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Phosphine/Sulfoxide-Supported Carbon(0) Complex 

Mariana Lozano González,[a,b] Laura Bousquet,[a] Sophie Hameury,[a] Cecilio Alvarez Toledano,[b] 

Nathalie Saffon-Merceron,[c] Vicenç Branchadell,[d] Eddy Maerten*,[a] and Antoine Baceiredo*,[a] 

 

Abstract: A new carbon(0) complex 2 with two different L ligands, a 

phosphine and a sulfoxide, was synthesized and fully characterized. 

This new type of carbone exhibits excellent coordination ability, in 

contrast to the related phosphine/sulfide-supported carbon(0) 

complexes. Several organometallic complexes were isolated and, of 

special interest, the av(CO) value of Rh(I)-dicarbonyl complex 

indicates that 2 has a donor capability superior to classical NHCs. 

The discovery of the first stable carbenes almost 30 years ago[1] 

has initiated intensive research leading to a deeper 

understanding of physical and chemical properties of these 

divalent species.[2] As a consequence, stable carbenes rapidly 

became essential as synthetic tools,[3] organocatalysts,[4] and 

efficient ligands for transition-metal homogeneous catalysis.[5] As 

represented by N-heterocyclic carbenes (NHCs) I, the catalytic 

activity of the corresponding NHC-metal-complexes relies mainly 

on the electronic properties of I as strong electron-donating 

auxiliary ligands. The related divalent carbon(0) II species (also 

named carbones), bearing two lone pairs on the central carbon 

atom, discovered by Ramirez in the 60s,[6] were considered as 

such only very recently. Indeed, Frenking et al. have suggested 

that, based on their electronic structure and chemical behavior, 

these molecules are best described as a carbon atom in the 

oxidation state zero stabilized by two L-ligands.[7] This vision has 

shed new light on this family of compounds encouraging the 

development of new carbon(0) complexes by combining various 

types of L-ligands.[8] It is well established that carbon(0) 

complexes such as cyclic carbodiphosphoranes (CDP) III, cyclic 

bent allenes IV and carbodicarbenes V present a powerful 

electron-donating ability, which is far stronger than that of 

classical NHCs I.[9] Therefore, carbon(0) species have been 

used as ligands for the preparation of metal complexes[10] 

showing interesting catalytic activities.[11-14] Although the 

robustness of the corresponding organometallics complexes still 

deserves improvement, their catalytic efficiency often surpass 

that observed with the related NHC-metal catalysts. Of particular 

interest, Stephen recently took advantage of the presence of the 

second lone pair at the central carbon atom to stabilize electron-

deficient organometallic complexes thus obtaining high activities 

for hydrogenation reactions.[15] Alcarazo used the four electron-

donor ability of carbodiphosphoranes II (L = PR3) to stabilize the 

highly reactive dihydroborenium ion (BH2
+).[16] Finally, Ong 

evidenced an unexpected -accepting ability of carbodicarbenes 

V resulting in an ambiphilic-type reactivity, allowing the 

activation of small molecules.[17] 

As a part of our program to design, synthesize and develop new 

carbon(0) complexes, we report here the synthesis and the 

characterization of a new phosphine/sulfoxide-supported 

carbon(0) complex 2 and its ability to act as an efficient ligand 

for the preparation of transition metal complexes. 

 

Figure 1. Carbenes and carbon(0) complexes (for a better readability, formal 

charges were omitted in III, IV, V and 2. 

The phosphine/sulfoxide carbon(0) complex 2 was 

prepared in two steps from the corresponding 

chlorophosphonium and methyldiphenylsulfoxonium salts in 

presence of 2 equivalents of a non-nucleophilic strong base 

(LDA) (Scheme 1).[18] In a second step, the deprotonation of salt 

1 was performed in THF solution at RT, either with potassium 

hydride (KH) or potassium hexamethyldisilazane (KHMDS) 

leading to the selective formation of 2, which was isolated in 

69 % overall yield. 

 

Scheme 1. Synthesis of ylide 1 and phosphine/sulfoxide carbon(0) complex 2. 

