictions, beyond which the transverse force gradually decreases as inertial effects increase, making the wall move
from the inner region of the disturbance to the outer region. This decrease is well captured by (20) up to Re ≈ 1. Further increasing
Re reveals that the force predicted by this low-but-finite Re approximation decreases too fast. A similar trend was noticed in [15],
leading to the semiempirical extension (24) of the previous prediction. This extension was obtained by noting that, similar to the
wall-induced drag increase, the transverse force at low-to-moderate Re is proportional to the square of the maximum vorticity at
the sphere surface, and the dependence of this force with respect to Lu varies from L−2

u for Re . 1 to L−4
u for Re � 1. In [16]

and [17], this extended prediction was found to be in good agreement with numerical results up to Lu = 100 for 1.5 ≤ LR ≤ 8.
Predictions of (24), with the slight change from a(Re) to aW(Re) as given in (26) are shown in Fig. 12(a). They are seen to capture
the variations of the transverse force well up to Re ≈ 100 for LR < 4. At larger LR, they tend to underestimate the actual force
for Re & 20. However, under such conditions, the residual values of the force are less than 1% of the low-Re value, making this
underestimate of little significance.

Figure 12(b) shows how CW
Lu behaves for Re ≥ 100. For large enough wall-particle separations, typically LR & 4, the transverse

force is virtually zero up to Re ≈ 200. In this situation, the sphere is immersed in an almost uniform flow, so that its wake is
essentially axisymmetric. The axial symmetry breaks down when the Reynolds number exceeds the critical value Re = ReS S ,
giving rise to a nonzero transverse force at larger Reynolds numbers. The wall plays no role in the occurrence of this force, nor in
its intensity. However it selects the orientation of the symmetry plane that characterizes the wake beyond the threshold Reynolds
number, hence that of the transverse force, according to the mechanism discussed in Sec. IV A. The corresponding imperfect
bifurcation being supercritical and of pitchfork type [46], it gives rise to a force growing as the square root of Re − ReS S close
to the threshold. The associated pre-factor (≈ 2.95) was computed exactly through a weakly nonlinear approach in the case of
a translating sphere subject to a slow rotation in a fluid at rest, this rotation being responsible for the imperfect nature of the
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FIG. 13. Relative near-wall drag increase ∆CW
D for a non-rotating sphere translating parallel to a wall in a linear shear flow. (a): low-to-moderate

Reynolds number regime for Sr = ±0.5; (b): moderate-to-high Reynolds number regime for Sr = ±0.2 and ±0.5. Symbols in (a): numerical
results for Sr = 0.5 (+) and Sr = −0.5 (×). Dashed lines: asymptotic prediction (18) corresponding to conditions Lu � 1, Lω � 1; solid lines:
low-but-finite-Re semiempirical expression (23); dotted lines: low-to-moderate-Re semiempirical expression (31). Thick (thin) lines correspond
to positive (negative) Sr.

bifurcation [46]. An empirical extension of this prediction to non-negligible Re − ReS S gaps was proposed in [37] in the form

CRe>ReS S

L ≈ 2.95
(

ReS S

Re

)1.5 [
(ReS S )−1 − Re−1

]1/2
. (30)

Figure 12(b) shows that present results corresponding to LR = 8 follow closely this prediction up to Re = 250, i.e. nearly 20%
beyond the threshold. As the wall-sphere separation decreases, the situation becomes less clear-cut because the flow ‘felt’ by the
sphere remains significantly anisotropic, even for Re & 100. Hence the transverse force maintains a significant nonzero value
throughout the range 100 . Re . ReS S . For low enough separations, the force exhibits little variation with the Reynolds number
in that range and even up to Re = 250. For instance, CW

Lu only varies by ±5% about a mean value close to 0.1 for LR = 1.5.
Under such conditions, no stationary bifurcation takes place, the wake structure having reached some kind of ‘asymptotic’ state
that breaks down only at much higher Reynolds number with the occurrence of unsteady effects. The case LR = 2 represents an
intermediate situation in which the transverse force is seen to increase significantly beyond Re = 150, almost doubling its value
at Re = 250. This variation suggests that the wake structure changes significantly within this range. This was confirmed in [16],
where it was shown that the size of the double-threaded wake structure grows dramatically from Re = 100 to Re = 200 (their figure
12). Since the streamwise vortices act to deflect the fluid toward the wall in the symmetry plane, the wake it more vigorously tilted
in that direction as Re increases, a trend confirmed by the comparison of panels (h) and (k) in Fig. 3. This in turn increases the
fluid velocity directed toward the fluid interior on the outer side of the streamwise vortices, hence the repelling transverse force.

B. Linear shear flow

1. Drag on a non-rotating sphere

The drag change ratio ∆CW
D = (CW

D −CU
D0)/CU

D0 is reported in Fig. 13 for different separation distances and dimensionless shear
rates. Let us first consider results obtained in the low-to-moderate Reynolds number regime (0.1 ≤ Re ≤ 20) with a dimensionless
shear rate Sr = ±0.5 (Fig. 13(a)). For LR ≤ 4, the shear-induced drag modification is negligibly small compared with that resulting
from the presence of the wall. In contrast, for the smallest two separations, the shear is found to increase (decrease) the drag when
the sphere leads (lags) the fluid, which is supported by the qualitative discussion at the end of Sec. IV A. The asymptotic prediction
(18), which is valid in the low-Re limit provided the wall stands in the inner region of the disturbance, is in good agreement with
numerical results at Re = 0.1. Compared with the un-sheared case, the corresponding relative variation of ∆CW

D is approximately
8% for Sr = ±0.5. No explicit theoretical solution for ∆CW

D is available for Sr , 0 when the wall stands in the outer region of the
disturbance. However the relative influence of the shear is always small under the conditions considered here, and the decrease of
∆CW

D up to Re = 1 is satisfactorily captured by (23), as the solid lines in Fig. 13 show. To extend this estimate to Reynolds numbers
of O(10), we merely duplicate the arguments that led to (27) in the un-sheared case. The empirical counterpart of (27) is thus

∆CW
D [Re . 10] ≈ f ′D(Lu)[aW(Re, LR)]2∆CW-in

D (LR,Sr) , (31)
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with ∆CW-in
D (LR,Sr), f ′D(Lu), and aW(Re, LR) as given in (18), (19), and (26), respectively. The dotted lines in Fig. 13 confirm that

the corresponding predictions properly reproduce the variations of the numerical data up to Re ≈ 10.
Figure 13(b) displays the drag force computed for Re ≥ 50. While the drag still decreases with the Reynolds number up to

Re = 100, a systematic increase is observed at higher Re whatever the distance to the wall. Moreover, in the same high-Re regime,
drag variations are found to be virtually independent of the sign of Sr. However, for Sr = O(1), the magnitude of the shear, i.e. the
norm of Sr, has a significant influence on the drag, with for instance a 45% increase of ∆CW

D at Re = 250 from Sr = ±0.2 to ±0.5.
To better analyze these results, it is appropriate to consider the unbounded configuration first, in order to examine the relative drag
change ∆CU

Dω(Re, Sr) =
(
CU

Dω(Re, Sr) −CU
D0(Re)

)
/CU

D0(Re) due solely to the influence of the ambient shear. Figure 14 shows how
∆CU

Dω(Re, Sr) varies with both the Reynolds number and the dimensionless shear rate. An obvious symmetry argument indicates
that ∆CU