In the 31P NMR spectrum, 2 displays a signal shifted to 

higher field (29.0 ppm) compared to 1 (45.0 ppm). The central 

carbon of 2 exhibits a doublet signal at  = 31.2 ppm (1JPC = 84.8 

Hz) with a large coupling constant in agreement with a direct P-

C connectivity. The structures of both 1 and 2 were confirmed by 
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X-Ray diffraction analysis (Figures 2 and 3).[19] The P1-C1 bond 

length [1.6563(13) Å] in 2 is significantly shorter than in 1 

[1.7190(15) Å] and the value remains slightly longer than those 

reported for CDPs (1.584 - 1.648 Å).[20] The S1-C1 bond length 

also undergoes significant shortening upon deprotonation [from 

1.6539(15) Å in 1 to 1.5929(14) Å in 2], this value is the shortest 

S-C bond length reported to date in the sulfur-stabilized carbone 

series (1.602 – 1.713 Å).[8c,h,21] The S1-O1, S1-C16, and S1-C22 

bond lengths get slightly longer (ΔS-Xmax = + 0.02 Å). These 

data clearly indicate the delocalization of p-lone pair at the 

carbon center toward sulfoxide ligand. Similarly to the case of 

carbodiphosphoranes,[7a] the P-C-S angle remains almost 

unchanged between the precursor 1 and carbone 2 [120.98(9)° 

vs 120.74(8)° respectively], and this value is in the range of 

those observed for iminosulfane/phosphine- or 

bis(iminosulfane)-carbones.[8a,h] 

 

Figure 2. Molecular structure of 1. Thermal ellipsoids represent 30 % 

probability. H atoms (except on C1) and counterion (TfO-) were omitted for 

clarity. Selected bond lengths [Å] and angles [°]: S1-C1 1.6539(15), P1-C1 

1.7190(15), S1-C16 1.7764(15), S1-C22 1.7771(16), P1-C10 1.7888(16), 

S1-O1 1.4531(12), S1-C1-P1 120.98(9). 

 

Figure 3. Molecular structure of 2. Thermal ellipsoids represent 30 % 

probability. H atoms were omitted for clarity. Selected bond lengths [Å] and 

angles [°]: S1-C1 1.5929(14), P1-C1 1.6563(13), S1-C16 1.7995(14), S1-

C22 1.7956(14), P1-C10 1.8083(13), S1-O1 1.4676(10), S1-C1-

P1 120.74(8). 

To gain more insight into the electronic structures of 1 and 

2, DFT calculation were performed at the M06-2X/6-31G(d) level 

of theory. The optimized geometries are consistent with the 

experimental X-Ray data (See Sup. Info for complete 

comparison). The variation of Wiberg bond indices ongoing from 

1 to 2 (for P1-C1: +0.266, C1-S1: +0.241 and S1-O1: -0.089) 

correlates with the measurement obtained from the X-Ray data 

(for P1-C1: -0.0627 Å, C1-S1: -0.0610 Å and S1-O1: 

+0.0145 Å). [22] The central carbon atom in 2 bears a large 

negative charge (-1.388) similarly to iminosulfane/phosphine-

carbone (-1.38).[8h] The two highest occupied molecular orbitals 

(HOMO-1 nC, HOMO nC) correspond to the two lone pairs at 

the central carbon in 2 (Figure 4). The HOMO-1, the in-plane -

lone pair, is partially deformed towards the sulfur atom of 

sulfoxide ligand, suggesting a negative hyperconjugaison nC / 

*(S-C or S-O). 

 

Figure 4. Calculated frontier orbitals of 2 at the M06-2X/6-31G(d) level of 

theory.  

The nucleophilic character of 2 was experimentally 

confirmed by an immediate reaction with methyl iodide, giving 

raise to the corresponding C-methylated salt 3. The 31P NMR 

spectrum indicates a selective reaction with a unique signal at  

= 51.9 ppm. The methylation was confirmed by the presence of 

two characteristic doublets at   = 1.72 ppm (JPH = 12.5 Hz) and 

at  = 16.4 (d, JCP = 9.3 Hz) in the 1H and 13C NMR spectra 

respectively. Compound 3 was isolated in crystalline form and its 

structure was confirmed by X-Ray diffraction analysis (See 

Supporting Information). The molecular structure of 3 shows a 

significantly elongated S1-C1 bond [1.6717(16) Å] relative to that 

of 2 [1.5929(14) Å], which is in good agreement with the loss of 

one of the two lone pairs at the central carbon atom upon C-

methylation. 

  



          

 

 

 

 

Scheme 2. Methylation and complexation of 2. 

The potential usefulness of phosphine/sulfoxide-carbone 2 

as ligand for transition metals was demonstrated by selective 

reaction with two equivalents of [AuCl(SMe2)] affording cleanly 

the neutral gem-aurated complex 4, in good yield (68 %). 

Similarly to carbodisphosphoranes and carbodicarbenes,[8b,23] 

the formation of complex 4 demonstrates the ability of 2 to act as 

a four-electron donor ligand. In the 31P NMR spectrum 4 displays 

a singlet signal at   = 41.2 ppm, while the central carbon atom 

appears as a doublet at  = 35.8 ppm (JCP = 47.5 Hz) in 13C 

NMR spectrum. Complex 4 has been isolated as colorless 

crystals from a concentrated dichloromethane solution, and its 

structure was unambiguously confirmed by X-Ray diffraction 

analysis (Figure 5). 

 

  

Figure 5. Molecular structure of 4. Thermal ellipsoids represent 30 % 

probability. H and disordered atoms and solvent molecule (dichloromethane) 

were omitted for clarity. Selected bond lengths [Å] and angles [°]: S1-C1 

1.737(4), P1-C1 1.781(4), C1-Au1 2.071(4), C1-Au2 2.056(4), P1-C10 

1.805(4), S1-C16 1.819(7), S1-C22 1.786(4), O1-S1 1.447(3), Au1-Au2 

3.018(1), Au1-Cl1 2.287(1), Au2-Cl2 2.289(1), S1-C1-P1 110.2(2), P1-

C1-Au1 109.92(19), Au1-C1-Au2 93.99(15), C1-Au1-Au2 42.81(11), 

Au1-Au2-C1 43.20(11), C1-Au1-Cl1 176.22(11), C1-Au2-Cl2 172.52(11). 

The C-Au bond lengths [2.056(4) and 2.071(4) Å] are 

shorter than those observed in the related 

carbodisphosphorane- and carbodicarbene-diaurated complexes 

(2.074, 2.078 Å and 2.080, 2.103 Å respectively). The aurophilic 

interaction is classical with Au1-Au2 distance of 3.018(1) Å, 

which is in the range of other gem-diaurated carbones (2.952 - 

3.143 Å).[8b, 8h, 18c, 20] Finally, the P1-C1 [1.781(4) Å] and the S1-

C1 [1.737(4) Å] bonds lengths are significantly longer than in 1, 

typical for single bonds (P-C : 1.79 - 1.82 Å and S-C : 1.73 – 

1.75 Å)[24]
 confirming that the two lone pairs are involved in the 

formation of complex 4. 

One established method for measuring the electron-donor 

ability of ligands is based on the carbonyl stretching frequencies 

of cis-[RhCl(CO)2L] complexes.[25] Therefore, 

phosphine/sulfoxide-carbone 2 was reacted with 0.5 equiv. of 

[RhCl(COD)]2, leading to the clean formation of rhodium(I) 