Dω(Re, Sr) cannot depend on the sign of Sr, a constraint confirmed by numerical results. To magnify the shear-induced drag
variations, specific runs were carried out for Sr = 1. While only marginal for |Sr| = 0.2, the relative shear-induced drag increase is
found to reach approximately 20% at Re = 250 with |Sr| = 1. Within the considered ranges of Sr and Re, ∆CU

Dω depends almost
linearly on Sr and Re beyond Re ≈ 150, in agreement with the tendency observed in [9]. Fitting the results obtained at Re = 250
yields

∆CU
Dω[Re = O(100)] ≈ 7.5 × 10−4|Sr|Re , (32)

an estimate seen to properly capture the dominant trend revealed by numerical results for Re & 200, although it over-estimates the
drag increase at lower Reynolds numbers. A quantitative comparison with the findings reported in [9] reveals that present values for
∆CU

Dω are typically twice as large. We investigated the possible origin of such a large difference, suspecting in particular that results
may be contaminated by artificial confinement effects induced by the outer boundary of the computational domain, especially in
the wake region. To check this possibility, we re-ran the simulations corresponding to Re = 200 on a domain twice as large
as the standard one, i.e. with the outer boundary located 40d from the sphere center, the radial resolution being kept unchanged
close to the sphere, especially within the boundary layer, by increasing the number of nodes. The drag was found to vary by less
than 0.3% in all cases, inducing variations of ∆CU

Dω not exceeding 2%. These tests make us confident that present results for the
high-Re shear-induced drag increase are robust, being especially almost independent of the position of the domain outer boundary.
In contrast, we suspect that this issue may have affected the results reported in [9], as that study made use of an ellipsoidal grid
extending only to 10d upstream and downstream of the sphere and 5d in the direction perpendicular to the incoming flow.

Coming back to the near-wall situation, we first evaluated how the observed drag variation, ∆CW
D , compares with the sum of

the slip effect in the shearless case, ∆CW
Du, and the shear effect in the unbounded configuration, ∆CU

Dω, as given by (28) and (32),
respectively. It turned out that this sum consistently over-estimates ∆CW

D , and the shorter the wall-particle separation the larger the
over-estimate. This finding implies that the shear-induced drag correction observed in the unbounded case is actually reduced by
the presence of the wall, owing to the modifications the latter imposes on the wake structure. Keeping Re and Sr fixed and varying
LR, we observed that the excess quantity ∆CW

Du +∆CU
Dω−∆CW

D varies as the inverse of the separation. Introducing the shear-induced
drag modification in the presence of the wall, ∆CW

Dω, such that ∆CW
D = ∆CW

Du + ∆CW
Dω, and fitting the numerical data yields

∆CW
Dω[Re = O(100)] ≈

(
1 − 0.54L−1

R

)
∆CU

Dω[Re = O(100)] , (33)

with ∆CU
Dω[Re = O(100)] as given by (32).

The relative difference between the observed drag variation ∆CW
D and the prediction corresponding to the sum of (28) and (33)

is shown in Fig. 15 for Sr = ±0.5. It is seen that, beyond Re ≈ 100, this difference never exceeds 7%, confirming that the above
empirical model properly captures the near-wall drag variations in the high-Re regime. Numerical results obtained throughout the
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FIG. 16. Relative near-wall drag increase ∆CW
D (Re,Sr, LR) for a non-rotating sphere translating parallel to a wall in a linear shear flow, throughout

the Re-range investigated numerically. (a) Sr = ±0.2; (b) Sr = ±0.5. � and #: present numerical data for Sr > 0 and Sr < 0, respectively; / and
.: numerical data from [29] for Sr = −0.2 and Sr = +0.2, respectively; N: numerical data from [17] for Sr = 0.25; H: numerical data from [30]
for Sr = +0.5. Thick solid lines: high-Re model based on the sum of (28) and (33); thick (thin) dashed lines: low-to-moderate-Re expression
(31) for positive (negative) Sr; thick (thin) dotted lines: composite fit (34) for positive (negative) Sr.

range 0.1 ≤ Re ≤ 250, together with the corresponding predictions based on the semiempirical expressions established above, are
displayed in Fig. 16. In a way similar to (29), a purely empirical expression combining linearly the models previously established
in the low-to-moderate Reynolds number regime [Eq. (31)] and high-Reynolds number regime [Eqs. (28), (32) and (33)] may be
designed to improve the estimate of the drag increase in the intermediate range 10 ≤ Re ≤ 100. As the dotted lines in Fig. 16 show,
the composite expression

∆CW
D ≈ ∆CW

D [Re = O(1 − 10)] + cDω∞

{
∆CW

Du[Re = O(100)] + ∆CW
Dω[Re = O(100)]

}
with cDω∞ = 1 − e−0.035Re0.75

(34)

correctly fits the numerical data throughout the entire range of Reynolds number. Note that some data from [29], [17] (for Sr = 0.25)
and [30] are also included in Fig. 16 for comparison. Since the reference drag coefficient CU

D0 is not provided in these works, we
again used the procedure described in Sec. V.A.1 to determine ∆CW

D . The low-Re data from [29] for Re = 0.2 stand slightly below
present predictions. In contrast, those extracted from [17] and [30] stand somewhat above them. These differences contrast with
the close agreement observed in Fig. 10 in the case of a fluid at rest. The uncertainty introduced by the indirect procedure used to
compute ∆CW

D is presumably responsible for the most part of the observed differences. The slightly larger Sr in the series extracted
from [17] also contributes to increase the corresponding ∆CW

D compared to present results.
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FIG. 17. Variations of the lift coefficient CW
L (Re,Sr, LR) for a non-rotating sphere translating parallel to a wall in a linear shear flow at Re ≤ 2. (a)

Sr = ±0.2; (b) Sr = ±0.5. � and #: numerical data for Sr > 0 and Sr < 0, respectively; I: numerical data from [29] for a freely-rotating sphere
(values for LR = 1.5 with Sr = ±0.2 and LR = 8 with Sr = −0.2 were interpolated from neighboring separations). Dashed lines: inner solution
(15) corresponding to conditions Lu � 1, Lω � 1; solid lines: finite-Re expression (21) with fL and hL as given by (22a) and (22b), respectively.

2. Lift on a non-rotating sphere

Figure 17 shows the computed lift coefficient CW
L (Re,Sr, LR) up to Re = 2 for various normalized shear rates and separation

distances. Variations of CW
L with increasing Re and LR, as well as the form of the interplay between the shear- and slip-induced

contributions, are consistent with those observed with clean spherical bubbles in [31]. For this reason, the reader is referred to
section 6.2.2 of that reference for a discussion of the physical mechanisms governing the variations of the lift force with Re, Sr and
LR revealed by Fig. 17. The reason why the lift force acting on a rigid sphere or a clean spherical bubble behave similarly in this
regime has been established in [47] and extended to near-wall configurations in [22, 48]. Specifically, these analyses indicate that,
to leading order, shear-, wall-, and the combined lift forces acting on a rigid sphere in the low-but-finite Reynolds number regime
differ from those on a clean spherical bubble only by a pre-factor of (3/2)2, 3/2 being the strength ratio of the respective Stokeslets.
That the lift force on a rigid sphere at a given Sr and LR is larger than that on a clean bubble by a factor of (3/2)2 = 2.25 may
be confirmed by comparing present data at Re = 0.1 with their counterparts in figure 18 of [31]. As expected, the dashed lines in
Fig. 17 indicate that the asymptotic expression (15) corresponding to situations in which the wall stands in the inner region of the
disturbance predicts the computed lift force well for small enough LR and Re, typically LR < 4 and Re ≤ 0.2 for both shear rates.
When LR or Re increases, the wall shifts to the outer region of the disturbance and it is no surprise that (15) fails to capture the
variations of the lift coefficient (e.g. with Re = 0.1 and LR = 8, for which Lu and Lω are both of O(1)). In contrast, expression (21)
(along with (22a) and (22b) for fL and hL, respectively) (solid lines in Fig. 17) properly accounts for finite-Lω and finite-Lu effects,
as it approximates CW

L with a 10% accuracy at Re = 0.1 whatever LR and Sr. As Re increases, the magnitude of the lift force
decreases, owing to the decrease of the slip-induced contribution. Expression (21) properly captures this trend for both positive
and negative Sr. Predictions remain accurate up to Re = 2 for Sr = ±0.5 but deteriorate somewhat beyond Re ≈ 0.5 for Sr = ±0.2.
The reason for this is readily understood by noting that, under such low-shear conditions, ε ranges from 0.6 for Re = 0.5 down to
0.3 for Re = 2. For such modest shear levels, the theoretical solution of [19] is known to have a limited accuracy, as does that of [6]
for ε . 0.8 in the unbounded case (see for instance the discussion in [29, 35]). Since the fitting functions fL and hL were designed
to approach this theoretical solution, it is no surprise that the accuracy of predictions based on the overall fit (21) involving these
functions deteriorates as ε decreases.
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FIG. 18. Lift coefficient CW
L (Re, Sr, LR) for a non-rotating sphere translating parallel to a wall in a linear shear flow at Re ≤ 150. (a) Sr = ±0.2;

(b) Sr = ±0.5. � and #: numerical data for Sr > 0 and Sr < 0, respectively. N: numerical data from [17] for Sr = 0.25; H: numerical data from
[30]; H data from [11] in the unbounded configuration. Dashed lines: finite-Re prediction (21); dotted lines: prediction (35); black solid lines: lift
coefficient CU

Lω in an unbounded shear flow (fitted from the results obtained with the present code); red solid lines: lift coefficient CW
Lu at LR = 1.5

in a wall-bounded fluid at rest.

In Fig. 17, we also reported numerical data from [29] for Sr = ±0.2 and Re = 0.2 (the highest Reynolds number considered in this
reference). As no data for a non-rotating sphere in a wall-bounded shear flow were provided, these data correspond to a freely-
rotating sphere. Hence, the expected effect of the particle rotation has to be subtracted to achieve a proper comparison with present
results. In the limit of large separations, the discussion in Sec. III.2 indicates that the rotation adds a contribution 1

2 Sr − 1
32 Sr2 to

the lift coefficient. Based on this estimate, one expects the absolute values of CW
L provided in [29] to exceed those obtained in the

present study by a difference close to 0.1 for |Sr| = 0.2 and LR = 8, which Fig. 17 confirms. More precisely, the difference between
these corrected data and present results is less than 3% for both positive and negative Sr.

Figure 18 summarizes the behavior of CW
L (Re,Sr, LR) for 0.1 ≤ Re ≤ 150 at various normalized shear rates and separation

distances. Some data from [17] (at Sr = 0.25) and [30] are also included and show very good agreement with present predictions.
The lift force is seen to vary sharply with both the Reynolds number and the separation distance for Re . 10, while at higher
Reynolds number substantial variations only subsist for LR . 2. For larger separations, the magnitude of the lift force gets close to
that found in an unbounded flow (black solid lines in Fig. 18). Indeed, at such Reynolds numbers the thickness of the boundary
layer around the sphere is small enough for the vortical interaction with the wall to have only a secondary influence on the lift
force (see Fig. 3). Effects caused by the shear may be qualitatively estimated by comparing CW

L (Re,Sr, LR) with its counterpart in
the shearless situation, CW

Lu(Re, LR), shown in Fig. 18 for LR = 1.5 (red solid lines). Clearly, the slip effect dominates for Re & 10.
Influence of the shear becomes more pronounced or even dominant at lower Reynolds numbers. For large separations, it increases
(decreases) the total lift force well beyond (below) the level reached in the shearless case for Sr > 0 (Sr < 0). The influence of Sr
weakens as LR decreases, the presence of the wall inhibiting the development of the wake. Selecting for instance LR = 1.5, Re = 1,
and Sr = 0.5, the difference between CW

L and CW
Lu is 0.66, three times less than the lift coefficient CU

Lω = 1.93 in the unbounded
case. Based on the above observations, and disregarding the small shear-induced contribution to the lift beyond Re ≈ 10, the
finite-Re expression (21) may be extended to moderate Reynolds numbers in the form
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FIG. 19. Variations of the lift coefficient CW
L (Re,Sr, LR) in the range 100 ≤ Re ≤ 250 for a non-rotating sphere translating parallel to a wall in a

linear shear flow. � : Sr = +0.2, � : Sr = −0.2, � : Sr = +0.5, � : Sr = −0.5. Unbounded shear flow: + and + (all panels): Sr = +0.5 and +0.2,
respectively; same with × and × for Sr = −0.5 and −0.2, respectively; 4 and 4 (top left panel): data from [9] for Sr = +0.5 (interpolated) and
Sr = +0.2, respectively; O and O (top left panel): data from [11] for Sr = +0.4 and Sr = +0.2, respectively. Black solid line: Sr = 0; green solid
(dashed) line: prediction (37) for Sr = +0.2 (−0.2); same with the red solid (dashed) line for Sr = +0.5 (−0.5).

CW
L [Re = O(1 − 100)] ≈ gLCW

Lu[Re = O(1 − 100)] + hLCU
Lω(Re � 1) , (35)

with gL(Lω, ε,Re) = e−0.22ε0.8L2.5
ω exp(−0.01Re2) , (36)

and CW
Lu[Re = O(1 − 100)], hL and CU

Lω(Re � 1) as provided by (24), (22b) and (7), respectively. Note that, similar to expressions
(21) and (22a) in the low-but-finite Reynolds number regime, (35) and (36) indicate that the wall and shear effects do not super-
impose linearly, as the pre-factor gL for the former involves Sr through the presence of ε and Lω. As shown in Fig. 18, (35) fits
all numerical predictions well throughout the range 0.1 ≤ Re ≤ 100 for LR ≤ 8, with however a slight under-estimation of the lift
force in the range 5 . Re . 50 for positive Sr.