complex 5 as indicated by a doublet at  = 42.6 ppm (d, JPRh = 

2.7 Hz) in the 31P spectrum. In the 13C NMR spectrum, the 

central carbon atom appears at  = 16.3 ppm as a doublet of 

doublet (JCP = 56.7 Hz, JCRh = 37.5 Hz). Complex 5 is stable in 

solution at low temperature, but decomposes slowly at RT. The 

corresponding Rh(I) dicarbonyl complex 6 was prepared by 

bubbling carbon monoxide gas through a THF solution of 5 at -

78 °C (Scheme 3). The formation of 6 was indicated by a color 

change from yellow to brown-red. The 31P spectrum indicates a 

new doublet at  = 43.3 ppm (JPRh = 2.3 Hz) and in the 13C NMR 

spectrum, the signal corresponding to the central carbon atom is 

relatively deshielded at  = 20.8 ppm (JCP = 66.6 Hz, JCRh = 33.0 

Hz) compared to 5.[26] The molecular structures of both 

complexes 5 and 6 were confirmed by X-ray diffraction analysis 

(Figures 6 and 7). In both complexes, P1-C1 [1.7070(14) Å (5) 

and 1.709(2) Å (6)] and S1-C1 [1.6400(14) Å (5) and 1.654(2) Å 

(6)] bond lengths are very similar to those observed in 1 and 3, 

meaning that only one lone pair of the central carbon atom 

interacts with the Rh center. 

 

Scheme 3. Formation of Rh(I) complexes 5 and 6. 

 
Figure 6. Molecular structure of 5. Thermal ellipsoids represent 30 % 

probability. H atoms were omitted for clarity. Selected bond lengths [Å] and 

angles [°]: S1-C1 1.6400(14), P1-C1 1.7070(14), C1-Rh1 2.1757(13), P1-C10 

1.8144(14), S1-C16 1.7996(15), S1-C22 1.7928(15), O1-S1 1.4650(11), Rh1-

Cl1 2.4503(4), S1-C1-P1 114.36(8), P1-C1-Rh1 125.80(7), Rh1-C1-

S1 118.60(7). 



          

 

 

 

 

 

Figure 7. Molecular structure of 6. Thermal ellipsoids represent 30 % 

probability. H and disordered atoms and solvent (C6D6) were omitted for clarity. 

Selected bond lengths [Å] and angles [°]: S1-C1 1.654(2), P1-C1 1.709(2), C1-

Rh1 2.165(2), P1-C10 1.806(2), S1-C16 1.794(2), S1-C22 1.788(2), O1-S1 

1.460(2), Rh1-Cl1 2.400(1), Rh1-C28 1.824(3), Rh1-C29 1.874(3), S1-C1-

P1 113.63°(12), S1-C1-Rh1 119.82(11), Rh1-C1-P1 125.02(11), C1-Rh1-Cl1 

94.46(6), Cl1-Rh1-C29 85.06(8), C29-Rh1-C28 90.60(11), C28-Rh1-C1 

89.95(9). 

The IR spectrum of 6 shows the characteristic CO-stretching 

frequencies with an average value of 2016 cm-1, which is in the 

range of those observed for cyclic or acyclic bent allenes (2018 

and 2014 cm-1 respectively).[5b, 9b, 9c, 27] Therefore, 

phosphine/sulfoxide carbone 2 appears to be stronger electron-

donating ligand than classical NHCs (2060 – 2036 cm-1) but 

weaker compared to cyclic carbodiphosphoranes (2001 cm-1) 

(Figure 8).[9a, 28] 

 

Figure 8. Comparison of av(CO) stretching frequencies of cis-

[RhCl(CO)2L] complexes. 

In summary, we have successfully synthesized and 

characterized an original phosphine/sulfoxide-carbone 2 easily 

obtained from the corresponding cationic salt. As expected, the 

introduction of the sulfoxide ligand dramatically enhances the 

stability of this new carbon(0) complex. In comparison with 

previous phosphine/sulfide-carbone model, 2 exhibits an 

excellent coordination ability and thus allowed the stabilization 

and characterization of several organometallic complexes [Au(I), 

Rh(I)]. The carbone character of 2 was demonstrated by the 

isolation of neutral gem-aurated complex 4, establishing the 

ability of ligand 2 to act as a four-electron donor. Moreover, the 

electron-donating character of 2 is much stronger than that of 

NHCs and we can expect that the corresponding transition-metal 

complexes could exhibit interesting catalytic activities. Efforts 

are currently underway to extend the diversity of organometallic 

complexes and in order to test their catalytic activities.  
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