We now turn to the high-Reynolds-number regime, say Re & 100. At such Reynolds numbers, the shear-induced lift force
observed in the unbounded case has changed sign, as illustrated in Fig. 6. This is confirmed in Fig. 19, the top left panel of
which shows in passing that present predictions for the negative shear-induced lift force obtained with Sr = 0.2 and 0.5 in the limit
LR → ∞ (actually LR = 40) compare well with numerical data from [9] and [11]. For small separations, typically LR . 2, the
slip-induced transverse force discussed in Sec. V A 2 remains non-negligible up to Re = 200. When the two effects combine, the
streamwise vorticity distribution illustrated in Fig. 4 reveals that the two mechanisms act in an antagonistic (cooperative) manner
when Sr is positive (negative). This is confirmed in Fig. 19, where, taking the results corresponding to Sr = 0 (black line) as ref-
erence, a negative Sr is seen to contribute positively to the lift force and vice versa, unlike the low-to-moderate Reynolds number
phenomenology. Moreover, slip- and shear-induced effects combine in a strongly nonlinear manner. Indeed, for a given magnitude
of Sr and a decreasing LR, the shear-induced variation, |CW

L − CW
Lu|, is seen to become significantly larger when Sr is positive

(compare in particular the data pairs corresponding to Sr = ±0.5 and LR = 1.5). For Re & 200 and Sr = 0, the stationary imperfect
bifurcation discussed in Sec. IV A takes place when the separation is large enough, causing a sharp increase in the transverse force,
as the black lines in Fig. 19 confirm for LR ≥ 4. For smaller separations, or for arbitrary separations in the presence of shear, no
bifurcation takes place in the wake in this Re-range, since the flow past the sphere is fully three-dimensional whatever Re. This is
the reason why the increase in the magnitude of CW

L with Re is much more gradual in such situations. As the comparison with data
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FIG. 20. Variations with Re and LR of the rotation rate RrW of a torque-free sphere translating parallel to a wall in a fluid at rest. Symbols:
numerical results; dashed lines: asymptotic prediction (17) corresponding to the condition Lu � 1; solid lines: empirical extension (39) of (17)
based on the exact zero-Re prediction of [38, 49].

corresponding to the unbounded sheared configuration (crosses) reveals, the wall no longer influences the lift force for LR & 4.
Conversely, for smaller separations, the lift force found for Sr > 0 (Sr < 0) reduces (increases) gradually compared to its value in
an unbounded flow as LR decreases.

We sought a correlation capable of reproducing the above trends. For this purpose, since the shear-induced lift in an unbounded
flow changes sign for Re ≈ 50, we used the expression provided in (11) for CU

Lω[Re = O(100)]. Then, Fig. 12(b) suggests that
the slip-induced contribution CW

Lu is almost constant beyond Re = 100 when no stationary bifurcation takes place in the wake (see
the data set corresponding to LR = 1.5). This situation also holds when Sr , 0, since the wake is three-dimensional whatever
Re, similar to the configuration Sr = 0 when LR is small. Therefore it sounds reasonable to assume that, at a given separation,
CW

Lu(Sr , 0,Re ≥ 100) is close to CW
Lu(Re = 100) for Sr = 0, as provided by (24) for Re = 100. Last, CU

Lω[Re = O(100)] has to
be weighted by a pre-factor kL(LR,Re), in order to mimic the increasingly asymmetric magnitude of the lift force according to the
sign of Sr when LR becomes small. We finally obtained

CW
L [Re = O(100)] ≈ CW

Lu(Re = 100) + kLCU
Lω[Re = O(100)] , (37)

with kL(LR,Re) = 1 − e−0.034L6
R |Sr|0.75

+ (1 + sgn(Sr))e−0.048L4.5
R |Sr|−1

e−(0.009Re)−4
, (38)

with CW
Lu(Re = 100) and CU

Lω[Re = O(100)] as provided by (24) and (11), respectively. The solid and dashed lines in Fig. 19
confirm that this correlation properly captures the dramatic variations induced by the wall on the lift force, including the asymmetry
observed between negative and positive relative shear rates.

3. Effects of sphere rotation

The rotation rate of a torque-free sphere translating parallel to the wall in a fluid at rest is shown in Fig. 20 for the shortest two
separations, LR = 1.5 and 2, over the range 0.1 ≤ Re ≤ 250. RrW is seen to change from negative at low Reynolds number (in
agreement with Faxén’s prediction (17) [43]) to positive beyond a critical O(1)-Reynolds number, RecT . This critical value depends
on LR, and numerical results indicate RecT ≈ 4 for LR = 1.5 and RecT ≈ 2 for LR = 2. The low-Re numerical values are found to
exceed those predicted by (17), especially for LR = 1.5. We compared the exact creeping-flow values provided in [38] (recomputed
from the exact solution of [49]) with Faxén’s approximate prediction (17) and found that the latter significantly under-estimates
the former for LR . 2. A significantly better approximation, reproducing the exact prediction down to LR ≈ 1.1, is provided by the
semiempirical extension of (17)

RrW(LR,Re � 1) ≈ −
3

16
L−4

R

(
1 −

3
8

L−1
R + 0.9L−3

R

)
, (39)

suggesting that higher-order corrections neglected in Faxén’s solution are required to accurately estimate RrW at such small sepa-
rations. As the solid lines in Fig. 20 indicate, numerical results at Re = 0.1 are in close agreement with (39). For Re > RecT , the
rotation rate first increases up to a maximum (RrW ≈ 0.01 at Re ≈ 5 for LR = 2, RrW ≈ 0.029 at Re ≈ 20 for LR = 1.5), before
exhibiting non-monotonic variations with both the Reynolds number and the separation distance, especially beyond Re = 100. A
qualitatively similar behavior has been reported in [16] for the torque on a non-rotating sphere in the same range of separations. We
hypothesize that subtle variations in the flow structure in the sphere vicinity (see figure 3 in [16]) are responsible for this complex
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FIG. 21. Variations with Re and LR of the normalized rotation rate 2RrW/Sr of a torque-free sphere translating parallel to a wall in a linear shear
flow with |Sr| = 0.5. � and #: numerical data for Sr > 0 and Sr < 0, respectively. Solid lines: inner solution (17) corresponding to conditions
Lu � 1, Lω � 1; black dashed lines: empirical prediction (13)-(14) from [11] in an unbounded shear flow; red dashed lines: empirical fit (40).
Thick and thin lines refer to predictions for Sr = +0.5 and Sr = −0.5, respectively.

behavior.
Figure 21 summarizes the normalized rotation rate 2RrW/Sr corresponding to the torque-free condition, as computed for

0.1 ≤ Re ≤ 250 at various separation distances. Only the ‘strong’ relative shear rate |Sr| = 0.5 is considered, so as to obtain
sizeable rotation effects. At low Reynolds numbers and small separations (0.1 ≤ Re . 5, LR ≤ 2), numerical data indicate that
spheres moving under Sr < 0-conditions rotate faster than those moving with Sr > 0. This difference is the consequence of the
opposite signs of the shear-induced and slip-induced contributions to the sphere rotation in the low-Reynolds number regime, as is
apparent in (17) (in the configuration of Fig. 1, these two contributions yield clockwise and counter-clockwise rotations, respec-
tively). This asymptotic prediction (solid lines in Fig. 21) is in good agreement with the numerical data up to Re = 0.5. A slight
under-estimate (over-estimate) is noticed when LR = 1.5 for Sr < 0 (Sr > 0), in line with the aforementioned under-estimate of
the slip effect by (17) at short separations. The influence of the sign of Sr on the magnitude of RrW is seen to reverse at somewhat
higher Re, the rotation rate becoming larger for positive relative shear rates than for negative ones when the Reynolds number
exceeds the critical value Re ≈ 6 (Re ≈ 3) for LR = 1.5 (LR = 2). This change is a direct consequence of the change of sign
of the slip-induced rotation in a fluid at rest, as described above. Thus, when the sphere is allowed to rotate in the moderately
inertial regime, the direction of the slip-induced rotation is opposite to that found in the low-Re regime, leading to a cooperative
(antagonistic) effect with the shear when Sr is positive (negative). Beyond LR = 2, the normalized rotation rates obtained with
positive and negative Sr are virtually identical, suggesting that the slip effect has become negligible at such separations compared
to that of the shear. Comparing the two panels at LR = 4 and LR = 8 indicates that the shear effect itself is barely affected by
the presence of the wall at such separations, the rotation rates found at a given Re being very close for both values of LR. This
conclusion is reinforced by the good agreement between present results for LR ≥ 4 and the fit (13)-(14) provided in [11] (black
dashed lines in Fig. 21), which is based on numerical results obtained in an unbounded shear flow. Both sets of results show that
the rotation rate gradually decreases as the Reynolds number increases, and is reduced to approximately 40% (20%) of the low-Re
value Rr = 1

2 Sr at Re = 100 (200). Remarkably, results at the lowest two separations reveal that the rotation rate is altered by the
presence of the wall in a very dissimilar manner depending on the sign of Sr in the moderate-to-large Reynolds number regime,
say Re & 10: while RrW is significantly larger than the rotation rate found in an unbounded shear flow when Sr is positive (even
for Re & 100), the wall does not seem to have any significant effect for Re ≥ 10 when Sr is negative.

To account for these various effects, we sought an empirical fit tending toward (17) when Re → 0 (with the empirical mod-
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torque-free sphere in an unbounded shear flow (fitted from the results obtained with the present code).

ification introduced in (39)) and toward (13)-(14) when LR → ∞, while taking into account the aforementioned asymmetric
sgn(Sr)-dependent influence of the wall at moderate-to-large Re. We found that the best fit satisfying these requirements is

RrW ≈ −
3

16
f ′LL−4

R

{
1 −

3
8

L−1
R + 0.9L−3

R

}
+

{
f U
Ω + 0.5L−4

R tanh(
Re
2

)(1 + sgn(Sr))
}{

1 −
5

16
L−3

R exp(−0.5Re)
}

Sr
2
, (40)

with f ′L and f U
Ω

as given in (20) and (14), respectively. As the dashed lines in Fig. 21 show, (40) satisfactorily matches the numerical
data throughout the considered range of Re and LR.

The difference ∆CW
DΩ

between the relative drag variations ∆CW
D respectively found in the torque-free and non-rotating near-wall

configurations for a given set of (Re,Sr, LR) is shown in Fig. 22. Throughout the considered range of parameters, ∆CW
DΩ

is less than
2%, indicating that the sphere rotation has only a marginal effect on the drag. Note that ∆CW

DΩ
is even less than 1% for Re < 100,

the largest influence of the rotation being observed in the high-Reynolds-number regime. This weak change in the drag force
confirms the findings of [16]. It is in line with the comments made in Sec. IV B regarding the tiny changes induced in the spanwise
vorticity field by the sphere rotation resulting from the torque-free condition. At low Reynolds number, it is also in line with the
theoretical predictions (17) and (18) which indicate that the drag force is affected by the particle rotation only at O(L−8

R ).
Things are somewhat different regarding the lift force. As seen in Fig. 23, the lift force in the torque-free case (closed symbols)

slightly but consistently differs from its counterpart in the non-rotating case (open symbols) for large enough relative shear rates
(here |Sr| = 0.5). The rotation provides a positive contribution when the sphere lags the fluid (Sr > 0) and vice versa. Whatever the
sign of Sr, this effect reduces as Re increases, in a manner consistent with the variation of the torque-free rotation rate observed in
Fig. 21. The asymptotic prediction (16) derived under conditions Lu � 1, Lω � 1, LΩ � 1 is in good agreement with the data
obtained at Re = 0.1 up to LR ≈ 2 for Sr > 0, and LR ≈ 4 for Sr < 0. That the range of accuracy of the asymptotic prediction
is somewhat larger for negative relative shear rates is a property shared with the non-rotating case (compare the left and right
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/Rr ≈ 0.55 established in [11] in an unbounded shear flow.

panels in Fig. 17). This is presumably because the nonlinear interaction between the slip-induced and shear-induced mechanisms
contributing to the lift force is somewhat weaker when the two mechanisms are antagonistic, i.e. when Sr < 0.

To extend empirically the validity of (16) toward moderate Reynolds numbers, the change CW
LΩ

in the lift force specifically due to
the torque-free rotation, which may be thought of as a Magnus lift component, must first be examined in detail. As Fig. 24 shows,
when normalized by the rotation rate RrW, this change only weakly depends on Re, especially for small separations. A similar
behavior was observed in [11] in an unbounded shear flow. The rough approximation CU

LΩ
/Rr ≈ 0.55 provided in this reference is in

reasonable agreement with present data beyond O(1)-Reynolds numbers, as the solid lines in Fig. 24 show (the difference is larger
at low Re, as expected from the difference between (16) and (15) which predicts CU

LΩ
/Rr ≈ 1 − 1

8 Rr for large separations). Based
on this finding, one can expect the total lift force acting on a torque-free rotating sphere with Re & 1 to be correctly estimated by
superposing linearly the force found in the non-rotating case as given by (35) and the spin-induced contribution discussed above.
This superposition yields

CW
L [Re = O(1 − 100)] ≈ gLCW

Lu[Re = O(1 − 100)] + hLCU
Lω(Re � 1) + 0.55RrW , (41)

with RrW as provided in (40). The dashed lines in Fig. 23 confirm that this linear superposition fits the numerical data well up to
Re ≈ 100, even in the low-Reynolds-number range provided the separation is not ‘too’ large.

In the high-Re regime Re > 100, the total lift force is small, with lift coefficients typically of O(0.1), i.e. one order of magnitude
smaller than in the low-Re regime. However, the relative contribution of the change CW

LΩ
caused by the torque-free rotation in

the total lift force remains significant, as Fig. 25 shows. Again, for a given Reynolds number and separation distance, CW
LΩ

is
seen to be larger when Sr is positive, especially for LR ≤ 2. Moreover, the qualitative influence of the sphere rotation is found
to depend crucially on the separation distance. Indeed, for Re ≥ 150, the torque-free condition is seen to decrease the magnitude
of the total lift force irrespective of its sign for LR ≥ 4. This is no longer the case at the smallest two separations, for which lift
forces corresponding to Sr < 0 are still reduced by the rotation while those associated with positive Sr are enhanced, especially
for LR = 1.5. To approach the observed behaviors, we again considered that rotation-induced effects combine linearly with the
slip- and shear-induced contributions predicted by (37), assuming that the empirical expression (40) for the rotation rate derived at
moderate Reynolds number remains valid up to the upper bound (Re = 250) of the regime considered here. Figure 24 indicates
that the ratio CW

LΩ
/RrW is still close to 0.55 in this regime, although it seems to rise to slightly larger values (≈ 0.7) for positive Sr
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when the separation becomes small. Keeping this ratio unchanged, we obtain

CW
L [Re = O(100)] ≈ CW

Lu(Re = 100) + kLCU
Lω[Re = O(100)] + 0.55RrW . (42)

As Fig. 25 shows, this fit reproduces the observed trends well throughout the considered Reynolds number range, although the
influence of the torque-free rotation appears to be slightly under-estimated at small separations when Sr is positive. This successful
extension of (37) indicates that effects of slip, shear and torque-free rotation may still be considered to contribute separately to the
lift force even for O(100)-Reynolds numbers, provided of course the influence of the nearby wall is properly accounted for in the
magnitude of each contribution.
An overview of the complex variations of the total lift force in the case of a torque-free particle is provided in Fig. 26. Numerical

data discussed in Fig. 23 (and in Fig. 12 for the un-sheared configuration) are re-plotted here against the separation-based Reynolds
number Lu = 1

2 LRRe, providing a complementary view with respect to that offered by the previous plots. As expected, for Sr = 0
(Fig. 26(b)), CL is found to decay sharply as Lu increases, and to become vanishingly small for Lu & 102 − 103 depending on Re,
provided the Reynolds number is less than the threshold value ReS S ≈ 212 at which the axisymmetric wake becomes unstable.
This decay follows the L−2

u -prediction of (20) for Re . 1 (solid black line) and sharpens as the Reynolds number further increases
up to Re ≈ ReS S , as accounted for by (24). When the sphere lags behind the fluid (Fig. 26(c)), the slip- and shear-induced lift
forces cooperate up to Re ≈ 50. As Lu increases, so does the shear-induced contribution, owing to the weakening of the wall-
induced asymmetry imposed to the vorticity disturbance in the particle wake (see Sec. IV.A). For Re . 1, this increase in the
shear-induced lift overtakes the decrease of the slip-induced contribution, making the overall force increase with Lu. At moderate
Reynolds number, the shear-induced lift force in the unbounded configuration is much smaller than in the low-Re regime. Because
of this, the growth of this contribution as Lu increases can no longer compensate for the decrease of the slip-induced contribution,
making the overall lift force decrease sharply with Lu as soon as Re & 2. The shear-induced lift changes sign for Re & 50, while the
spin-induced lift does not. Hence, in the limit Lu � 1 and for larger Reynolds numbers, the sign of the total lift force depends on
the relative magnitude of these two contributions. The former becoming dominant for Re & 100, the total force becomes negative
at large enough Re and Lu, as illustrated by the purple series (Re = 250). When the sphere leads the fluid (Fig. 26(a)) and the
Reynolds number is low or moderate, the shear- and spin-induced lift contributions are both attractive, so that only the slip-induced
contribution can make the overall lift force repulsive. This requires the separation to be small enough, as is the case in the range
1 . Re . 50 for the smallest Lu (according to Fig. 23, this would also be the case at lower Re in the case of a non-rotating particle).
For the reasons reminded above, increasing Lu makes the slip-induced contribution decrease, while in this Reynolds number range
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FIG. 26. Variations of the lift force vs. the separation-based Reynolds number Lu for torque-free spheres translating at various Reynolds numbers
in a wall-bounded flow. (a): Sr = −0.5 (the sphere leads the fluid); (b) Sr = 0 (the fluid is at rest at infinity); (c): Sr = +0.5 (the sphere lags
behind the fluid). Symbols: numerical results. Solid lines on the right part of each panel: asymptotic value of CL in the unbounded configuration
(Lu → ∞); solid line on the left part of panels (a) and (c): asymptotic prediction (16) evaluated in the limit LR → 1 (sphere touching the wall);
black solid line in (b): prediction (20) from [14] valid for Re � 1 and Lu � 1.

it makes the magnitude of the shear-induced contribution increase. Therefore the overall lift force becomes negative beyond a
(small) critical Lu and keeps on increasing in magnitude until it asymptotes the value it takes in the unbounded configuration at
large enough Lu. Again, for Re & 50, the sign of the total lift force in the limit Lu � 1 depends on the relative magnitude of the
shear- and spin-induced contributions. The latter is still slightly dominant for Re = 100, yielding a tiny negative total lift force
(pink series) but the former eventually takes over at larger Reynolds number, making the total force positive at Re = 250 (purple
series).
The above comments apply with only little changes to a non-rotating particle. Results in a fluid at rest are virtually identical (see
Fig. 12). With Sr , 0, the absence of the spin-induced contribution generally slightly decreases the magnitude of the total lift
force. The only exceptions are the regimes in which this total force is very small, in which case this absence may change its sign.
As pointed about above, this is the case for Sr < 0 at low Reynolds number and Lu . 10−1. For both negative and positive Sr,
this is also the case at very large Lu in an intermediate, Sr-dependent range of Reynolds number just beyond the critical value
at which the shear-induced lift changes sign. In this regime, the total lift force in the non-rotating case changes sign as soon as
the shear-induced contribution does, i.e. for Re ≈ 50. In contrast, Fig. 26 shows that when the torque-free condition holds, the
spin-induced contribution maintains the sign of the total force unchanged up to Re ≈ 100 for |Sr| = 0.5.

VI. SUMMARY AND CONCLUDING REMARKS

We computed the flow and the hydrodynamic forces acting on a rigid sphere moving along the planar wall bounding a linear
shear flow over a wide range of Reynolds number and separation distance, with the sphere either lagging or leading the fluid.
We considered both non-rotating and torque-free spheres in order to quantify effects of the rotation induced by the torque-free
constraint obeyed by freely moving particles. To reveal the slip-wall and shear-wall interaction mechanisms at stake, we examined
several characteristic features of the flow field, especially the spatial distribution of the spanwise and streamwise vorticity distur-
bances, before focusing on their influence on the drag and lift forces.

When the sphere moves in a fluid at rest, low-Reynolds-number asymptotic solutions indicate an increase of the drag due to
the presence of the wall. Additionally, a repulsive transverse force arises, due to the interaction between the wall and the wake
resulting from the vorticity generated at the sphere surface by the no-slip condition. For a given separation distance, the magnitude
of this repulsive force decreases with the Reynolds number when the wall lies in the outer region of the disturbance, in line
with the conclusions of previous studies. At low-but-finite Reynolds number, both the drag increase and the transverse force are
proportional to the square of the maximum vorticity at the sphere surface, which increases with the Reynolds number. Present
results confirm these predictions, and support the model (24) proposed in [15] for the transverse force up to O(100)-Reynolds
numbers, albeit with a slight change in the evaluation of the surface vorticity aimed at accounting for the influence of the nearby
wall. At larger Reynolds number, the behavior of the transverse force depends crucially on the separation. For LR ≥ 4, this force
is nearly zero from Reynolds numbers of some tens up to the critical value ReS S ≈ 210 corresponding to the onset of a stationary
non-axisymmetric wake. Although the wall is not responsible for this change in the wake structure, it selects the direction of the
corresponding lift force, which again tends to repel the sphere into the fluid for Re > ReS S . Up to Re = 250, the magnitude of this
force is accurately estimated by the heuristic extension (30) of the theoretical prediction derived from a weakly nonlinear analysis.
For smaller separations, the flow past the sphere remains anisotropic whatever the Reynolds number, making the transverse force
keep significant values throughout the Re-range explored numerically. In this situation, the force does not change much beyond
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Re = 100 when the separation is small (LR = 1.5), while a mixed situation in which the force increases significantly with the
Reynolds number in the range 150 . Re . 250 takes place at intermediate separations (LR = 2).At low Reynolds number, asymp-
totic predictions with the wall standing in the inner region of the disturbance predict that the shear tends to decrease (increase) the
drag when the sphere lags (leads) the fluid, while the reverse holds for the transverse force. For this reason, the latter may switch
from positive to negative at a given separation if the sphere leads the fluid and the relative magnitude of the shear is large enough.
These predictions are confirmed, both qualitatively and quantitatively, by present numerical results. When the wall stands in the
outer region of the disturbance, the semiempirical expressions of [31] taking into account finite-size effects are found to provide
reliable predictions for both the drag variation and the lift force irrespective of the wall position up to Re = 2. Whatever Sr and
LR, the magnitude of the lift force sharply decreases as the Reynolds number increases in the range 1 . Re . 10. For LR & 2, only
a weak lift force, with a magnitude close to that found in an unbounded flow, subsists in the moderate-to-high Reynolds number
regime 10 . Re . 100. This force keeps significantly larger values at smaller separations, being dominated by the slip effect rather
than the influence of the shear in this Re-range. Numerical results allowed us to obtain the empirical prediction (35) for the lift
force extending the finite-Re prediction (21) up to Re . 100.

At O(100)-Reynolds numbers, considering the unbounded sheared configuration first was found useful to quantify specific
effects induced by the wall. Present results confirm the well-established reversal of the shear-induced lift beyond Re ≈ 50 [9].
Variations of this ‘reversed’ lift force with Re and Sr agree well with those reported in the literature, as summarized in [36]. In
the same regime, the drag force is found to increase linearly with Re and |Sr| beyond Re ≈ 150, leading to a substantial increase
(≈ 20%) at Re = 250 for |Sr| = 1. When a nearby wall is involved, the above reversal makes the slip- and shear-related mechanisms
contributing to the lift act in an antagonistic (cooperative) manner for positive (negative) Sr, unlike the situation encountered at
lower Reynolds numbers. Moreover, these mechanisms interact in a highly nonlinear manner, the shear-induced variation to the lift
force observed for a given magnitude of the relative shear rate being significantly larger when Sr is positive. We could summarize
the effect of these complex interactions into the empirical prediction (37)-(38) which provides an accurate estimate of the near-wall
lift force up to Re = 250.

Only small changes are observed in the flow structure when the sphere rotates in order to satisfy a torque-free condition. The
corresponding rotation rate decreases drastically as Re increases, similar to the tendency already reported in an unbounded shear
flow. However, these small changes subtly modify the shear stress distribution at the sphere surface, hence the torque acting on
it. For this reason, they are sufficient to make the variations of the rotation rate with respect to Re and Sr nontrivial in near-wall
configurations. First, the slip-induced rotation in a fluid at rest is found to change sign beyond a critical separation-dependent
O(1)-Reynolds number. Then, for small enough separations and Reynolds numbers & 10, the rotation rate is influenced by the
shear in a very asymmetric manner, depending on the sign of Sr. Indeed, while the rotation is almost identical to its counterpart in
an unbounded shear flow when Sr is negative, it is significantly larger when Sr is positive, even for Reynolds numbers of O(100).
These findings are summarized in the fit (40) which predicts the rotation rate well irrespective of the sign of Sr and throughout
the range of Reynolds number explored in this investigation. Finally, present results show that the spin-induced contribution to the
near-wall lift in the torque-free configuration is directly proportional to the rotation rate. Remarkably, the corresponding pre-factor
(≈ 0.55) only weakly varies with the Reynolds number and is similar to that previously determined in an unbounded shear flow
[11]. These findings allow the fits predicting the lift force on a non-rotating sphere to be extended easily to a torque-free sphere in
the form (41) for moderate Reynolds numbers and (42) for Re ≥ 100.
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Appendix A: Validation of the procedure used to approach the torque-free condition

We start by checking the accuracy of the computed torque and Magnus lift force on a sphere rotating in a unbounded uniform
stream. We consider a translation Reynolds number Re = 0.1, for which the asymptotic solution of [2] is supposed to apply.
According to this prediction, the torque and spin-induced lift coefficients are, up to higher-order corrections, CLΩ = Rr and
CM = 16Re−1Rr, respectively. Figure 27 compares the numerical results for these two coefficients with the asymptotic prediction
over two and a half decades of the rotation rate Rr. Throughout this range of Rr, the deviation from these predictions is less than
4% for both coefficients.
To assess the iteration procedure used to approach the torque-free condition, we consider the case of a rigid sphere moving parallel
to a wall in a linear shear flow with LR = 1.5 and Sr = 0.5 at two widely different Reynolds numbers, Re = 0.1 and 100.
The initial rotation rate Rr0 is set to zero and the torque computed at iteration n is used to update Rr via the iterative algorithm
Rrn+1 = Rrn + CMnRe/16. In the present tests, iterations are pursued until the magnitude of the torque is reduced to less than 1%
of its initial value (instead of 5% in the runs discussed in the paper). The results for the torque, drag, and lift coefficients obtained
during this iterative process are summarized in Tab. I (first four and six rows for Re = 0.1 and 100, respectively). It turns out
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FIG. 27. Loads on a sphere rotating and translating at Reynolds number Re = 0.1 in a fluid at rest. (a) torque coefficient; (b) spin-induced lift
coefficient. �: numerical results. Red and blue lines correspond to the low-Re solutions CM = 16Rr/Re and CLΩ = Rr, respectively.

Re 2Rr/Sr CM CM/CM0 CD CL

0.1 0.000 35.31 1.000 376.7 2.12
0.883 -4.90 -0.139 377.2 2.27
0.760 0.71 0.020 377.1 2.26
0.778 0.12 0.003 377.0 2.26

0.831 -2.58 -0.073 377.1 2.27
0.805 -1.34 -0.038 377.1 2.27
0.751 1,13 0.032 377.0 2.26
0.725 2.37 0.067 377.0 2.25

100 0.000 0.0291 1.000 1.21 0.118
0.726 -0.0111 -0.382 1.23 0.240
0.449 0.0041 0.142 1.23 0.196
0.551 -0.0014 -0.048 1.23 0.216
0.516 0.0003 0.010 1.23 0.212
0.523 -0.0001 -0.003 1.23 0.213

0.537 -0.0007 -0.025 1.23 0.214
0.506 0.0010 0.034 1.23 0.211

TABLE I. Torque, drag, and lift coefficients for a rotating sphere translating parallel to a wall in a linear shear flow at Re = 0.1 and 100 with
LR = 1.5 and Sr = 0.5. The first four (six) rows for Re = 0.1 (100) describe the evolution of the force and torque coefficients during the iterative
process. The last four (two) rows for Re = 0.1 (100) show how these coefficients vary for prescribed rotation rates slightly larger/smaller than
that achieving the torque-free condition.

that the torque-free condition is achieved to within 1% at both Reynolds numbers in at most five iterations. Moreover, virtually
no variation in the computed drag and lift coefficients takes place when the ratio |CM|/CM0 becomes less than 5%. For instance,
decreasing |CM|/CM0 from ∼ 5% to a vanishingly small value makes the lift coefficient vary by less than 1.5% at Re = 100. To
reconfirm this point, we ran additional cases with prescribed rotation rates yielding torque coefficients of the order of ±0.05CM0.
These additional data (last four and two rows in Tab. I for Re = 0.1 and Re = 100, respectively) confirm that the computed drag
and lift coefficients vary only marginally with Rr in this range, the variation in CL staying again below 1.5%. Based on these tests,
we considered that the criterion |CM/CM0| < 0.05 properly approximates the torque-free condition in all cases.

[1] F. P. Bretherton. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech., 14:284–304, 1962.
[2] S. I. Rubinow and J. B. Keller. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11:447–459, 1961.



30

[3] P. G. Saffman. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:385–400, 1965.
[4] P. G. Saffman. Corrigendum to “The lift on a small sphere in a slow shear flow”. J. Fluid Mech., 31:624, 1968.
[5] E. S. Asmolov. Dynamics of a spherical particle in a laminar boundary layer. Fluid Dyn., 25:886–890, 1990.
[6] J. B. McLaughlin. Inertial migration of a small sphere in linear shear flows. J. Fluid Mech., 224:261–274, 1991.
[7] P. Cherukat, J. B. McLaughlin, and A. L. Graham. The inertial lift on a rigid sphere translating in a linear shear flow field. Int. J. Multiphase

Flow, 20:339–353, 1994.
[8] P. Cherukat, J. B. McLaughlin, and D. S. Dandy. A computational study of the inertial lift on a sphere in a linear shear flow field. Int. J.

Multiphase Flow, 25:15–33, 1999.
[9] R. Kurose and S. Komori. Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech., 384:183–206, 1999.

[10] P. Bagchi and S. Balachandar. Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech., 473:379–388, 2002.
[11] P. Bagchi and S. Balachandar. Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids, 14:

2719–2737, 2002.
[12] R. G. Cox and H. Brenner. The lateral migration of solid particles in Poiseuille flow-I Theory. Chem. Eng. Sci., 23:147–173, 1968.
[13] R. Cox and S. Hsu. The lateral migration of solid particles in a laminar flow near a plane. Int. J. Multiphase Flow, 3:201–222, 1977.
[14] P. Vasseur and R. G. Cox. The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech., 80:561–591,

1977.
[15] F. Takemura and J. Magnaudet. The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds

number. J. Fluid Mech., 495:235–253, 2003.
[16] L. Zeng, S. Balachandar, and P. Fischer. Wall-induced forces on a rigid sphere at finite Reynolds number. J. Fluid Mech., 536:1–25, 2005.
[17] L. Zeng, F. Najjar, S. Balachandar, and P. Fischer. Forces on a finite-sized particle located close to a wall in a linear shear flow. Phys. Fluids,

21:033302, 2009.
[18] E. S. Asmolov. Lift force exerted on a spherical particle in a laminar boundary layer. Fluid Dyn., 24:710–714, 1989.
[19] J. B. McLaughlin. The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech., 246:249–265, 1993.
[20] F. Takemura, J. Magnaudet, and P. Dimitrakopoulos. Migration and deformation of bubbles rising in a wall-bounded shear flow at finite

Reynolds number. J. Fluid Mech., 634:463–486, 2009.
[21] F. Takemura and J. Magnaudet. Lateral migration of a small spherical buoyant particle in a wall-bounded linear shear flow. Phys. Fluids,

21:083303, 2009.
[22] J. Magnaudet, S. Takagi, and D. Legendre. Drag, deformation and lateral migration of a bouoyant drop moving near a wall. J. Fluid Mech.,

476:115–157, 2003.
[23] P. Cherukat and J. B. McLaughlin. The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech., 263:1–18,

1994.
[24] P. Cherukat and J. B. McLaughlin. The inertial lift on a rigid sphere in a linear shear flow field near a flat wall – Corrigendum. J. Fluid

Mech., 285:407, 1995.
[25] S. Yahiaoui and F. Feuillebois. Lift on a sphere moving near a wall in a parabolic flow. J. Fluid Mech., 662:447–474, 2010.
[26] D. T. Leighton and A. Acrivos. A slow motion of viscous liquid caused by a slowly moving solid sphere. Z. Angew. Math. Phys., 36:

174–178, 1965.
[27] G. P. Krishnan and D. T. Leighton. Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids, 7:2538–2545,

1995.
[28] N. Ekanayake, J. D. Berry, and D. J. E. Harvie. Lift and drag forces acting on a particle moving in the presence of slip and shear near a wall.

J. Fluid Mech., 915:A103, 2021.
[29] N. Ekanayake, J. D. Berry, A. D. Stickland, D. E. Dunstan, I. L. Muir, S. K. Dower, and D. J. E. Harvie. Lift and drag forces acting on a

particle moving with zero slip in a linear shear flow near a wall. J. Fluid Mech., 904:A6, 2020.
[30] H. Lee and S. Balachandar. Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. J. Fluid Mech., 657:

89–125, 2010.
[31] P. Shi, R. Rzehak, D. Lucas, and J. Magnaudet. Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear

flow. Phys. Rev. Fluids, 5:073601, 2020.
[32] E. S. Asmolov, A. L. Dubov, T. V. Nizkaya, J. Harting, and O. I. Vinogradova. Inertial focusing of finite-size particles in microchannels. J.

Fluid Mech., 840:613–630, 2018.
[33] R. Natarajan and A. Acrivos. The instability of the steady flow past spheres and disks. J. Fluid Mech., 254:323–344, 1993.
[34] P. Shi. Hydrodynamic forces on a sphere translating steadily in a wall-bounded linear shear flow. PhD thesis, Techn. Univ. Dresden,

Dresden, Germany (available online at https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-742474), 2020.
[35] D. Legendre and J. Magnaudet. The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech., 368:81–89, 1998.
[36] E. Loth. Lift of a solid spherical particle subject to vorticity and/or spin. AIAA J., 46:801–809, 2008.
[37] P. Shi and R. Rzehak. Lift forces on solid spherical particles in unbounded flows. Chem. Eng. Sci., 208:115145, 2019.
[38] A. J. Goldman, R. G. Cox, and H. Brenner. Slow viscous motion of a sphere parallel to a plane wall - I. Motion through a quiescent fluid.

Chem. Eng. Sci., 22:637–651, 1967.
[39] A. J. Goldman, R. G. Cox, and H. Brenner. Slow viscous motion of a sphere parallel to a plane wall - II. Couette flow. Chem. Eng. Sci., 22:

653–660, 1967.
[40] Note1. In (15), pre-factors expressed in fractional form were derived analytically by Lovalenti in an appendix to [23], while those expressed

in decimal form originate from the fitted value of the force computed in the form of a volume integral in [23].
[41] D. Fabre, J. Tchoufag, and J. Magnaudet. The steady oblique path of buoyancy-driven disks and spheres. J. Fluid Mech., 707:24–36, 2012.
[42] H. Homann, J. Bec, and R. Grauer. Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. J.

Fluid Mech., 721:155–179, 2013.
[43] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Prentice-Hall, 1965.
[44] J. Magnaudet, M. Rivero, and J. Fabre. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid

Mech., 284:97–135, 1995.



31

[45] D. Legendre, J. Magnaudet, and G. Mougin. Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous
liquid. J. Fluid Mech., 497:133–166, 2003.

[46] V. Citro, J. Tchoufag, D. Fabre, F. Giannetti, and P. Luchini. Linear stability and weakly nonlinear analysis of the flow past rotating spheres.
J. Fluid Mech., 807:62–86, 2016.

[47] D. Legendre and J. Magnaudet. A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Phys. Fluids,
9:3572–3574, 1997.

[48] F. Takemura, S. Takagi, J. Magnaudet, and Y. Matsumoto. Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid. J.
Fluid Mech., 461:277–300, 2002.

[49] M. E. O’Neill. A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika, 11:67–74, 1964.




